Online state and unknown inputs estimation for nonlinear systems with particle filter based recursive expectation‐maximization algorithm

The article presents an innovative approach to simultaneously estimate states and unknown inputs (UIs) in nonlinear systems using a particle filter (PF) based recursive expectation‐maximization (EM) algorithm. This method is distinct from traditional iterative EM algorithms. During the E‐step, it ca...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of robust and nonlinear control Ročník 34; číslo 13; s. 8768 - 8784
Hlavní autoři: Liu, Zhuangyu, Zhao, Shunyi, Wan, Haiying, Luan, Xiaoli, Liu, Fei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis Wiley Subscription Services, Inc 10.09.2024
Témata:
ISSN:1049-8923, 1099-1239
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The article presents an innovative approach to simultaneously estimate states and unknown inputs (UIs) in nonlinear systems using a particle filter (PF) based recursive expectation‐maximization (EM) algorithm. This method is distinct from traditional iterative EM algorithms. During the E‐step, it calculates the Q‐function recursively within the maximum likelihood framework, while the PF estimates the system states. The M‐step involves local maximization of the recursive Q‐function to online estimate the UIs. The effectiveness of the PF‐based recursive EM algorithm is demonstrated with a numerical example, and comparisons with the augmented state PF are made to highlight its advantages. Finally, the proposed algorithm is implemented in a real application for the estimation of the continuous fermentation process.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.7416