Degradation trajectory prediction of lithium‐ion batteries based on charging‐discharging health features extraction and integrated data‐driven models
As one of the key technologies in battery management system, accurate remaining useful life (RUL) prediction is critical to guarantee the reliability and safety for electrical equipment. However, the generalization and robustness of a single method are limited. A novel fusion data‐driven RUL predict...
Saved in:
| Published in: | Quality and reliability engineering international Vol. 40; no. 4; pp. 1833 - 1854 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bognor Regis
Wiley Subscription Services, Inc
01.06.2024
|
| Subjects: | |
| ISSN: | 0748-8017, 1099-1638 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As one of the key technologies in battery management system, accurate remaining useful life (RUL) prediction is critical to guarantee the reliability and safety for electrical equipment. However, the generalization and robustness of a single method are limited. A novel fusion data‐driven RUL prediction method CSSA‐ELM‐LSSVR based on charging‐discharging health features extraction is proposed in this paper, which fusions chaotic sparrow search algorithm (CSSA), extreme learning machine (ELM), and least squares support vector regression (LSSVR). First, four health indicators (HIs) are extracted from the charging‐discharging process, which can reflect the battery degradation phenomenon from multiple perspectives. Then, pearson correlation coefficient is used to numerically analyze the correlation between HIs and battery aging capacities. Second, the extracted HIs are used as the inputs for ELM and LSSVR to predict the degradation trend of battery, where CSSA is used for hyperparameters optimization in ELM. Finally, considering that CSSA‐ELM can capture the general trend of degradation curves, while LSSVR can trace the detail changes, a fusion framework based on CSSA‐ELM and LSSVR is proposed for RUL prediction. Two weighting schemes, namely precision‐based weighting (PW) and random forest regressor‐based weighting (RFRW) are put forward to fix the weights of CSSA‐ELM and LSSVR algorithms. Two publicly available datasets from National Aeronautics and Space Administration (NASA) and MIT are adopted to verify the feasibility and effectiveness of the proposed method. The results indicate that the proposed method with any weighting scheme has an overall superior prediction performance for different kinds of batteries compared with CSSA‐ELM, LSSVR, convolution neural network and long short term memory. Moreover, the RFRW scheme has better overall performance. Specifically, the maximum root mean square error of the predicted method is 2.5126%, the mean absolute percentage error is 12.9167%, the mean absolute error is 1.8376%, the predicted RUL errors are within one cycle, and the determination coefficient R2$R^2$ is above 0.97. |
|---|---|
| AbstractList | As one of the key technologies in battery management system, accurate remaining useful life (RUL) prediction is critical to guarantee the reliability and safety for electrical equipment. However, the generalization and robustness of a single method are limited. A novel fusion data‐driven RUL prediction method CSSA‐ELM‐LSSVR based on charging‐discharging health features extraction is proposed in this paper, which fusions chaotic sparrow search algorithm (CSSA), extreme learning machine (ELM), and least squares support vector regression (LSSVR). First, four health indicators (HIs) are extracted from the charging‐discharging process, which can reflect the battery degradation phenomenon from multiple perspectives. Then, pearson correlation coefficient is used to numerically analyze the correlation between HIs and battery aging capacities. Second, the extracted HIs are used as the inputs for ELM and LSSVR to predict the degradation trend of battery, where CSSA is used for hyperparameters optimization in ELM. Finally, considering that CSSA‐ELM can capture the general trend of degradation curves, while LSSVR can trace the detail changes, a fusion framework based on CSSA‐ELM and LSSVR is proposed for RUL prediction. Two weighting schemes, namely precision‐based weighting (PW) and random forest regressor‐based weighting (RFRW) are put forward to fix the weights of CSSA‐ELM and LSSVR algorithms. Two publicly available datasets from National Aeronautics and Space Administration (NASA) and MIT are adopted to verify the feasibility and effectiveness of the proposed method. The results indicate that the proposed method with any weighting scheme has an overall superior prediction performance for different kinds of batteries compared with CSSA‐ELM, LSSVR, convolution neural network and long short term memory. Moreover, the RFRW scheme has better overall performance. Specifically, the maximum root mean square error of the predicted method is 2.5126%, the mean absolute percentage error is 12.9167%, the mean absolute error is 1.8376%, the predicted RUL errors are within one cycle, and the determination coefficient R2$R^2$ is above 0.97. As one of the key technologies in battery management system, accurate remaining useful life (RUL) prediction is critical to guarantee the reliability and safety for electrical equipment. However, the generalization and robustness of a single method are limited. A novel fusion data‐driven RUL prediction method CSSA‐ELM‐LSSVR based on charging‐discharging health features extraction is proposed in this paper, which fusions chaotic sparrow search algorithm (CSSA), extreme learning machine (ELM), and least squares support vector regression (LSSVR). First, four health indicators (HIs) are extracted from the charging‐discharging process, which can reflect the battery degradation phenomenon from multiple perspectives. Then, pearson correlation coefficient is used to numerically analyze the correlation between HIs and battery aging capacities. Second, the extracted HIs are used as the inputs for ELM and LSSVR to predict the degradation trend of battery, where CSSA is used for hyperparameters optimization in ELM. Finally, considering that CSSA‐ELM can capture the general trend of degradation curves, while LSSVR can trace the detail changes, a fusion framework based on CSSA‐ELM and LSSVR is proposed for RUL prediction. Two weighting schemes, namely precision‐based weighting (PW) and random forest regressor‐based weighting (RFRW) are put forward to fix the weights of CSSA‐ELM and LSSVR algorithms. Two publicly available datasets from National Aeronautics and Space Administration (NASA) and MIT are adopted to verify the feasibility and effectiveness of the proposed method. The results indicate that the proposed method with any weighting scheme has an overall superior prediction performance for different kinds of batteries compared with CSSA‐ELM, LSSVR, convolution neural network and long short term memory. Moreover, the RFRW scheme has better overall performance. Specifically, the maximum root mean square error of the predicted method is 2.5126%, the mean absolute percentage error is 12.9167%, the mean absolute error is 1.8376%, the predicted RUL errors are within one cycle, and the determination coefficient is above 0.97. |
| Author | Wu, Fei Tao, Liujun Zheng, Xiujuan |
| Author_xml | – sequence: 1 givenname: Xiujuan orcidid: 0000-0001-7050-2880 surname: Zheng fullname: Zheng, Xiujuan email: zhengxj@wust.edu.cn organization: Wuhan University of Science and Technology – sequence: 2 givenname: Fei surname: Wu fullname: Wu, Fei organization: Wuhan University of Science and Technology – sequence: 3 givenname: Liujun surname: Tao fullname: Tao, Liujun organization: Wuhan University of Science and Technology |
| BookMark | eNp1kU1OwzAQhS0EEm1B4giR2LBJsRPnx0tUyo9UCYFgHU2cSeMqTVrbBbrjCOy5HSfBaWCDYGXP6Jv3xn5Dst-0DRJywuiYURqcrzWOQy7iPTJgVAifxWG6TwY04amfUpYckqExC0odLNIB-bjEuYYCrGobz2pYoLSt3norjYWSu25berWyldosP9_eu0YO1qJWaNzNYOG5lqxAz1Uzd0ShzE_lVQi1rbwSwW604_HVWfSq0BSeamznbp2G2wC6Ya2esfGWbYG1OSIHJdQGj7_PEXm6mj5ObvzZ3fXt5GLmy0CEsZ8XkmFAJQqWRknA8ziSvMxBJqHgpSuAUg4AYZxjUooAOYWSS86iWCKjaTgip73uSrfrDRqbLdqNbpxlFtKI8TRJw9hR456SujVGY5lJZXf_5t6k6ozRrAsgcwFkXQBu4OzXwEqrJejtX6jfoy-qxu2_XHb_MN3xX2LennA |
| CitedBy_id | crossref_primary_10_1002_qre_3708 crossref_primary_10_1002_qre_3706 crossref_primary_10_3390_su17073232 crossref_primary_10_1016_j_ress_2024_110517 |
| Cites_doi | 10.1016/j.neucom.2020.07.081 10.1016/j.jpowsour.2020.228534 10.1038/s41560-019-0356-8 10.1002/qre.3459 10.1109/TTE.2020.3017090 10.1016/j.jpowsour.2018.03.015 10.1016/j.energy.2019.06.128 10.1016/j.ress.2021.107542 10.1016/j.energy.2022.123973 10.1109/TCSI.2018.2888688 10.1016/j.est.2023.107179 10.1109/TVT.2021.3071622 10.1016/j.egyr.2021.06.051 10.1016/j.est.2022.104538 10.1080/21642583.2019.1708830 10.1016/j.energy.2020.118140 10.1016/j.jpowsour.2021.230774 10.1016/j.jpowsour.2019.227281 10.1016/j.energy.2021.121652 10.1016/j.jpowsour.2020.227935 10.1016/j.jpowsour.2020.227700 10.1016/j.measurement.2022.112093 10.1002/qre.2792 10.1016/j.jpowsour.2019.01.012 10.1016/j.measurement.2022.112187 10.1016/j.neucom.2019.09.074 10.1016/j.asoc.2019.105979 10.1016/j.apenergy.2018.02.175 10.1109/TVT.2020.3014932 10.1016/j.est.2020.101250 10.1016/j.energy.2022.123622 10.1016/j.ensm.2020.12.019 10.1016/j.energy.2021.121269 10.1109/TIA.2019.2955396 10.1016/j.energy.2020.117957 10.1016/j.knosys.2021.106924 10.1016/j.asoc.2018.10.014 10.1016/j.energy.2020.119688 10.1016/j.jpowsour.2021.230572 |
| ContentType | Journal Article |
| Copyright | 2024 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7TB 8FD FR3 |
| DOI | 10.1002/qre.3496 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1638 |
| EndPage | 1854 |
| ExternalDocumentID | 10_1002_qre_3496 QRE3496 |
| Genre | article |
| GrantInformation_xml | – fundername: Hubei Provincial Natural Science Foundation of China funderid: 2023AFB619 – fundername: National Natural Science Foundation of China funderid: 62073250 – fundername: Hubei Provincial Department of Education funderid: D20201105 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADOZA ADXAS AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7TB 8FD FR3 |
| ID | FETCH-LOGICAL-c2936-bdc1e20ce9185724b65c4fbac7394f65ca004aaa36be7f92e40af4c4156ce1083 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001151652300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0748-8017 |
| IngestDate | Fri Jul 25 12:20:47 EDT 2025 Sat Nov 29 02:33:18 EST 2025 Tue Nov 18 21:33:44 EST 2025 Wed Jan 22 17:20:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2936-bdc1e20ce9185724b65c4fbac7394f65ca004aaa36be7f92e40af4c4156ce1083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7050-2880 |
| PQID | 3051487836 |
| PQPubID | 1016437 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_3051487836 crossref_citationtrail_10_1002_qre_3496 crossref_primary_10_1002_qre_3496 wiley_primary_10_1002_qre_3496_QRE3496 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 20240601 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | Quality and reliability engineering international |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 384 2021; 7 2019; 4 2022; 251 2019; 74 2022; 51 2019; 56 2020; 204 2006; 7 2020; 445 2020; 206 2021; 221 2022; 518 2021; 220 2022; 238 2019; 183 2021; 70 2021; 36 2023; 64 2020; 8 2020; 7 2021; 37 2023 2021; 234 2018; 218 2019; 66 2020; 450 2021; 514 2020; 414 2020; 69 2020; 376 2020; 455 2019; 414 2021; 210 2020; 88 2020; 476 2022; 205 2022; 204 2022; 248 2020; 29 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 Meinshausen N (e_1_2_10_42_1) 2006; 7 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
| References_xml | – volume: 514 year: 2021 article-title: The capacity prediction of Li‐ion batteries based on a new feature extraction technique and an improved extreme learning machine algorithm publication-title: J Power Sources – volume: 445 year: 2020 article-title: Deep Gaussian process regression for lithium‐ion battery health prognosis and degradation mode diagnosis publication-title: J Power Sources – volume: 51 year: 2022 article-title: State of power estimation of power lithium‐ion battery based on an equivalent circuit model publication-title: J. Energy Storage – volume: 221 year: 2021 article-title: Implementation and evaluation of a practical electrochemical‐thermal model of lithium‐ion batteries for EV battery management system publication-title: Energy – volume: 183 start-page: 220 year: 2019 end-page: 234 article-title: Towards a smarter battery management system: a critical review on optimal charging methods of lithium ion batteries publication-title: Energy – volume: 234 year: 2021 article-title: Lithium‐ion batteries remaining useful life prediction based on bls‐rvm publication-title: Energy – volume: 476 year: 2020 article-title: Electrochemical model‐based state estimation for lithium‐ion batteries with adaptive unscented Kalman filter publication-title: J Power Sources – volume: 69 start-page: 10854 issue: 10 year: 2020 end-page: 10867 article-title: State‐of‐health estimation and remaining‐useful‐life prediction for lithium‐ion battery using a hybrid data‐driven method publication-title: IEEE Trans Veh Technol – volume: 56 start-page: 678 issue: 1 year: 2019 end-page: 685 article-title: Lithium‐ion battery state‐of‐health estimation using the incremental capacity analysis technique publication-title: IEEE Trans Ind Appl – volume: 7 start-page: 983 issue: 6 year: 2006 end-page: 999 article-title: Quantile regression forests publication-title: J Mach Learn Res – volume: 251 year: 2022 article-title: A novel method for state of health estimation of lithium‐ion batteries based on improved LSTM and health indicators extraction publication-title: Energy – volume: 64 year: 2023 article-title: State‐of‐health estimation and remaining useful life prediction for lithium‐ion batteries based on an improved particle filter algorithm publication-title: J Energy Storage – volume: 88 year: 2020 article-title: Application of neural network and weighted improved pso for uncertainty modeling and optimal allocating of renewable energies along with battery energy storage publication-title: Appl Soft Comput – volume: 29 year: 2020 article-title: An online soc and capacity estimation method for aged lithium‐ion battery pack considering cell inconsistency publication-title: J Storage Mater – volume: 74 start-page: 110 year: 2019 end-page: 121 article-title: Enhancing the lithium‐ion battery life predictability using a hybrid method publication-title: Appl Soft Comput – volume: 206 year: 2020 article-title: An optimized ensemble learning framework for lithium‐ion battery state of health estimation in energy storage system publication-title: Energy – volume: 36 start-page: 186 year: 2021 end-page: 212 article-title: On the sustainability of lithium ion battery industry – a review and perspective publication-title: Energy Stor Mater – volume: 8 start-page: 22 issue: 1 year: 2020 end-page: 34 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Syst Sci Control Eng – volume: 238 year: 2022 article-title: A review on thermal management of lithium‐ion batteries for electric vehicles publication-title: Energy – volume: 376 start-page: 95 year: 2020 end-page: 102 article-title: Remaining useful life prediction of lithium‐ion batteries with adaptive unscented Kalman filter and optimized support vector regression publication-title: Neurocomputing – volume: 37 start-page: 1232 issue: 3 year: 2021 end-page: 1243 article-title: Remaining useful life prediction of lithium‐ion battery using a novel health indicator publication-title: Qual Reliab Eng Int – volume: 70 start-page: 4252 issue: 5 year: 2021 end-page: 4261 article-title: Remaining useful life assessment for lithium‐ion batteries using cnn‐lstm‐dnn hybrid method publication-title: IEEE Trans Veh Technol – volume: 210 year: 2021 article-title: Remaining useful life estimation of lithium‐ion battery based on interacting multiple model particle filter and support vector regression publication-title: Reliab Eng Syst Saf – volume: 414 start-page: 158 year: 2019 end-page: 166 article-title: Particle filter‐based state‐of‐charge estimation and remaining‐dischargeable‐time prediction method for lithium‐ion batteries publication-title: J Power Sources – volume: 7 start-page: 320 year: 2021 end-page: 329 article-title: A novel hybrid equivalent circuit model for lithium‐ion battery considering nonlinear capacity effects publication-title: Energy Rep – volume: 204 year: 2020 article-title: A uniform estimation framework for state of health of lithium‐ion batteries considering feature extraction and parameters optimization publication-title: Energy – volume: 384 start-page: 387 year: 2018 end-page: 395 article-title: A novel Gaussian process regression model for state‐of‐health estimation of lithium‐ion battery using charging curve publication-title: J Power Sources – volume: 205 year: 2022 article-title: A joint state‐of‐health and state‐of‐energy estimation method for lithium‐ion batteries through combining the forgetting factor recursive least squares and unscented Kalman filter publication-title: Measurement – volume: 414 start-page: 245 year: 2020 end-page: 254 article-title: Remaining useful life prediction of lithium‐ion battery with optimal input sequence selection and error compensation publication-title: Neurocomputing – volume: 218 start-page: 22 year: 2018 end-page: 35 article-title: A robust extreme learning machine for modeling a small‐scale turbojet engine publication-title: Appl Energy – volume: 450 year: 2020 article-title: Remaining useful life prediction of lithium‐ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method publication-title: J Power Sources – start-page: 1 year: 2023 end-page: 21 article-title: A novel deep time‐index framework with limited data and feature extraction for battery capacity degradation prediction publication-title: Qual Reliab Eng Int – volume: 7 start-page: 382 issue: 2 year: 2020 end-page: 398 article-title: Battery health prediction using fusion‐based feature selection and machine learning publication-title: IEEE Trans Transp Electrif – volume: 220 year: 2021 article-title: A stochastic configuration network based on chaotic sparrow search algorithm publication-title: Knowl Based Syst – volume: 66 start-page: 2322 issue: 6 year: 2019 end-page: 2335 article-title: Dynamic analysis of digital chaotic maps via state‐mapping networks publication-title: IEEE Trans Circuits Syst I Regul Pap – volume: 248 year: 2022 article-title: Remaining useful life prediction of lithium‐ion batteries using a hybrid model publication-title: Energy – volume: 4 start-page: 383 issue: 5 year: 2019 end-page: 391 article-title: Data‐driven prediction of battery cycle life before capacity degradation publication-title: Nat Energy – volume: 204 year: 2022 article-title: Remaining useful life prediction of lithium‐ion batteries based on attention mechanism and bidirectional long short‐term memory network publication-title: Measurement – volume: 455 year: 2020 article-title: Co‐estimation of lithium‐ion battery state of charge and state of temperature based on a hybrid electrochemical‐thermal‐neural‐network model publication-title: J Power Sources – volume: 518 year: 2022 article-title: A multi‐feature‐based multi‐model fusion method for state of health estimation of lithium‐ion batteries publication-title: J Power Sources – ident: e_1_2_10_14_1 doi: 10.1016/j.neucom.2020.07.081 – ident: e_1_2_10_16_1 doi: 10.1016/j.jpowsour.2020.228534 – ident: e_1_2_10_41_1 doi: 10.1038/s41560-019-0356-8 – ident: e_1_2_10_4_1 doi: 10.1002/qre.3459 – ident: e_1_2_10_23_1 doi: 10.1109/TTE.2020.3017090 – ident: e_1_2_10_24_1 doi: 10.1016/j.jpowsour.2018.03.015 – ident: e_1_2_10_6_1 doi: 10.1016/j.energy.2019.06.128 – ident: e_1_2_10_20_1 doi: 10.1016/j.ress.2021.107542 – ident: e_1_2_10_30_1 doi: 10.1016/j.energy.2022.123973 – ident: e_1_2_10_39_1 doi: 10.1109/TCSI.2018.2888688 – ident: e_1_2_10_12_1 doi: 10.1016/j.est.2023.107179 – ident: e_1_2_10_27_1 doi: 10.1109/TVT.2021.3071622 – ident: e_1_2_10_17_1 doi: 10.1016/j.egyr.2021.06.051 – ident: e_1_2_10_18_1 doi: 10.1016/j.est.2022.104538 – ident: e_1_2_10_37_1 doi: 10.1080/21642583.2019.1708830 – ident: e_1_2_10_11_1 doi: 10.1016/j.energy.2020.118140 – ident: e_1_2_10_25_1 doi: 10.1016/j.jpowsour.2021.230774 – ident: e_1_2_10_40_1 – ident: e_1_2_10_28_1 doi: 10.1016/j.jpowsour.2019.227281 – ident: e_1_2_10_2_1 doi: 10.1016/j.energy.2021.121652 – ident: e_1_2_10_7_1 doi: 10.1016/j.jpowsour.2020.227935 – ident: e_1_2_10_21_1 doi: 10.1016/j.jpowsour.2020.227700 – ident: e_1_2_10_31_1 doi: 10.1016/j.measurement.2022.112093 – ident: e_1_2_10_22_1 doi: 10.1002/qre.2792 – ident: e_1_2_10_19_1 doi: 10.1016/j.jpowsour.2019.01.012 – ident: e_1_2_10_9_1 doi: 10.1016/j.measurement.2022.112187 – ident: e_1_2_10_15_1 doi: 10.1016/j.neucom.2019.09.074 – ident: e_1_2_10_26_1 doi: 10.1016/j.asoc.2019.105979 – ident: e_1_2_10_36_1 doi: 10.1016/j.apenergy.2018.02.175 – ident: e_1_2_10_35_1 doi: 10.1109/TVT.2020.3014932 – ident: e_1_2_10_8_1 doi: 10.1016/j.est.2020.101250 – ident: e_1_2_10_34_1 doi: 10.1016/j.energy.2022.123622 – ident: e_1_2_10_3_1 doi: 10.1016/j.ensm.2020.12.019 – ident: e_1_2_10_13_1 doi: 10.1016/j.energy.2021.121269 – volume: 7 start-page: 983 issue: 6 year: 2006 ident: e_1_2_10_42_1 article-title: Quantile regression forests publication-title: J Mach Learn Res – ident: e_1_2_10_10_1 doi: 10.1109/TIA.2019.2955396 – ident: e_1_2_10_33_1 doi: 10.1016/j.energy.2020.117957 – ident: e_1_2_10_38_1 doi: 10.1016/j.knosys.2021.106924 – ident: e_1_2_10_32_1 doi: 10.1016/j.asoc.2018.10.014 – ident: e_1_2_10_5_1 doi: 10.1016/j.energy.2020.119688 – ident: e_1_2_10_29_1 doi: 10.1016/j.jpowsour.2021.230572 |
| SSID | ssj0010098 |
| Score | 2.3821192 |
| Snippet | As one of the key technologies in battery management system, accurate remaining useful life (RUL) prediction is critical to guarantee the reliability and... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1833 |
| SubjectTerms | Aeronautics Artificial neural networks chaotic sparrow search algorithm Charging Correlation coefficients Degradation Discharge Electric equipment Errors extreme learning machine fusion data‐driven algorithm least squares support vector regression Lithium-ion batteries Machine learning random forest regressor remaining useful life Search algorithms Support vector machines Weighting |
| Title | Degradation trajectory prediction of lithium‐ion batteries based on charging‐discharging health features extraction and integrated data‐driven models |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqre.3496 https://www.proquest.com/docview/3051487836 |
| Volume | 40 |
| WOSCitedRecordID | wos001151652300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010098 issn: 0748-8017 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEICDth704FusVokgelrb7sZ9HMW2eJCixUJvS5KdYEXbutsK3vwJ3v13_hIzyfYhKAielg3JsiSZySSZ-YaQY-HLoAZe5CiFp1W-xxwOHnoCoIWfJC4oZpJNBK1W2O1GN7lXJcbCWD7E9MANJcPoaxRwLrLKDBr6nMIZ0s4XSRFjqvTGq1hvNzvX0zsERGVaCGeIejiYoGerbmXS9vtiNLMw5-1Us9A01_7zi-tkNTcv6YWdDxtkAfqbZGUOOrhFPurIh7CplOgo5Q_m3P6VDlO8szGlA0W1dX7fGz99vr1jgTAUTr2pprjqJVQXGcSS_qCugZG9-Ru1cZVUgQGGZlTr_tTGTlDeT-iUTpFQ9E3FxinqW2oy8mTbpNNs3F1eOXmKBkdqO8F3RCJr4FYlRMiUcpnwzyVTgsvAi5jSL1wLIefc8wUEKnKBVbliEneNEmra_Nshhf6gD7uERtyQKwUIkbBQhAJAheBGPoAMfCZK5HQyVrHM-eWYRuMxtuRlN9bdHWN3l8jRtObQMjt-qFOeDHecS20WewiDDzGupUROzMD-2j6-bTfwuffXivtk2dX2kPUyK5PCKB3DAVmSL6Nelh7mc_cLb677lA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NThsxEIBHIalUOJSWggikYCRET0uSXbM_6qlqiEANUYtA4rayvWMBghA2CRI3HoE7b8eT1GPvBpCohMRpZcveXdme8fhnvgHYlKGK2hgknta0WxUG3BMY0E0AsvCzzEfNbbCJqN-PT06SPxX4UfrCOD7EdMONJMPqaxJw2pBuPlFDr3PcJtz5DNTMN6K4CrXOYfe4Nz1EIFamo3DGpIijkj3b8ptl3Zez0ZOJ-dxQtTNNd_5d__gZPhUGJvvpRsQXqOBgAeaeYQe_wkOHCBEumBIb5-Lc7tzfsmFOpzY290ozY5-fnk0uH-_uKUNaDqdZVjOa9zJmsixkybzQlCDf3iLFnGcl02iRoSNmtH_uvCeYGGRsyqfIGN1Opco5aVxmY_KMFuG4u3v0a88rgjR4ylgKoScz1Ua_pTAhqpTPZbijuJZCRUHCtUkII4ZCiCCUGOnER94SmitaNypsGwNwCaqDqwEuA0uEZVdKlDLjsYwloo7RT0JEFYVc1uF72VmpKgjmFEjjInXsZT81zZ1Sc9dhY1py6Kgdr5RplP2dFnI7SgPCwcfk2VKHLduz_62f_j3cpefKWwuuw8e9o4Ne2tvv_16FWd9YR-7OWQOq43yC3-CDuhmfjfK1YiD_A2CR_4Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1fa9swEMCPLC2jfdjWbaXZuk2Fsj25SWzFf9jTWBJaGkIaFuibkeQTS2mT1EkKfdtH6Hu_3T7JdJKdZLDBYE9G4mSMpDudJd3vAI5lqKImBomnNe1WhQH3BAZ0E4A8_CzzUXObbCLq9-PLy2RQgc9lLIzjQ6w23EgzrL0mBcdZputrauhtjieEO38CW7yVtHgVttrD7qi3OkQgVqajcMZkiKOSPdvw62Xb31ejtYu56ajalab7_L--8QU8KxxM9sXNiD2o4OQl7G5gB1_BY5sIES6ZElvk4sru3N-zWU6nNrZ2qpnxz7-Plzc_fzxQhbQcTvNbzWjdy5ipspAl80IjQbG9RYm5yEqm0SJD58xY_9xFTzAxydiKT5Exup1KjXOyuMzm5Jm_hlG38-3rqVckafCU8RRCT2aqiX5DYUJUKZ_LsKW4lkJFQcK1KQijhkKIIJQY6cRH3hCaK_pvVNg0DuA-VCfTCR4AS4RlV0qUMuOxjCWijtFPQkQVhVzW4FM5WKkqCOaUSOM6dexlPzXdnVJ31-BoJTlz1I4_yByW450WejtPA8LBxxTZUoOPdmT_2j69GHbo-eZfBT_A00G7m_bO-udvYcc3zpG7cnYI1UW-xHewre4W43n-vpjHvwDwmf7_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+trajectory+prediction+of+lithium%E2%80%90ion+batteries+based+on+charging%E2%80%90discharging+health+features+extraction+and+integrated+data%E2%80%90driven+models&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Zheng%2C+Xiujuan&rft.au=Wu%2C+Fei&rft.au=Liujun+Tao&rft.date=2024-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=40&rft.issue=4&rft.spage=1833&rft.epage=1854&rft_id=info:doi/10.1002%2Fqre.3496&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon |