Degradation trajectory prediction of lithium‐ion batteries based on charging‐discharging health features extraction and integrated data‐driven models

As one of the key technologies in battery management system, accurate remaining useful life (RUL) prediction is critical to guarantee the reliability and safety for electrical equipment. However, the generalization and robustness of a single method are limited. A novel fusion data‐driven RUL predict...

Full description

Saved in:
Bibliographic Details
Published in:Quality and reliability engineering international Vol. 40; no. 4; pp. 1833 - 1854
Main Authors: Zheng, Xiujuan, Wu, Fei, Tao, Liujun
Format: Journal Article
Language:English
Published: Bognor Regis Wiley Subscription Services, Inc 01.06.2024
Subjects:
ISSN:0748-8017, 1099-1638
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As one of the key technologies in battery management system, accurate remaining useful life (RUL) prediction is critical to guarantee the reliability and safety for electrical equipment. However, the generalization and robustness of a single method are limited. A novel fusion data‐driven RUL prediction method CSSA‐ELM‐LSSVR based on charging‐discharging health features extraction is proposed in this paper, which fusions chaotic sparrow search algorithm (CSSA), extreme learning machine (ELM), and least squares support vector regression (LSSVR). First, four health indicators (HIs) are extracted from the charging‐discharging process, which can reflect the battery degradation phenomenon from multiple perspectives. Then, pearson correlation coefficient is used to numerically analyze the correlation between HIs and battery aging capacities. Second, the extracted HIs are used as the inputs for ELM and LSSVR to predict the degradation trend of battery, where CSSA is used for hyperparameters optimization in ELM. Finally, considering that CSSA‐ELM can capture the general trend of degradation curves, while LSSVR can trace the detail changes, a fusion framework based on CSSA‐ELM and LSSVR is proposed for RUL prediction. Two weighting schemes, namely precision‐based weighting (PW) and random forest regressor‐based weighting (RFRW) are put forward to fix the weights of CSSA‐ELM and LSSVR algorithms. Two publicly available datasets from National Aeronautics and Space Administration (NASA) and MIT are adopted to verify the feasibility and effectiveness of the proposed method. The results indicate that the proposed method with any weighting scheme has an overall superior prediction performance for different kinds of batteries compared with CSSA‐ELM, LSSVR, convolution neural network and long short term memory. Moreover, the RFRW scheme has better overall performance. Specifically, the maximum root mean square error of the predicted method is 2.5126%, the mean absolute percentage error is 12.9167%, the mean absolute error is 1.8376%, the predicted RUL errors are within one cycle, and the determination coefficient R2$R^2$ is above 0.97.
AbstractList As one of the key technologies in battery management system, accurate remaining useful life (RUL) prediction is critical to guarantee the reliability and safety for electrical equipment. However, the generalization and robustness of a single method are limited. A novel fusion data‐driven RUL prediction method CSSA‐ELM‐LSSVR based on charging‐discharging health features extraction is proposed in this paper, which fusions chaotic sparrow search algorithm (CSSA), extreme learning machine (ELM), and least squares support vector regression (LSSVR). First, four health indicators (HIs) are extracted from the charging‐discharging process, which can reflect the battery degradation phenomenon from multiple perspectives. Then, pearson correlation coefficient is used to numerically analyze the correlation between HIs and battery aging capacities. Second, the extracted HIs are used as the inputs for ELM and LSSVR to predict the degradation trend of battery, where CSSA is used for hyperparameters optimization in ELM. Finally, considering that CSSA‐ELM can capture the general trend of degradation curves, while LSSVR can trace the detail changes, a fusion framework based on CSSA‐ELM and LSSVR is proposed for RUL prediction. Two weighting schemes, namely precision‐based weighting (PW) and random forest regressor‐based weighting (RFRW) are put forward to fix the weights of CSSA‐ELM and LSSVR algorithms. Two publicly available datasets from National Aeronautics and Space Administration (NASA) and MIT are adopted to verify the feasibility and effectiveness of the proposed method. The results indicate that the proposed method with any weighting scheme has an overall superior prediction performance for different kinds of batteries compared with CSSA‐ELM, LSSVR, convolution neural network and long short term memory. Moreover, the RFRW scheme has better overall performance. Specifically, the maximum root mean square error of the predicted method is 2.5126%, the mean absolute percentage error is 12.9167%, the mean absolute error is 1.8376%, the predicted RUL errors are within one cycle, and the determination coefficient R2$R^2$ is above 0.97.
As one of the key technologies in battery management system, accurate remaining useful life (RUL) prediction is critical to guarantee the reliability and safety for electrical equipment. However, the generalization and robustness of a single method are limited. A novel fusion data‐driven RUL prediction method CSSA‐ELM‐LSSVR based on charging‐discharging health features extraction is proposed in this paper, which fusions chaotic sparrow search algorithm (CSSA), extreme learning machine (ELM), and least squares support vector regression (LSSVR). First, four health indicators (HIs) are extracted from the charging‐discharging process, which can reflect the battery degradation phenomenon from multiple perspectives. Then, pearson correlation coefficient is used to numerically analyze the correlation between HIs and battery aging capacities. Second, the extracted HIs are used as the inputs for ELM and LSSVR to predict the degradation trend of battery, where CSSA is used for hyperparameters optimization in ELM. Finally, considering that CSSA‐ELM can capture the general trend of degradation curves, while LSSVR can trace the detail changes, a fusion framework based on CSSA‐ELM and LSSVR is proposed for RUL prediction. Two weighting schemes, namely precision‐based weighting (PW) and random forest regressor‐based weighting (RFRW) are put forward to fix the weights of CSSA‐ELM and LSSVR algorithms. Two publicly available datasets from National Aeronautics and Space Administration (NASA) and MIT are adopted to verify the feasibility and effectiveness of the proposed method. The results indicate that the proposed method with any weighting scheme has an overall superior prediction performance for different kinds of batteries compared with CSSA‐ELM, LSSVR, convolution neural network and long short term memory. Moreover, the RFRW scheme has better overall performance. Specifically, the maximum root mean square error of the predicted method is 2.5126%, the mean absolute percentage error is 12.9167%, the mean absolute error is 1.8376%, the predicted RUL errors are within one cycle, and the determination coefficient is above 0.97.
Author Wu, Fei
Tao, Liujun
Zheng, Xiujuan
Author_xml – sequence: 1
  givenname: Xiujuan
  orcidid: 0000-0001-7050-2880
  surname: Zheng
  fullname: Zheng, Xiujuan
  email: zhengxj@wust.edu.cn
  organization: Wuhan University of Science and Technology
– sequence: 2
  givenname: Fei
  surname: Wu
  fullname: Wu, Fei
  organization: Wuhan University of Science and Technology
– sequence: 3
  givenname: Liujun
  surname: Tao
  fullname: Tao, Liujun
  organization: Wuhan University of Science and Technology
BookMark eNp1kU1OwzAQhS0EEm1B4giR2LBJsRPnx0tUyo9UCYFgHU2cSeMqTVrbBbrjCOy5HSfBaWCDYGXP6Jv3xn5Dst-0DRJywuiYURqcrzWOQy7iPTJgVAifxWG6TwY04amfUpYckqExC0odLNIB-bjEuYYCrGobz2pYoLSt3norjYWSu25berWyldosP9_eu0YO1qJWaNzNYOG5lqxAz1Uzd0ShzE_lVQi1rbwSwW604_HVWfSq0BSeamznbp2G2wC6Ya2esfGWbYG1OSIHJdQGj7_PEXm6mj5ObvzZ3fXt5GLmy0CEsZ8XkmFAJQqWRknA8ziSvMxBJqHgpSuAUg4AYZxjUooAOYWSS86iWCKjaTgip73uSrfrDRqbLdqNbpxlFtKI8TRJw9hR456SujVGY5lJZXf_5t6k6ozRrAsgcwFkXQBu4OzXwEqrJejtX6jfoy-qxu2_XHb_MN3xX2LennA
CitedBy_id crossref_primary_10_1002_qre_3708
crossref_primary_10_1002_qre_3706
crossref_primary_10_3390_su17073232
crossref_primary_10_1016_j_ress_2024_110517
Cites_doi 10.1016/j.neucom.2020.07.081
10.1016/j.jpowsour.2020.228534
10.1038/s41560-019-0356-8
10.1002/qre.3459
10.1109/TTE.2020.3017090
10.1016/j.jpowsour.2018.03.015
10.1016/j.energy.2019.06.128
10.1016/j.ress.2021.107542
10.1016/j.energy.2022.123973
10.1109/TCSI.2018.2888688
10.1016/j.est.2023.107179
10.1109/TVT.2021.3071622
10.1016/j.egyr.2021.06.051
10.1016/j.est.2022.104538
10.1080/21642583.2019.1708830
10.1016/j.energy.2020.118140
10.1016/j.jpowsour.2021.230774
10.1016/j.jpowsour.2019.227281
10.1016/j.energy.2021.121652
10.1016/j.jpowsour.2020.227935
10.1016/j.jpowsour.2020.227700
10.1016/j.measurement.2022.112093
10.1002/qre.2792
10.1016/j.jpowsour.2019.01.012
10.1016/j.measurement.2022.112187
10.1016/j.neucom.2019.09.074
10.1016/j.asoc.2019.105979
10.1016/j.apenergy.2018.02.175
10.1109/TVT.2020.3014932
10.1016/j.est.2020.101250
10.1016/j.energy.2022.123622
10.1016/j.ensm.2020.12.019
10.1016/j.energy.2021.121269
10.1109/TIA.2019.2955396
10.1016/j.energy.2020.117957
10.1016/j.knosys.2021.106924
10.1016/j.asoc.2018.10.014
10.1016/j.energy.2020.119688
10.1016/j.jpowsour.2021.230572
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1002/qre.3496
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1638
EndPage 1854
ExternalDocumentID 10_1002_qre_3496
QRE3496
Genre article
GrantInformation_xml – fundername: Hubei Provincial Natural Science Foundation of China
  funderid: 2023AFB619
– fundername: National Natural Science Foundation of China
  funderid: 62073250
– fundername: Hubei Provincial Department of Education
  funderid: D20201105
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7TB
8FD
FR3
ID FETCH-LOGICAL-c2936-bdc1e20ce9185724b65c4fbac7394f65ca004aaa36be7f92e40af4c4156ce1083
IEDL.DBID DRFUL
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001151652300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0748-8017
IngestDate Fri Jul 25 12:20:47 EDT 2025
Sat Nov 29 02:33:18 EST 2025
Tue Nov 18 21:33:44 EST 2025
Wed Jan 22 17:20:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2936-bdc1e20ce9185724b65c4fbac7394f65ca004aaa36be7f92e40af4c4156ce1083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7050-2880
PQID 3051487836
PQPubID 1016437
PageCount 22
ParticipantIDs proquest_journals_3051487836
crossref_citationtrail_10_1002_qre_3496
crossref_primary_10_1002_qre_3496
wiley_primary_10_1002_qre_3496_QRE3496
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Quality and reliability engineering international
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 384
2021; 7
2019; 4
2022; 251
2019; 74
2022; 51
2019; 56
2020; 204
2006; 7
2020; 445
2020; 206
2021; 221
2022; 518
2021; 220
2022; 238
2019; 183
2021; 70
2021; 36
2023; 64
2020; 8
2020; 7
2021; 37
2023
2021; 234
2018; 218
2019; 66
2020; 450
2021; 514
2020; 414
2020; 69
2020; 376
2020; 455
2019; 414
2021; 210
2020; 88
2020; 476
2022; 205
2022; 204
2022; 248
2020; 29
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
Meinshausen N (e_1_2_10_42_1) 2006; 7
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 514
  year: 2021
  article-title: The capacity prediction of Li‐ion batteries based on a new feature extraction technique and an improved extreme learning machine algorithm
  publication-title: J Power Sources
– volume: 445
  year: 2020
  article-title: Deep Gaussian process regression for lithium‐ion battery health prognosis and degradation mode diagnosis
  publication-title: J Power Sources
– volume: 51
  year: 2022
  article-title: State of power estimation of power lithium‐ion battery based on an equivalent circuit model
  publication-title: J. Energy Storage
– volume: 221
  year: 2021
  article-title: Implementation and evaluation of a practical electrochemical‐thermal model of lithium‐ion batteries for EV battery management system
  publication-title: Energy
– volume: 183
  start-page: 220
  year: 2019
  end-page: 234
  article-title: Towards a smarter battery management system: a critical review on optimal charging methods of lithium ion batteries
  publication-title: Energy
– volume: 234
  year: 2021
  article-title: Lithium‐ion batteries remaining useful life prediction based on bls‐rvm
  publication-title: Energy
– volume: 476
  year: 2020
  article-title: Electrochemical model‐based state estimation for lithium‐ion batteries with adaptive unscented Kalman filter
  publication-title: J Power Sources
– volume: 69
  start-page: 10854
  issue: 10
  year: 2020
  end-page: 10867
  article-title: State‐of‐health estimation and remaining‐useful‐life prediction for lithium‐ion battery using a hybrid data‐driven method
  publication-title: IEEE Trans Veh Technol
– volume: 56
  start-page: 678
  issue: 1
  year: 2019
  end-page: 685
  article-title: Lithium‐ion battery state‐of‐health estimation using the incremental capacity analysis technique
  publication-title: IEEE Trans Ind Appl
– volume: 7
  start-page: 983
  issue: 6
  year: 2006
  end-page: 999
  article-title: Quantile regression forests
  publication-title: J Mach Learn Res
– volume: 251
  year: 2022
  article-title: A novel method for state of health estimation of lithium‐ion batteries based on improved LSTM and health indicators extraction
  publication-title: Energy
– volume: 64
  year: 2023
  article-title: State‐of‐health estimation and remaining useful life prediction for lithium‐ion batteries based on an improved particle filter algorithm
  publication-title: J Energy Storage
– volume: 88
  year: 2020
  article-title: Application of neural network and weighted improved pso for uncertainty modeling and optimal allocating of renewable energies along with battery energy storage
  publication-title: Appl Soft Comput
– volume: 29
  year: 2020
  article-title: An online soc and capacity estimation method for aged lithium‐ion battery pack considering cell inconsistency
  publication-title: J Storage Mater
– volume: 74
  start-page: 110
  year: 2019
  end-page: 121
  article-title: Enhancing the lithium‐ion battery life predictability using a hybrid method
  publication-title: Appl Soft Comput
– volume: 206
  year: 2020
  article-title: An optimized ensemble learning framework for lithium‐ion battery state of health estimation in energy storage system
  publication-title: Energy
– volume: 36
  start-page: 186
  year: 2021
  end-page: 212
  article-title: On the sustainability of lithium ion battery industry – a review and perspective
  publication-title: Energy Stor Mater
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  end-page: 34
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst Sci Control Eng
– volume: 238
  year: 2022
  article-title: A review on thermal management of lithium‐ion batteries for electric vehicles
  publication-title: Energy
– volume: 376
  start-page: 95
  year: 2020
  end-page: 102
  article-title: Remaining useful life prediction of lithium‐ion batteries with adaptive unscented Kalman filter and optimized support vector regression
  publication-title: Neurocomputing
– volume: 37
  start-page: 1232
  issue: 3
  year: 2021
  end-page: 1243
  article-title: Remaining useful life prediction of lithium‐ion battery using a novel health indicator
  publication-title: Qual Reliab Eng Int
– volume: 70
  start-page: 4252
  issue: 5
  year: 2021
  end-page: 4261
  article-title: Remaining useful life assessment for lithium‐ion batteries using cnn‐lstm‐dnn hybrid method
  publication-title: IEEE Trans Veh Technol
– volume: 210
  year: 2021
  article-title: Remaining useful life estimation of lithium‐ion battery based on interacting multiple model particle filter and support vector regression
  publication-title: Reliab Eng Syst Saf
– volume: 414
  start-page: 158
  year: 2019
  end-page: 166
  article-title: Particle filter‐based state‐of‐charge estimation and remaining‐dischargeable‐time prediction method for lithium‐ion batteries
  publication-title: J Power Sources
– volume: 7
  start-page: 320
  year: 2021
  end-page: 329
  article-title: A novel hybrid equivalent circuit model for lithium‐ion battery considering nonlinear capacity effects
  publication-title: Energy Rep
– volume: 204
  year: 2020
  article-title: A uniform estimation framework for state of health of lithium‐ion batteries considering feature extraction and parameters optimization
  publication-title: Energy
– volume: 384
  start-page: 387
  year: 2018
  end-page: 395
  article-title: A novel Gaussian process regression model for state‐of‐health estimation of lithium‐ion battery using charging curve
  publication-title: J Power Sources
– volume: 205
  year: 2022
  article-title: A joint state‐of‐health and state‐of‐energy estimation method for lithium‐ion batteries through combining the forgetting factor recursive least squares and unscented Kalman filter
  publication-title: Measurement
– volume: 414
  start-page: 245
  year: 2020
  end-page: 254
  article-title: Remaining useful life prediction of lithium‐ion battery with optimal input sequence selection and error compensation
  publication-title: Neurocomputing
– volume: 218
  start-page: 22
  year: 2018
  end-page: 35
  article-title: A robust extreme learning machine for modeling a small‐scale turbojet engine
  publication-title: Appl Energy
– volume: 450
  year: 2020
  article-title: Remaining useful life prediction of lithium‐ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method
  publication-title: J Power Sources
– start-page: 1
  year: 2023
  end-page: 21
  article-title: A novel deep time‐index framework with limited data and feature extraction for battery capacity degradation prediction
  publication-title: Qual Reliab Eng Int
– volume: 7
  start-page: 382
  issue: 2
  year: 2020
  end-page: 398
  article-title: Battery health prediction using fusion‐based feature selection and machine learning
  publication-title: IEEE Trans Transp Electrif
– volume: 220
  year: 2021
  article-title: A stochastic configuration network based on chaotic sparrow search algorithm
  publication-title: Knowl Based Syst
– volume: 66
  start-page: 2322
  issue: 6
  year: 2019
  end-page: 2335
  article-title: Dynamic analysis of digital chaotic maps via state‐mapping networks
  publication-title: IEEE Trans Circuits Syst I Regul Pap
– volume: 248
  year: 2022
  article-title: Remaining useful life prediction of lithium‐ion batteries using a hybrid model
  publication-title: Energy
– volume: 4
  start-page: 383
  issue: 5
  year: 2019
  end-page: 391
  article-title: Data‐driven prediction of battery cycle life before capacity degradation
  publication-title: Nat Energy
– volume: 204
  year: 2022
  article-title: Remaining useful life prediction of lithium‐ion batteries based on attention mechanism and bidirectional long short‐term memory network
  publication-title: Measurement
– volume: 455
  year: 2020
  article-title: Co‐estimation of lithium‐ion battery state of charge and state of temperature based on a hybrid electrochemical‐thermal‐neural‐network model
  publication-title: J Power Sources
– volume: 518
  year: 2022
  article-title: A multi‐feature‐based multi‐model fusion method for state of health estimation of lithium‐ion batteries
  publication-title: J Power Sources
– ident: e_1_2_10_14_1
  doi: 10.1016/j.neucom.2020.07.081
– ident: e_1_2_10_16_1
  doi: 10.1016/j.jpowsour.2020.228534
– ident: e_1_2_10_41_1
  doi: 10.1038/s41560-019-0356-8
– ident: e_1_2_10_4_1
  doi: 10.1002/qre.3459
– ident: e_1_2_10_23_1
  doi: 10.1109/TTE.2020.3017090
– ident: e_1_2_10_24_1
  doi: 10.1016/j.jpowsour.2018.03.015
– ident: e_1_2_10_6_1
  doi: 10.1016/j.energy.2019.06.128
– ident: e_1_2_10_20_1
  doi: 10.1016/j.ress.2021.107542
– ident: e_1_2_10_30_1
  doi: 10.1016/j.energy.2022.123973
– ident: e_1_2_10_39_1
  doi: 10.1109/TCSI.2018.2888688
– ident: e_1_2_10_12_1
  doi: 10.1016/j.est.2023.107179
– ident: e_1_2_10_27_1
  doi: 10.1109/TVT.2021.3071622
– ident: e_1_2_10_17_1
  doi: 10.1016/j.egyr.2021.06.051
– ident: e_1_2_10_18_1
  doi: 10.1016/j.est.2022.104538
– ident: e_1_2_10_37_1
  doi: 10.1080/21642583.2019.1708830
– ident: e_1_2_10_11_1
  doi: 10.1016/j.energy.2020.118140
– ident: e_1_2_10_25_1
  doi: 10.1016/j.jpowsour.2021.230774
– ident: e_1_2_10_40_1
– ident: e_1_2_10_28_1
  doi: 10.1016/j.jpowsour.2019.227281
– ident: e_1_2_10_2_1
  doi: 10.1016/j.energy.2021.121652
– ident: e_1_2_10_7_1
  doi: 10.1016/j.jpowsour.2020.227935
– ident: e_1_2_10_21_1
  doi: 10.1016/j.jpowsour.2020.227700
– ident: e_1_2_10_31_1
  doi: 10.1016/j.measurement.2022.112093
– ident: e_1_2_10_22_1
  doi: 10.1002/qre.2792
– ident: e_1_2_10_19_1
  doi: 10.1016/j.jpowsour.2019.01.012
– ident: e_1_2_10_9_1
  doi: 10.1016/j.measurement.2022.112187
– ident: e_1_2_10_15_1
  doi: 10.1016/j.neucom.2019.09.074
– ident: e_1_2_10_26_1
  doi: 10.1016/j.asoc.2019.105979
– ident: e_1_2_10_36_1
  doi: 10.1016/j.apenergy.2018.02.175
– ident: e_1_2_10_35_1
  doi: 10.1109/TVT.2020.3014932
– ident: e_1_2_10_8_1
  doi: 10.1016/j.est.2020.101250
– ident: e_1_2_10_34_1
  doi: 10.1016/j.energy.2022.123622
– ident: e_1_2_10_3_1
  doi: 10.1016/j.ensm.2020.12.019
– ident: e_1_2_10_13_1
  doi: 10.1016/j.energy.2021.121269
– volume: 7
  start-page: 983
  issue: 6
  year: 2006
  ident: e_1_2_10_42_1
  article-title: Quantile regression forests
  publication-title: J Mach Learn Res
– ident: e_1_2_10_10_1
  doi: 10.1109/TIA.2019.2955396
– ident: e_1_2_10_33_1
  doi: 10.1016/j.energy.2020.117957
– ident: e_1_2_10_38_1
  doi: 10.1016/j.knosys.2021.106924
– ident: e_1_2_10_32_1
  doi: 10.1016/j.asoc.2018.10.014
– ident: e_1_2_10_5_1
  doi: 10.1016/j.energy.2020.119688
– ident: e_1_2_10_29_1
  doi: 10.1016/j.jpowsour.2021.230572
SSID ssj0010098
Score 2.3821192
Snippet As one of the key technologies in battery management system, accurate remaining useful life (RUL) prediction is critical to guarantee the reliability and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1833
SubjectTerms Aeronautics
Artificial neural networks
chaotic sparrow search algorithm
Charging
Correlation coefficients
Degradation
Discharge
Electric equipment
Errors
extreme learning machine
fusion data‐driven algorithm
least squares support vector regression
Lithium-ion batteries
Machine learning
random forest regressor
remaining useful life
Search algorithms
Support vector machines
Weighting
Title Degradation trajectory prediction of lithium‐ion batteries based on charging‐discharging health features extraction and integrated data‐driven models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqre.3496
https://www.proquest.com/docview/3051487836
Volume 40
WOSCitedRecordID wos001151652300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010098
  issn: 0748-8017
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEICDth704FusVokgelrb7sZ9HMW2eJCixUJvS5KdYEXbutsK3vwJ3v13_hIzyfYhKAielg3JsiSZySSZ-YaQY-HLoAZe5CiFp1W-xxwOHnoCoIWfJC4oZpJNBK1W2O1GN7lXJcbCWD7E9MANJcPoaxRwLrLKDBr6nMIZ0s4XSRFjqvTGq1hvNzvX0zsERGVaCGeIejiYoGerbmXS9vtiNLMw5-1Us9A01_7zi-tkNTcv6YWdDxtkAfqbZGUOOrhFPurIh7CplOgo5Q_m3P6VDlO8szGlA0W1dX7fGz99vr1jgTAUTr2pprjqJVQXGcSS_qCugZG9-Ru1cZVUgQGGZlTr_tTGTlDeT-iUTpFQ9E3FxinqW2oy8mTbpNNs3F1eOXmKBkdqO8F3RCJr4FYlRMiUcpnwzyVTgsvAi5jSL1wLIefc8wUEKnKBVbliEneNEmra_Nshhf6gD7uERtyQKwUIkbBQhAJAheBGPoAMfCZK5HQyVrHM-eWYRuMxtuRlN9bdHWN3l8jRtObQMjt-qFOeDHecS20WewiDDzGupUROzMD-2j6-bTfwuffXivtk2dX2kPUyK5PCKB3DAVmSL6Nelh7mc_cLb677lA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NThsxEIBHIalUOJSWggikYCRET0uSXbM_6qlqiEANUYtA4rayvWMBghA2CRI3HoE7b8eT1GPvBpCohMRpZcveXdme8fhnvgHYlKGK2hgknta0WxUG3BMY0E0AsvCzzEfNbbCJqN-PT06SPxX4UfrCOD7EdMONJMPqaxJw2pBuPlFDr3PcJtz5DNTMN6K4CrXOYfe4Nz1EIFamo3DGpIijkj3b8ptl3Zez0ZOJ-dxQtTNNd_5d__gZPhUGJvvpRsQXqOBgAeaeYQe_wkOHCBEumBIb5-Lc7tzfsmFOpzY290ozY5-fnk0uH-_uKUNaDqdZVjOa9zJmsixkybzQlCDf3iLFnGcl02iRoSNmtH_uvCeYGGRsyqfIGN1Opco5aVxmY_KMFuG4u3v0a88rgjR4ylgKoScz1Ua_pTAhqpTPZbijuJZCRUHCtUkII4ZCiCCUGOnER94SmitaNypsGwNwCaqDqwEuA0uEZVdKlDLjsYwloo7RT0JEFYVc1uF72VmpKgjmFEjjInXsZT81zZ1Sc9dhY1py6Kgdr5RplP2dFnI7SgPCwcfk2VKHLduz_62f_j3cpefKWwuuw8e9o4Ne2tvv_16FWd9YR-7OWQOq43yC3-CDuhmfjfK1YiD_A2CR_4Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1fa9swEMCPLC2jfdjWbaXZuk2Fsj25SWzFf9jTWBJaGkIaFuibkeQTS2mT1EkKfdtH6Hu_3T7JdJKdZLDBYE9G4mSMpDudJd3vAI5lqKImBomnNe1WhQH3BAZ0E4A8_CzzUXObbCLq9-PLy2RQgc9lLIzjQ6w23EgzrL0mBcdZputrauhtjieEO38CW7yVtHgVttrD7qi3OkQgVqajcMZkiKOSPdvw62Xb31ejtYu56ajalab7_L--8QU8KxxM9sXNiD2o4OQl7G5gB1_BY5sIES6ZElvk4sru3N-zWU6nNrZ2qpnxz7-Plzc_fzxQhbQcTvNbzWjdy5ipspAl80IjQbG9RYm5yEqm0SJD58xY_9xFTzAxydiKT5Exup1KjXOyuMzm5Jm_hlG38-3rqVckafCU8RRCT2aqiX5DYUJUKZ_LsKW4lkJFQcK1KQijhkKIIJQY6cRH3hCaK_pvVNg0DuA-VCfTCR4AS4RlV0qUMuOxjCWijtFPQkQVhVzW4FM5WKkqCOaUSOM6dexlPzXdnVJ31-BoJTlz1I4_yByW450WejtPA8LBxxTZUoOPdmT_2j69GHbo-eZfBT_A00G7m_bO-udvYcc3zpG7cnYI1UW-xHewre4W43n-vpjHvwDwmf7_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+trajectory+prediction+of+lithium%E2%80%90ion+batteries+based+on+charging%E2%80%90discharging+health+features+extraction+and+integrated+data%E2%80%90driven+models&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Zheng%2C+Xiujuan&rft.au=Wu%2C+Fei&rft.au=Liujun+Tao&rft.date=2024-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=40&rft.issue=4&rft.spage=1833&rft.epage=1854&rft_id=info:doi/10.1002%2Fqre.3496&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon