Online state and unknown inputs estimation for nonlinear systems with particle filter based recursive expectation‐maximization algorithm

The article presents an innovative approach to simultaneously estimate states and unknown inputs (UIs) in nonlinear systems using a particle filter (PF) based recursive expectation‐maximization (EM) algorithm. This method is distinct from traditional iterative EM algorithms. During the E‐step, it ca...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of robust and nonlinear control Ročník 34; číslo 13; s. 8768 - 8784
Hlavní autoři: Liu, Zhuangyu, Zhao, Shunyi, Wan, Haiying, Luan, Xiaoli, Liu, Fei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis Wiley Subscription Services, Inc 10.09.2024
Témata:
ISSN:1049-8923, 1099-1239
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The article presents an innovative approach to simultaneously estimate states and unknown inputs (UIs) in nonlinear systems using a particle filter (PF) based recursive expectation‐maximization (EM) algorithm. This method is distinct from traditional iterative EM algorithms. During the E‐step, it calculates the Q‐function recursively within the maximum likelihood framework, while the PF estimates the system states. The M‐step involves local maximization of the recursive Q‐function to online estimate the UIs. The effectiveness of the PF‐based recursive EM algorithm is demonstrated with a numerical example, and comparisons with the augmented state PF are made to highlight its advantages. Finally, the proposed algorithm is implemented in a real application for the estimation of the continuous fermentation process.
AbstractList The article presents an innovative approach to simultaneously estimate states and unknown inputs (UIs) in nonlinear systems using a particle filter (PF) based recursive expectation‐maximization (EM) algorithm. This method is distinct from traditional iterative EM algorithms. During the E‐step, it calculates the Q‐function recursively within the maximum likelihood framework, while the PF estimates the system states. The M‐step involves local maximization of the recursive Q‐function to online estimate the UIs. The effectiveness of the PF‐based recursive EM algorithm is demonstrated with a numerical example, and comparisons with the augmented state PF are made to highlight its advantages. Finally, the proposed algorithm is implemented in a real application for the estimation of the continuous fermentation process.
Author Liu, Zhuangyu
Zhao, Shunyi
Wan, Haiying
Liu, Fei
Luan, Xiaoli
Author_xml – sequence: 1
  givenname: Zhuangyu
  surname: Liu
  fullname: Liu, Zhuangyu
  organization: Jiangnan University
– sequence: 2
  givenname: Shunyi
  surname: Zhao
  fullname: Zhao, Shunyi
  organization: Jiangnan University
– sequence: 3
  givenname: Haiying
  surname: Wan
  fullname: Wan, Haiying
  organization: Jiangnan University
– sequence: 4
  givenname: Xiaoli
  surname: Luan
  fullname: Luan, Xiaoli
  email: xlluan@jiangnan.edu.cn
  organization: Jiangnan University
– sequence: 5
  givenname: Fei
  orcidid: 0000-0001-7160-2605
  surname: Liu
  fullname: Liu, Fei
  organization: Jiangnan University
BookMark eNp1kM1KxDAURoMoqKPgIwTcuOmYpJ1Os5TBPxgURNflNr3VjG1ak9RxXLl25TP6JGasK9FVLuTc7-OeXbJpWoOEHHA25oyJY2vUeJrwdIPscCZlxEUsN9dzIqNMinib7Dq3YCz8iWSHvF-bWhukzoNHCqakvXk07dJQbbreO4rO6wa8bg2tWktD25oHS93KeWwcXWr_QDuwXqsaaaVrj5YW4LCkFlVvnX5Gii8dKv8d8_n20cCLbvTrkAr1fWtDRrNHtiqoHe7_vCNyd3Z6O7uI5tfnl7OTeaSEjNMIACuVFgVKzCqRVSmIBCaxyMqkLJAVBecpToFnEkrksapkWgKwQjDkk2Q6iUfkcMjtbPvUh_vyRdtbEyrzmEmeBHuhaETGA6Vs65zFKld6OMBb0HXOWb72nQff-dp3WDj6tdDZYM6u_kKjAV3qGlf_cvnN1eyb_wJgcJdl
CitedBy_id crossref_primary_10_1016_j_dsp_2024_104951
Cites_doi 10.1002/cjce.20113
10.1016/j.automatica.2022.110365
10.1016/j.ress.2023.109416
10.1016/j.sigpro.2019.03.004
10.1016/j.compchemeng.2013.03.024
10.1002/rnc.3674
10.1016/j.chemolab.2021.104403
10.1162/neco.1994.6.2.181
10.1109/TII.2021.3057421
10.1016/j.inffus.2022.03.004
10.1109/TAC.2021.3061993
10.1109/TSP.2007.907883
10.1109/TAC.2017.2681520
10.1016/S0005-1098(00)00089-3
10.1002/0470045345
10.1109/ICIEA.2012.6360967
10.1109/CDC.2016.7799365
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TAC.2015.2514259
10.1007/s11071-014-1754-x
10.1002/rnc.5787
10.2307/2983440
10.1016/j.automatica.2009.04.009
10.1109/ACC.2006.1655461
10.1021/acs.iecr.8b06091
10.1016/j.automatica.2019.02.050
10.1016/j.conengprac.2023.105650
10.1002/rnc.1190
10.1016/j.ymssp.2019.03.013
10.1021/acs.iecr.0c03793
10.1016/j.sigpro.2013.12.032
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rnc.7416
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 8784
ExternalDocumentID 10_1002_rnc_7416
RNC7416
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61991402; 61973136; 61833007
– fundername: The Fundamental Research Funds for the Central Universities China
  funderid: JUSRP123064
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
O8X
TUS
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2936-aaefc6bbe9e8f28f6a24a5328d4dbe0bb116e7a189ade13cf96daa0b20e154753
IEDL.DBID DRFUL
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001233158100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1049-8923
IngestDate Fri Jul 25 11:43:15 EDT 2025
Tue Nov 18 21:58:53 EST 2025
Sat Nov 29 02:15:56 EST 2025
Wed Jan 22 17:17:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2936-aaefc6bbe9e8f28f6a24a5328d4dbe0bb116e7a189ade13cf96daa0b20e154753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7160-2605
PQID 3091474129
PQPubID 1026344
PageCount 17
ParticipantIDs proquest_journals_3091474129
crossref_citationtrail_10_1002_rnc_7416
crossref_primary_10_1002_rnc_7416
wiley_primary_10_1002_rnc_7416_RNC7416
PublicationCentury 2000
PublicationDate 10 September 2024
PublicationDateYYYYMMDD 2024-09-10
PublicationDate_xml – month: 09
  year: 2024
  text: 10 September 2024
  day: 10
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 17
2015; 79
2017; 62
2009; 45
2021; 66
2012
2017; 27
2019; 58
2019; 104
2019; 127
2008; 56
2006
2022; 85
1995; 158
2019; 161
2021; c60
2022; 142
2021; 31
2000; 36
1977; 39
2013; 57
2021; 17
2021; 217
2023; 238
2023; 139
2016
2016; 61
2008; 86
2014; 99
1994; 6
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 27
  start-page: 2167
  issue: 13
  year: 2017
  end-page: 2197
  article-title: EM‐based adaptive divided difference filter for nonlinear system with multiplicative parameter
  publication-title: Int J Robust Nonlinear Control
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  end-page: 22
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc B Methodol
– volume: c60
  start-page: 2971
  issue: 7
  year: 2021
  end-page: 2982
  article-title: Simultaneous state and parameter estimation: The role of sensitivity analysis
  publication-title: Ind Eng Chem Res
– volume: 62
  start-page: 5497
  issue: 11
  year: 2017
  end-page: 5510
  article-title: State and unknown input observers for nonlinear systems with bounded exogenous inputs
  publication-title: IEEE Trans Automat Contr
– volume: 31
  start-page: 9519
  issue: 18
  year: 2021
  end-page: 9537
  article-title: Joint estimation of state, parameter, and unknown input for nonlinear systems: a composite estimation scheme
  publication-title: Int J Robust Nonlinear Control
– volume: 17
  start-page: 1734
  issue: 18
  year: 2007
  end-page: 1753
  article-title: Exact state estimation for linear systems with unknown inputs based on hierarchical super‐twisting algorithm
  publication-title: Int J Robust Nonlinear Control
– volume: 217
  year: 2021
  article-title: Online state and inputs identification for stochastic systems using recursive expectation‐maximization algorithm
  publication-title: Chemom Intel Lab Syst
– volume: 58
  start-page: 11553
  issue: 26
  year: 2019
  end-page: 11565
  article-title: Simultaneous estimation of hidden state and unknown input using expectation maximization algorithm
  publication-title: Ind Eng Chem Res
– volume: 61
  start-page: 4210
  issue: 12
  year: 2016
  end-page: 4216
  article-title: Measurement random latency probability identification
  publication-title: IEEE Trans Automat Contr
– volume: 238
  start-page: 109416
  year: 2023
  article-title: Digital twins‐based process monitoring for wastewater treatment processes
  publication-title: Reliab Eng Syst Saf
– volume: 142
  year: 2022
  article-title: Expectation–maximization algorithm for bilinear systems by using the Rauch–Tung–Striebel smoother
  publication-title: Automatica
– volume: 104
  start-page: 57
  year: 2019
  end-page: 66
  article-title: Estimating unbounded unknown inputs in nonlinear systems
  publication-title: Automatica
– start-page: 1533
  year: 2012
  end-page: 1538
– volume: 79
  start-page: 1469
  year: 2015
  end-page: 1479
  article-title: Unknown input observer design for one‐sided Lipschitz nonlinear systems
  publication-title: Nonlinear Dyn
– volume: 57
  start-page: 159
  year: 2013
  end-page: 172
  article-title: Parameter estimation in batch process using EM algorithm with particle filter
  publication-title: Comput Chem Eng
– volume: 36
  start-page: 1627
  issue: 11
  year: 2000
  end-page: 1638
  article-title: New developments in state estimation for nonlinear systems
  publication-title: Automatica
– volume: 161
  start-page: 268
  year: 2019
  end-page: 288
  article-title: Optimal joint estimation and identification theorem to linear Gaussian system with unknown inputs
  publication-title: Signal Process
– volume: 85
  start-page: 23
  year: 2022
  end-page: 51
  article-title: Nonlinear unknown input observability and unknown input reconstruction: the general analytical solution
  publication-title: Inform Fusion
– volume: 86
  start-page: 1081
  issue: 6
  year: 2008
  end-page: 1092
  article-title: A particle filter approach to identification of nonlinear processes under missing observations
  publication-title: Can J Chem Eng
– year: 2006
– volume: 6
  start-page: 181
  issue: 2
  year: 1994
  end-page: 214
  article-title: Hierarchical mixtures of experts and the EM algorithm
  publication-title: Neural Comput Ind Eng Chem Res
– start-page: 7111
  year: 2016
  end-page: 7116
– volume: 139
  start-page: 105650
  year: 2023
  article-title: Dynamic multi‐objective optimization and multi‐units linear active disturbance rejection control for wastewater treatment processes
  publication-title: Control Eng Pract
– volume: 56
  start-page: 921
  issue: 3
  year: 2008
  end-page: 936
  article-title: An EM algorithm for nonlinear state estimation with model uncertainties
  publication-title: IEEE Trans Signal Process
– volume: 66
  start-page: 6115
  issue: 12
  year: 2021
  end-page: 6122
  article-title: Simultaneous estimation of the state, unknown input, and output disturbance in discrete‐time linear systems
  publication-title: IEEE Trans Automat Contr
– volume: 127
  start-page: 120
  year: 2019
  end-page: 135
  article-title: A novel unscented Kalman filter for recursive state‐input‐system identification of nonlinear systems
  publication-title: Mech Syst Signal Process
– volume: 17
  start-page: 8429
  issue: 12
  year: 2021
  end-page: 8437
  article-title: Intelligent state estimation for continuous fermenters using variational Bayesian learning
  publication-title: IEEE Trans Industr Inform
– start-page: 5
  year: 2006
– volume: 158
  start-page: 419
  issue: 3
  year: 1995
  end-page: 444
  article-title: Model uncertainty, data mining and statistical inference
  publication-title: J R Stat Soc Ser A Stat Soc
– volume: 45
  start-page: 1970
  issue: 8
  year: 2009
  end-page: 1974
  article-title: An observation algorithm for nonlinear systems with unknown inputs
  publication-title: Automatica
– volume: 99
  start-page: 171
  year: 2014
  end-page: 184
  article-title: Recursive hidden input estimation in nonlinear dynamic systems with varying amounts of a priori knowledge
  publication-title: Signal Process
– ident: e_1_2_10_24_1
  doi: 10.1002/cjce.20113
– ident: e_1_2_10_29_1
  doi: 10.1016/j.automatica.2022.110365
– ident: e_1_2_10_3_1
  doi: 10.1016/j.ress.2023.109416
– ident: e_1_2_10_8_1
  doi: 10.1016/j.sigpro.2019.03.004
– ident: e_1_2_10_25_1
  doi: 10.1016/j.compchemeng.2013.03.024
– ident: e_1_2_10_27_1
  doi: 10.1002/rnc.3674
– ident: e_1_2_10_10_1
  doi: 10.1016/j.chemolab.2021.104403
– ident: e_1_2_10_30_1
  doi: 10.1162/neco.1994.6.2.181
– ident: e_1_2_10_32_1
  doi: 10.1109/TII.2021.3057421
– ident: e_1_2_10_20_1
  doi: 10.1016/j.inffus.2022.03.004
– ident: e_1_2_10_9_1
  doi: 10.1109/TAC.2021.3061993
– ident: e_1_2_10_23_1
  doi: 10.1109/TSP.2007.907883
– ident: e_1_2_10_14_1
  doi: 10.1109/TAC.2017.2681520
– ident: e_1_2_10_5_1
  doi: 10.1016/S0005-1098(00)00089-3
– ident: e_1_2_10_2_1
  doi: 10.1002/0470045345
– ident: e_1_2_10_16_1
  doi: 10.1109/ICIEA.2012.6360967
– ident: e_1_2_10_13_1
  doi: 10.1109/CDC.2016.7799365
– ident: e_1_2_10_22_1
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_10_28_1
  doi: 10.1109/TAC.2015.2514259
– ident: e_1_2_10_12_1
  doi: 10.1007/s11071-014-1754-x
– ident: e_1_2_10_19_1
  doi: 10.1002/rnc.5787
– ident: e_1_2_10_6_1
  doi: 10.2307/2983440
– ident: e_1_2_10_15_1
  doi: 10.1016/j.automatica.2009.04.009
– ident: e_1_2_10_11_1
  doi: 10.1109/ACC.2006.1655461
– ident: e_1_2_10_21_1
  doi: 10.1021/acs.iecr.8b06091
– ident: e_1_2_10_17_1
  doi: 10.1016/j.automatica.2019.02.050
– ident: e_1_2_10_4_1
  doi: 10.1016/j.conengprac.2023.105650
– ident: e_1_2_10_7_1
  doi: 10.1002/rnc.1190
– ident: e_1_2_10_18_1
  doi: 10.1016/j.ymssp.2019.03.013
– ident: e_1_2_10_31_1
  doi: 10.1021/acs.iecr.0c03793
– ident: e_1_2_10_26_1
  doi: 10.1016/j.sigpro.2013.12.032
SSID ssj0009924
Score 2.428292
Snippet The article presents an innovative approach to simultaneously estimate states and unknown inputs (UIs) in nonlinear systems using a particle filter (PF) based...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8768
SubjectTerms Algorithms
fermentation process
Maximization
Maximum likelihood estimates
Nonlinear systems
Optimization
particle filter (PF)
recursive EM algorithm
Recursive functions
unknown inputs (UIs)
Title Online state and unknown inputs estimation for nonlinear systems with particle filter based recursive expectation‐maximization algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.7416
https://www.proquest.com/docview/3091474129
Volume 34
WOSCitedRecordID wos001233158100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1099-1239
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009924
  issn: 1049-8923
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB2aTQ_pIW2alG4-ygRKczKxZMdrHUOapYewlNCU3MxIGoeFXWexd0uPPffU39hfUsnyZlNIIJCD0cGSEdKM5nk08wbgo9BSnVCiIkqYo1SVZaTz3EbuKeMBC2HaRNrvF4PRKL--Vl-7qEqfCxP4Ie4cbl4z2vPaKzjp5nhFGlo7_fFwYg3WpRPbtAfrny-HVxcryl0VSto6DBzlDscsqWdjebwc-78xWiHM-zi1NTTD18-Z4hvY7OAlngZ52IIXXL2FV_dIB7fhd2AXxTaVCKmyuKi8Z63CcTVbzBv0vBshoREdosUqzIRqDKzPDXrfLc46mcNy7C_c0ZtDi7V33_uIePSlA0y45__768-Ufo6nXcon0uTmtnbfmO7A1fD829mXqKvIEBkHC7KIiEuTac2K81LmZUYypZNE5ja1mmOthch4QCJXZFkkplSZJYq1jNlBNfdn9A56btb8HjCTqSWjWTKrNLFKZ-6kJVaDmONUmKQPR8utKUxHV-6rZkyKQLQsC7e6hV_dPhze9ZwFio4H-uwvd7folLQpEoeVUvdWqj58avfx0fHF5ejMt7tP7bgHG9LBHx9ZIuJ96M3rBR_AS_NjPm7qD52o_gOtgPTC
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_sWah9qPZDPKt1CsU-hctucrksfRL1sHgeRbT4FvZjUg68eOTuSh_77JN_o39Jd7OJp6BQ8CHsQ3bDsDuz88vszm8AvjDFRVdGIpARURCLPA9UmprAPnnYI8Z0lUj7c9AbDtOLC_FjCb41uTCeH-Iu4OYso9qvnYG7gHRnwRpaWgNyeOIFLMdWi7otWD447Z8PFpy7wte0tSA4SC2QabhnQ95pxj70RguIeR-oVp6mv_osGdfgTQ0wcc9rxFtYouIdvL5HO_gerj2_KFbJRCgLg_PCxdYKHBWT-WyKjnnDpzSixbRYeFFkiZ73eYoueouTWuswH7kjd3QO0WDpAvjuTjy64gHan_Tf_r0Zyz-jcZ30ifLy11VpvzH-AOf9w7P9o6CuyRBoCwySQErKdaIUCUpznuaJ5LHsRjw1sVEUKsVYQj3JUiENsUjnIjFShoqHZMGa_Tdah5aVmjYAEx4bqRVxIhFHRqjE7rWSRC-kMGY6asPXZm0yXROWu7oZl5mnWuaZnd3MzW4bPt_1nHiSjkf6bDXLm9VmOs0ii5Zi-5aLNuxWC_nk-Ox0uO_azf_tuAOvjs5OBtng-_D4I6xwC4bcPRMWbkFrVs5pG17q37PRtPxU6-0_O8j4sg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SpJT0kKYvsmkeUyjNycSSvV6LnkKSJaXLEkJTcjN6jMJC1lm8u6HHnHPqb-wviWTZ2RQaKPRgdLBkBo1G83mk-QbgE1NcdGUiIpkQRamwNlJ5biL32LhHjOk6kfbHoDcc5hcX4nQJvrS5MIEf4iHg5i2j3q-9gdPE2P0Fa2jlDMjjiWewknZF5qxy5eisfz5YcO6KUNPWgeAod0Cm5Z6N-X479k9vtICYj4Fq7Wn6r_5LxnVYawAmHoQV8RqWqHwDLx_RDr6Fu8AvinUyEcrS4Lz0sbUSR-VkPpuiZ94IKY3oMC2WQRRZYeB9nqKP3uKkWXVoR_7IHb1DNFj5AL6_E4--eIAOJ_2_b3-N5c_RuEn6RHl1eV25b4zfwXn_-PvhSdTUZIi0AwZZJCVZnSlFgnLLc5tJnspuwnOTGkWxUoxl1JMsF9IQS7QVmZEyVjwmB9bcv9F7WHZS0wZgxlMjtSJOJNLECJW5vVaS6MUUp0wnHdhrdVPohrDc1824KgLVMi_c7BZ-djvw8aHnJJB0_KXPVqveojHTaZE4tJS6t1x04HOtyCfHF2fDQ99u_mvHXXhxetQvBl-H3z7AKndYyF8zYfEWLM-qOW3Dc30zG02rnWbZ3gPVXvgt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+state+and+unknown+inputs+estimation+for+nonlinear+systems+with+particle+filter+based+recursive+expectation%E2%80%90maximization+algorithm&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Liu%2C+Zhuangyu&rft.au=Zhao%2C+Shunyi&rft.au=Wan%2C+Haiying&rft.au=Luan%2C+Xiaoli&rft.date=2024-09-10&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=34&rft.issue=13&rft.spage=8768&rft.epage=8784&rft_id=info:doi/10.1002%2Frnc.7416&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rnc_7416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon