Multiple‐GPU parallelization of three‐dimensional material point method based on single‐root complex

As one of the arbitrary Lagrangian–Eulerian methods, the material point method (MPM) owns intrinsic advantages in simulation of large deformation problems by combining the merits of the Lagrangian and Eulerian approaches. Significant computational intensity is involved in the calculations of the MPM...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in engineering Ročník 123; číslo 6; s. 1481 - 1504
Hlavní autoři: Dong, Youkou, Cui, Lan, Zhang, Xue
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 30.03.2022
Wiley Subscription Services, Inc
Témata:
ISSN:0029-5981, 1097-0207
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As one of the arbitrary Lagrangian–Eulerian methods, the material point method (MPM) owns intrinsic advantages in simulation of large deformation problems by combining the merits of the Lagrangian and Eulerian approaches. Significant computational intensity is involved in the calculations of the MPM due to its very fine mesh needed to achieve a sufficiently high accuracy. A new multiple‐GPU parallel strategy is developed based on a single‐root complex architecture of the computer purely within a CUDA environment. Peer‐to‐Peer (P2P) communication between the GPUs is performed to exchange the information of the crossing particles and ghost element nodes, which is faster than the heavy send/receive operations between different computers through the infiniBand network. Domain decomposition is performed to split the whole computational task over the GPUs with a number of subdomains. The computations within each subdomain are allocated on a corresponding GPU using an enhanced “Particle‐List” scheme to tackle the data race during the interpolation from associated particles to common nodes. The acceleration effect of the parallelization is evaluated with two benchmarks cases, mini‐slump test after a dam break and cone penetration test in clay, where the maximum speedups with 1 and 8 GPUs are 88 and 604, respectively.
AbstractList As one of the arbitrary Lagrangian–Eulerian methods, the material point method (MPM) owns intrinsic advantages in simulation of large deformation problems by combining the merits of the Lagrangian and Eulerian approaches. Significant computational intensity is involved in the calculations of the MPM due to its very fine mesh needed to achieve a sufficiently high accuracy. A new multiple‐GPU parallel strategy is developed based on a single‐root complex architecture of the computer purely within a CUDA environment. Peer‐to‐Peer (P2P) communication between the GPUs is performed to exchange the information of the crossing particles and ghost element nodes, which is faster than the heavy send/receive operations between different computers through the infiniBand network. Domain decomposition is performed to split the whole computational task over the GPUs with a number of subdomains. The computations within each subdomain are allocated on a corresponding GPU using an enhanced “Particle‐List” scheme to tackle the data race during the interpolation from associated particles to common nodes. The acceleration effect of the parallelization is evaluated with two benchmarks cases, mini‐slump test after a dam break and cone penetration test in clay, where the maximum speedups with 1 and 8 GPUs are 88 and 604, respectively.
Author Dong, Youkou
Zhang, Xue
Cui, Lan
Author_xml – sequence: 1
  givenname: Youkou
  orcidid: 0000-0002-7354-6464
  surname: Dong
  fullname: Dong, Youkou
  organization: Dalian University of Technology
– sequence: 2
  givenname: Lan
  surname: Cui
  fullname: Cui, Lan
  email: lcui@whrsm.ac.cn
  organization: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences
– sequence: 3
  givenname: Xue
  orcidid: 0000-0002-0892-3665
  surname: Zhang
  fullname: Zhang, Xue
  organization: University of Liverpool
BookMark eNp1kEtOwzAQhi1UJNqCxBEisWGTYufh1EtUlYLUAgu6jqbJhLpy4mC7grLiCJyRk-C0rBCsZjTz_fP4B6TX6AYJOWd0xCiNrpoaR1xQfkT6jIospBHNeqTvWyJMxZidkIG1G0oZS2ncJ5vFVjnZKvz6-Jw9LoMWDCiFSr6Dk7oJdBW4tcGuXcoaG-uLoIIaHBrpk1bLxgU1urUugxVYLAOvsrJ53o80Wrug0LVf8HZKjitQFs9-4pAsb6ZPk9tw_jC7m1zPwyISMQ8hAaiSpERMSoAsZhxgnGUp5wgYiTKp4rjg2TirWLJKIxBVCQJZCpzHUVqIeEguDnNbo1-2aF2-0Vvjr7Z51CEiTWPmqdGBKoy21mCVF9Ltf3YGpMoZzTs_c-9n3vnpBZe_BK2RNZjdX2h4QF-lwt2_XH6_mO75b-3kiyU
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_114457
crossref_primary_10_1016_j_cma_2024_117668
crossref_primary_10_3390_app122312400
crossref_primary_10_1016_j_engfailanal_2022_107040
crossref_primary_10_3389_feart_2022_1097216
crossref_primary_10_1016_j_cma_2024_117064
crossref_primary_10_1016_j_compgeo_2023_105298
crossref_primary_10_3390_su141811272
crossref_primary_10_1007_s11440_022_01691_6
crossref_primary_10_1007_s40789_023_00580_x
crossref_primary_10_1061_IJGNAI_GMENG_9368
crossref_primary_10_3390_ma17164012
crossref_primary_10_1016_j_compgeo_2025_107154
crossref_primary_10_1016_j_compgeo_2025_107113
crossref_primary_10_3389_feart_2022_985882
crossref_primary_10_1016_j_compgeo_2023_105411
crossref_primary_10_1016_j_compgeo_2023_105535
crossref_primary_10_1016_j_oceaneng_2022_112903
crossref_primary_10_1007_s00603_023_03471_4
crossref_primary_10_1007_s00603_023_03747_9
crossref_primary_10_1007_s10064_024_03668_z
crossref_primary_10_1007_s40571_025_00955_8
crossref_primary_10_1016_j_oceaneng_2023_114663
crossref_primary_10_1016_j_oceaneng_2023_115797
crossref_primary_10_1038_s41598_022_23587_x
crossref_primary_10_1007_s40571_024_00763_6
crossref_primary_10_1016_j_oceaneng_2023_114060
crossref_primary_10_1038_s41598_023_29062_5
crossref_primary_10_1016_j_tust_2023_105166
crossref_primary_10_3389_feart_2022_994862
crossref_primary_10_3390_jmse11071418
crossref_primary_10_3390_ma16186144
crossref_primary_10_1016_j_compgeo_2023_105567
crossref_primary_10_3390_jmse13050986
crossref_primary_10_3390_jmse11081548
crossref_primary_10_3390_app12063107
crossref_primary_10_1007_s10064_024_03700_2
crossref_primary_10_1016_j_compgeo_2022_105073
crossref_primary_10_1016_j_apor_2022_103266
crossref_primary_10_1016_j_compgeo_2023_105712
crossref_primary_10_1016_j_compgeo_2023_105434
crossref_primary_10_1139_cgj_2022_0532
crossref_primary_10_3390_jmse11101872
crossref_primary_10_1007_s11802_025_5853_8
crossref_primary_10_3390_app12146843
crossref_primary_10_1016_j_oceaneng_2022_113094
crossref_primary_10_1007_s40571_024_00768_1
crossref_primary_10_3390_rs15143576
crossref_primary_10_1007_s10064_024_03937_x
crossref_primary_10_1016_j_jrmge_2024_11_054
crossref_primary_10_1007_s10064_022_03062_7
crossref_primary_10_3389_feart_2022_998717
crossref_primary_10_3390_app13074105
crossref_primary_10_3390_jmse12081262
crossref_primary_10_1016_j_oceaneng_2025_122250
crossref_primary_10_1002_nag_70048
crossref_primary_10_3390_math11183976
crossref_primary_10_1002_nag_3905
crossref_primary_10_3390_app13095540
Cites_doi 10.1016/j.compgeo.2016.03.003
10.1016/0010-4655(94)00170-7
10.1016/j.cpc.2014.02.014
10.1002/nme.6312
10.1002/nag.657
10.1002/nme.2981
10.1002/nag.601
10.1145/2461912.2461948
10.1002/nag.2266
10.1016/j.oceaneng.2020.108553
10.1016/j.compgeo.2014.12.005
10.1145/3197517.3201309
10.1016/j.future.2005.04.001
10.3390/w11071446
10.1680/geot.1991.41.1.17
10.1002/(SICI)1097-0207(20000630)48:6<901::AID-NME910>3.0.CO;2-T
10.1016/j.jpdc.2014.10.011
10.1002/nme.6787
10.1016/j.cma.2019.112783
10.1016/j.oceaneng.2017.09.008
10.1002/nme.5606
10.1016/S1001-6058(16)60754-0
10.1002/nag.2499
10.1145/3386569.3392442
10.1680/jgeot.15.LM.005
10.1016/j.jcp.2010.11.040
10.1016/S0045-7825(99)00338-2
10.1016/j.compgeo.2020.103716
10.1016/j.cma.2020.113308
10.1016/j.jpdc.2008.05.009
10.1016/j.cma.2021.113667
10.1016/j.compgeo.2018.04.001
10.1002/nme.2360
10.1680/geot.7.00153
10.1139/T09-147
10.1145/3450626.3459678
10.1680/geot.2004.54.4.257
10.1007/s11440-014-0309-0
10.1145/3072959.3073623
10.1016/j.compgeo.2016.03.001
10.1016/j.jcp.2011.04.032
10.1016/j.compgeo.2020.103856
10.1002/nme.5620
10.1080/19648189.2017.1408498
10.1002/nme.6685
10.1016/j.jcp.2008.07.019
10.1016/j.compstruc.2017.05.004
10.1680/geot.14.P.163
10.1680/jgeot.17.P.054
10.1016/j.cma.2020.113503
10.1016/j.compgeo.2015.01.009
10.1016/j.compstruc.2018.11.003
10.1680/geot.9.P.069
10.1139/t01-089
10.1680/geolett.12.0008
10.1002/nag.439
10.1061/(ASCE)GT.1943-5606.0001011
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.6906
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 1504
ExternalDocumentID 10_1002_nme_6906
NME6906
Genre article
GrantInformation_xml – fundername: Zhejiang University
– fundername: Dalian University of Technology
– fundername: National Natural Science Foundations of China
  funderid: 51909248
– fundername: State Key Laboratory of Coastal and Offshore Engineering
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2936-a4aaf44dee4daa7316aa877566eae29d4f33c6787f14b52a9fda9e15a66325c93
IEDL.DBID DRFUL
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000738369800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 25 12:14:37 EDT 2025
Sat Nov 29 06:44:01 EST 2025
Tue Nov 18 21:57:46 EST 2025
Wed Jan 22 16:27:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2936-a4aaf44dee4daa7316aa877566eae29d4f33c6787f14b52a9fda9e15a66325c93
Notes Funding information
National Natural Science Foundations of China, 51909248; Zhejiang University, Dalian University of Technology, State Key Laboratory of Coastal and Offshore Engineering
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0892-3665
0000-0002-7354-6464
PQID 2632595531
PQPubID 996376
PageCount 24
ParticipantIDs proquest_journals_2632595531
crossref_citationtrail_10_1002_nme_6906
crossref_primary_10_1002_nme_6906
wiley_primary_10_1002_nme_6906_NME6906
PublicationCentury 2000
PublicationDate 30 March 2022
PublicationDateYYYYMMDD 2022-03-30
PublicationDate_xml – month: 03
  year: 2022
  text: 30 March 2022
  day: 30
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2000; 48
2019; 11
2020; 121
2015; 77
1964; 3
2021; 129
2020; 127
2008; 227
2004; 5
2008; 32
2008; 76
2021; 122
2008; 31
2007; 31
2019; 360
2005; 29
2011; 230
2010; 60
2010; 69
2020; 371
2017; 36
2020; 373
2006; 22
1991; 41
2003; 4
2016; 40
2008; 68
2016; 80
2021; 40
2018; 37
2012; 62
2002; 39
2007; 19
2021; 222
2018; 101
2015; 10
2020; 39
2017; 29
2020; 146
2018; 68
2004; 54
2012; 2
2010; 47
2021; 12
2021; 377
2013; 32
2018; 113
2015; 66
1995; 87
2015; 65
2017; 190
2014; 38
2011; 85
2019; 212
2020; 24
2014; 140
2000; 187
2001; 2
2017; 146
2014; 185
2009; 39
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_56_1
Nairn JA (e_1_2_9_9_1) 2003; 4
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
Ma S (e_1_2_9_8_1) 2009; 39
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
Bardenhagen SG (e_1_2_9_41_1) 2004; 5
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Yuan W (e_1_2_9_26_1) 2021; 12
Harlow FH (e_1_2_9_7_1) 1964; 3
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Dong Y (e_1_2_9_42_1) 2020; 146
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_55_1
Bardenhagen SG (e_1_2_9_54_1) 2001; 2
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Buzzi O (e_1_2_9_35_1) 2008; 31
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_5_1
e_1_2_9_3_1
Zhang Y (e_1_2_9_43_1) 2010; 69
e_1_2_9_25_1
Wallstedt PC (e_1_2_9_32_1) 2007; 19
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 140
  issue: 3
  year: 2014
  article-title: Material point method for coupled hydromechanical problems
  publication-title: J Geotech Geoenviron Eng
– volume: 146
  start-page: 21
  year: 2017
  end-page: 28
  article-title: Investigating of impact forces on pipeline by submarine landslide using material point method
  publication-title: Ocean Eng
– volume: 3
  start-page: 319
  year: 1964
  end-page: 343
  article-title: The particle‐in‐cell computing method for fluid dynamics
  publication-title: Methods Comput Phys
– volume: 66
  start-page: 248
  issue: 3
  year: 2015
  end-page: 273
  article-title: Trends in large‐deformation analysis of landslide mass movements with particular emphasis on the material point method
  publication-title: Géotechnique
– volume: 377
  issue: 2
  year: 2021
  article-title: Material point method simulations using an approximate full mass matrix inverse
  publication-title: Comput Methods Appl Mech Eng
– volume: 122
  start-page: 3876
  issue: 15
  year: 2021
  end-page: 3899
  article-title: An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements
  publication-title: Int J Numer Methods Eng
– volume: 227
  start-page: 9628
  year: 2008
  end-page: 9642
  article-title: An evaluation of explicit time integration schemes for use with the generalized interpolation material point method
  publication-title: J Comput Phys
– volume: 113
  start-page: 130
  issue: 1
  year: 2018
  end-page: 152
  article-title: Imposition of essential boundary conditions in the material point method
  publication-title: Int J Numer Methods Eng
– volume: 373
  year: 2020
  article-title: Modelling contacts with a total Lagrangian material point method
  publication-title: Comput Methods Appl Mech Eng
– volume: 60
  start-page: 939
  issue: 12
  year: 2010
  end-page: 948
  article-title: Analysis of the cone penetration test in layered clay
  publication-title: Géotechnique
– volume: 222
  year: 2021
  article-title: Numerical investigation of hydrodynamics and local scour around submarine pipeline under joint effect of solitary wave and current
  publication-title: Ocean Eng
– volume: 87
  start-page: 236
  year: 1995
  end-page: 252
  article-title: Application of a particle‐in‐cell method to solid mechanics
  publication-title: Comput Phys Commun
– volume: 40
  start-page: 1358
  issue: 9
  year: 2016
  end-page: 1380
  article-title: Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method
  publication-title: Int J Numer Anal Methods Geomech
– volume: 65
  start-page: 104
  year: 2015
  end-page: 114
  article-title: Large deformation finite element analyses in geotechnical engineering
  publication-title: Comput Geotech
– volume: 36
  start-page: 152
  issue: 4
  year: 2017
  article-title: Anisotropic elastoplasticity for cloth, knit and hair frictional contact
  publication-title: ACM Trans Graph
– volume: 37
  start-page: 1
  issue: 6
  year: 2018
  end-page: 12
  article-title: GPU optimization of material point methods
  publication-title: ACM Trans Graph
– volume: 146
  start-page: 21
  year: 2020
  end-page: 28
  article-title: Quantification of impact forces on fixed mudmats from submarine landslides using the material point method
  publication-title: Appl Ocean Res
– volume: 66
  start-page: 31
  year: 2015
  end-page: 38
  article-title: A GPU parallel computing strategy for the material point method
  publication-title: Comput Geotech
– volume: 190
  start-page: 108
  year: 2017
  end-page: 125
  article-title: iGIMP: an implicit generalised interpolation material point method for large deformations
  publication-title: Comput Struct
– volume: 127
  year: 2020
  article-title: Reseeding of particles in the material point method for soil‐structure interactions
  publication-title: Comput Geotech
– volume: 32
  start-page: 1023
  year: 2008
  end-page: 1050
  article-title: Arbitrary Lagrangian–Eulerian method for large‐strain consolidation problems
  publication-title: Int J Numer Anal Methods Geomech
– volume: 31
  start-page: 1375
  year: 2007
  end-page: 1399
  article-title: An operator‐split ALE model for large deformation analysis of geomaterials
  publication-title: Int J Numer Anal Methods Geomech
– volume: 32
  start-page: 102
  issue: 4
  year: 2013
  article-title: A material point method for snow simulation
  publication-title: ACM Trans Graph
– volume: 187
  start-page: 529
  issue: 3–4
  year: 2000
  end-page: 541
  article-title: The material‐point method for granular materials
  publication-title: Comput Methods Appl Mech Eng
– volume: 129
  year: 2021
  article-title: GPU‐accelerated smoothed particle finite element method for large deformation analysis in geomechanics
  publication-title: Comput Geotech
– volume: 29
  start-page: 438
  issue: 3
  year: 2017
  end-page: 444
  article-title: Runout of submarine landslide simulated with material point method
  publication-title: J Hydrodyn
– volume: 65
  start-page: 201
  issue: 3
  year: 2015
  end-page: 217
  article-title: The material point method for unsaturated soils
  publication-title: Géotechnique
– volume: 80
  start-page: 440
  year: 2016
  end-page: 452
  article-title: Two‐phase material point method applied to the study of cone penetration
  publication-title: Comput Geotech
– volume: 85
  start-page: 498
  issue: 4
  year: 2011
  end-page: 517
  article-title: Contact algorithms for the material point method in impact and penetration simulation
  publication-title: Int J Numer Methods Eng
– volume: 360
  year: 2019
  article-title: A total‐Lagrangian material point method for solid mechanics problems involving large deformations
  publication-title: Comput Methods Appl Mech Eng
– volume: 11
  start-page: 1446
  issue: 7
  year: 2019
  article-title: Analysis of the slope response to an increase in pore water pressure using the material point method
  publication-title: Water
– volume: 2
  start-page: 509
  issue: 4
  year: 2001
  end-page: 522
  article-title: An improved contact algorithm for the material point method and application to stress propagation in granular material
  publication-title: Comput Model Eng Sci
– volume: 62
  start-page: 213
  issue: 3
  year: 2012
  end-page: 226
  article-title: Strength of fine‐grained soils at the solid‐fluid transition
  publication-title: Géotechnique
– volume: 40
  start-page: 109
  issue: 4
  year: 2021
  article-title: Revisiting integration in the material point method: a scheme for easier separation and less dissipation
  publication-title: ACM Trans Graph
– volume: 230
  start-page: 6379
  issue: 16
  year: 2011
  end-page: 6398
  article-title: Material point method enhanced by modified gradient of shape function
  publication-title: J Comput Phys
– volume: 230
  start-page: 1923
  issue: 5
  year: 2011
  end-page: 1938
  article-title: Parallel‐vector algorithms for particle simulations on shared‐memory multiprocessors
  publication-title: J Comput Phys
– volume: 29
  start-page: 879
  issue: 9
  year: 2005
  end-page: 895
  article-title: The modelling of anchors using the material point method
  publication-title: Int J Numer Anal Methods Geomech
– volume: 77
  start-page: 11
  year: 2015
  end-page: 25
  article-title: An investigation of the efficient implementation of cellular automata on multi‐core CPU and GPU hardware
  publication-title: J Parallel Distrib Comput
– volume: 4
  start-page: 649
  issue: 6
  year: 2003
  end-page: 664
  article-title: Material point method calculations with explicit cracks
  publication-title: Comput Model Eng Sci
– volume: 54
  start-page: 257
  issue: 4
  year: 2004
  end-page: 267
  article-title: A numerical study of cone penetration in clay
  publication-title: Géotechnique
– volume: 39
  start-page: 30
  issue: 4
  year: 2020
  article-title: A massively parallel and scalable multi‐GPU material point method
  publication-title: ACM Trans Graph
– volume: 68
  start-page: 1339
  issue: 10
  year: 2008
  end-page: 1349
  article-title: Fast parallel particle‐to‐grid interpolation for plasma PIC simulations on the GPU
  publication-title: J Parallel Distrib Comput
– volume: 5
  start-page: 477
  issue: 6
  year: 2004
  end-page: 496
  article-title: The generalized interpolation material point method
  publication-title: Comput Model Eng Sci
– volume: 76
  start-page: 922
  issue: 6
  year: 2008
  end-page: 948
  article-title: Analysis and reduction of quadrature errors in the material point method (MPM)
  publication-title: Int J Numer Meth Eng
– volume: 185
  start-page: 1486
  issue: 5
  year: 2014
  end-page: 1495
  article-title: ppohDEM: computational performance for open source code of the discrete element method
  publication-title: Comput Phys Commun
– volume: 12
  start-page: 1
  year: 2021
  end-page: 14
  article-title: Particle finite element method implementation for large deformation analysis using Abaqus
  publication-title: Acta Geotechnica
– volume: 31
  start-page: 85
  issue: 2
  year: 2008
  end-page: 106
  article-title: Caveats on the implementation of the generalized material point method
  publication-title: Computer Model Eng Sci
– volume: 69
  start-page: 143
  issue: 2
  year: 2010
  end-page: 165
  article-title: An alternated grid updating parallel algorithm for material point method using OpenMP
  publication-title: Comput Model Eng Sci
– volume: 22
  start-page: 204
  issue: 1
  year: 2006
  end-page: 216
  article-title: A component‐based architecture for parallel multi‐physics PDE simulation
  publication-title: Future Gener Comput Syst
– volume: 121
  start-page: 2398
  issue: 11
  year: 2020
  end-page: 2417
  article-title: A local grid refinement scheme for B‐spline material point method
  publication-title: Int J Numer Methods Eng
– volume: 371
  year: 2020
  article-title: A generalized particle in cell method for explicit solid dynamics
  publication-title: Comput Methods Appl Mech Eng
– volume: 68
  start-page: 528
  issue: 6
  year: 2018
  end-page: 545
  article-title: Thermal effects in landslide mobility
  publication-title: Géotechnique
– volume: 41
  start-page: 17
  issue: 1
  year: 1991
  end-page: 34
  article-title: An analytical study of the cone penetration test in clay
  publication-title: Géotechnique
– volume: 113
  start-page: 411
  year: 2018
  end-page: 431
  article-title: Enhancement of the material point method using B‐spline basis functions
  publication-title: Int J Numer Methods Eng
– volume: 39
  start-page: 101
  issue: 2
  year: 2009
  end-page: 123
  article-title: Simulation of high explosive explosion using adaptive material point method
  publication-title: Comput Model Eng Sci
– volume: 101
  start-page: 149
  year: 2018
  end-page: 158
  article-title: Large scale parallelization of the material point method with multiple GPUs
  publication-title: Comput Geotech
– volume: 2
  start-page: 87
  issue: 3
  year: 2012
  end-page: 95
  article-title: Quickness of sensitive clays
  publication-title: Géotech Lett
– volume: 48
  start-page: 901
  issue: 6
  year: 2000
  end-page: 924
  article-title: Fluid–membrane interaction based on the material point method
  publication-title: Int J Numer Methods Eng
– volume: 122
  start-page: 6180
  year: 2021
  end-page: 6202
  article-title: A total‐Lagrangian material point method for coupled growth and massive deformation of incompressible soft materials
  publication-title: Int J Numer Methods Eng
– volume: 19
  start-page: 223
  issue: 3
  year: 2007
  end-page: 232
  article-title: Improved velocity projection for the material point method
  publication-title: CMES‐Comput Model Eng Sci
– volume: 47
  start-page: 842
  issue: 8
  year: 2010
  end-page: 856
  article-title: Large‐deformation finite element analysis of pipe penetration and large‐amplitude lateral displacement
  publication-title: Can Geotech J
– volume: 10
  start-page: 101
  year: 2015
  end-page: 116
  article-title: Simulating granular column collapse using the material point method
  publication-title: Acta Geotechnica
– volume: 212
  start-page: 257
  year: 2019
  end-page: 274
  article-title: B‐spline based boundary conditions in the material point method
  publication-title: Comput Struct
– volume: 80
  start-page: 427
  year: 2016
  end-page: 439
  article-title: Run‐out of landslides in brittle soils
  publication-title: Comput Geotech
– volume: 24
  start-page: 520
  issue: 4
  year: 2020
  end-page: 538
  article-title: Large displacement numerical study of 3D plate anchors
  publication-title: Eur J Environ Civ Eng
– volume: 39
  start-page: 193
  issue: 1
  year: 2002
  end-page: 212
  article-title: Submarine landslides: advances and challenges
  publication-title: Can Geotech J
– volume: 38
  start-page: 1197
  issue: 11
  year: 2014
  end-page: 1210
  article-title: A new contact algorithm in the material point method for geotechnical simulations
  publication-title: Int J Numer Anal Methods Geomech
– ident: e_1_2_9_69_1
  doi: 10.1016/j.compgeo.2016.03.003
– ident: e_1_2_9_6_1
  doi: 10.1016/0010-4655(94)00170-7
– ident: e_1_2_9_59_1
  doi: 10.1016/j.cpc.2014.02.014
– ident: e_1_2_9_40_1
  doi: 10.1002/nme.6312
– ident: e_1_2_9_3_1
  doi: 10.1002/nag.657
– volume: 4
  start-page: 649
  issue: 6
  year: 2003
  ident: e_1_2_9_9_1
  article-title: Material point method calculations with explicit cracks
  publication-title: Comput Model Eng Sci
– ident: e_1_2_9_10_1
  doi: 10.1002/nme.2981
– ident: e_1_2_9_2_1
  doi: 10.1002/nag.601
– ident: e_1_2_9_15_1
  doi: 10.1145/2461912.2461948
– volume: 69
  start-page: 143
  issue: 2
  year: 2010
  ident: e_1_2_9_43_1
  article-title: An alternated grid updating parallel algorithm for material point method using OpenMP
  publication-title: Comput Model Eng Sci
– ident: e_1_2_9_51_1
  doi: 10.1002/nag.2266
– volume: 3
  start-page: 319
  year: 1964
  ident: e_1_2_9_7_1
  article-title: The particle‐in‐cell computing method for fluid dynamics
  publication-title: Methods Comput Phys
– ident: e_1_2_9_21_1
  doi: 10.1016/j.oceaneng.2020.108553
– ident: e_1_2_9_68_1
  doi: 10.1016/j.compgeo.2014.12.005
– ident: e_1_2_9_48_1
  doi: 10.1145/3197517.3201309
– ident: e_1_2_9_44_1
  doi: 10.1016/j.future.2005.04.001
– ident: e_1_2_9_31_1
  doi: 10.3390/w11071446
– ident: e_1_2_9_65_1
  doi: 10.1680/geot.1991.41.1.17
– ident: e_1_2_9_14_1
  doi: 10.1002/(SICI)1097-0207(20000630)48:6<901::AID-NME910>3.0.CO;2-T
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jpdc.2014.10.011
– ident: e_1_2_9_5_1
  doi: 10.1002/nme.6787
– ident: e_1_2_9_11_1
  doi: 10.1016/j.cma.2019.112783
– ident: e_1_2_9_19_1
  doi: 10.1016/j.oceaneng.2017.09.008
– ident: e_1_2_9_58_1
  doi: 10.1002/nme.5606
– ident: e_1_2_9_56_1
  doi: 10.1016/S1001-6058(16)60754-0
– ident: e_1_2_9_30_1
  doi: 10.1002/nag.2499
– volume: 2
  start-page: 509
  issue: 4
  year: 2001
  ident: e_1_2_9_54_1
  article-title: An improved contact algorithm for the material point method and application to stress propagation in granular material
  publication-title: Comput Model Eng Sci
– ident: e_1_2_9_50_1
  doi: 10.1145/3386569.3392442
– ident: e_1_2_9_18_1
  doi: 10.1680/jgeot.15.LM.005
– ident: e_1_2_9_60_1
  doi: 10.1016/j.jcp.2010.11.040
– ident: e_1_2_9_53_1
  doi: 10.1016/S0045-7825(99)00338-2
– ident: e_1_2_9_52_1
  doi: 10.1016/j.compgeo.2020.103716
– ident: e_1_2_9_12_1
  doi: 10.1016/j.cma.2020.113308
– ident: e_1_2_9_45_1
  doi: 10.1016/j.jpdc.2008.05.009
– ident: e_1_2_9_34_1
  doi: 10.1016/j.cma.2021.113667
– ident: e_1_2_9_49_1
  doi: 10.1016/j.compgeo.2018.04.001
– ident: e_1_2_9_36_1
  doi: 10.1002/nme.2360
– ident: e_1_2_9_67_1
  doi: 10.1680/geot.7.00153
– volume: 12
  start-page: 1
  year: 2021
  ident: e_1_2_9_26_1
  article-title: Particle finite element method implementation for large deformation analysis using Abaqus
  publication-title: Acta Geotechnica
– volume: 5
  start-page: 477
  issue: 6
  year: 2004
  ident: e_1_2_9_41_1
  article-title: The generalized interpolation material point method
  publication-title: Comput Model Eng Sci
– ident: e_1_2_9_4_1
  doi: 10.1139/T09-147
– ident: e_1_2_9_17_1
  doi: 10.1145/3450626.3459678
– ident: e_1_2_9_66_1
  doi: 10.1680/geot.2004.54.4.257
– ident: e_1_2_9_25_1
  doi: 10.1007/s11440-014-0309-0
– ident: e_1_2_9_16_1
  doi: 10.1145/3072959.3073623
– ident: e_1_2_9_37_1
  doi: 10.1016/j.compgeo.2016.03.001
– volume: 39
  start-page: 101
  issue: 2
  year: 2009
  ident: e_1_2_9_8_1
  article-title: Simulation of high explosive explosion using adaptive material point method
  publication-title: Comput Model Eng Sci
– ident: e_1_2_9_55_1
  doi: 10.1016/j.jcp.2011.04.032
– ident: e_1_2_9_27_1
  doi: 10.1016/j.compgeo.2020.103856
– ident: e_1_2_9_39_1
  doi: 10.1002/nme.5620
– ident: e_1_2_9_23_1
  doi: 10.1080/19648189.2017.1408498
– ident: e_1_2_9_24_1
  doi: 10.1002/nme.6685
– ident: e_1_2_9_33_1
  doi: 10.1016/j.jcp.2008.07.019
– ident: e_1_2_9_38_1
  doi: 10.1016/j.compstruc.2017.05.004
– volume: 146
  start-page: 21
  year: 2020
  ident: e_1_2_9_42_1
  article-title: Quantification of impact forces on fixed mudmats from submarine landslides using the material point method
  publication-title: Appl Ocean Res
– volume: 31
  start-page: 85
  issue: 2
  year: 2008
  ident: e_1_2_9_35_1
  article-title: Caveats on the implementation of the generalized material point method
  publication-title: Computer Model Eng Sci
– ident: e_1_2_9_29_1
  doi: 10.1680/geot.14.P.163
– ident: e_1_2_9_20_1
  doi: 10.1680/jgeot.17.P.054
– ident: e_1_2_9_13_1
  doi: 10.1016/j.cma.2020.113503
– volume: 19
  start-page: 223
  issue: 3
  year: 2007
  ident: e_1_2_9_32_1
  article-title: Improved velocity projection for the material point method
  publication-title: CMES‐Comput Model Eng Sci
– ident: e_1_2_9_47_1
  doi: 10.1016/j.compgeo.2015.01.009
– ident: e_1_2_9_57_1
  doi: 10.1016/j.compstruc.2018.11.003
– ident: e_1_2_9_63_1
  doi: 10.1680/geot.9.P.069
– ident: e_1_2_9_61_1
  doi: 10.1139/t01-089
– ident: e_1_2_9_62_1
  doi: 10.1680/geolett.12.0008
– ident: e_1_2_9_64_1
– ident: e_1_2_9_22_1
  doi: 10.1002/nag.439
– ident: e_1_2_9_28_1
  doi: 10.1061/(ASCE)GT.1943-5606.0001011
SSID ssj0011503
Score 2.5797575
Snippet As one of the arbitrary Lagrangian–Eulerian methods, the material point method (MPM) owns intrinsic advantages in simulation of large deformation problems by...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1481
SubjectTerms cone penetration test
Cone penetration tests
Finite element method
Interpolation
material point method
mini slump test
Nodes
parallel computation
Title Multiple‐GPU parallelization of three‐dimensional material point method based on single‐root complex
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6906
https://www.proquest.com/docview/2632595531
Volume 123
WOSCitedRecordID wos000738369800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEB60etCD9RerVVYQPUWbzcZkj6JWD20pYsVb2O5uoBJbMVE8-gg-o0_ibLKJFRQETyFkJoSdmZ2Pzcw3APuUhr4MQs-hAY8dJlzlhJgZHKpYSyOkYCqvtrjtBL1eeHfH-7aq0vTCFPwQ1YGbiYx8vzYBLobp8RRp6IM-Miy7szBH0W39GsydX7cHneofAkIdryzw8HnoltSzLXpc6n5PRl8Icxqn5ommXf_PJy7DkoWX5LTwhxWY0eNVqFuoSWwgp6uwOMVDiHfdirw1XYP7ri0y_Hh7v-wPiGEHTxKd2I5NMolJhh5gHiszG6Dg9SConnszeZyMxhkpRlMTkyUVQS1zJpG_EqF6RvJKdv26DoP2xc3ZlWNHMjgSccGJI5gQMWNKa6aEMFOvhAiDADGhFppyxWLPk5j_gthlQ58KHivBtesLBDbUl9zbgNp4MtabQARX0lUilkOJHoFAkiN0pLFwJcW86vIGHJa2iaTlKzdjM5KoYFqmES5vZJa3AXuV5GPB0fGDTLM0b2SjNI0MV73PfdyGGnCQG_JX_ajXvTDXrb8KbsMCNZ0Spn2x1YRa9vSsd2BevmSj9GnX-uonjNLxhg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL34BeqD8xOnUyOIPtWtaWobfBJ1TtyGiBPfSpakMJmbbFV89Cf4G_0l3rTpnKAg-FRKc0tJzs09pPeeC7BHaejLIPQcGvDYYcJVToiRwaGKVTRSCqbSbIu7etBshvf3_HoCjvNamEwfYnTgZjwj3a-Ng5sD6fKYauijPjQyu5MwzRBFCO_ps5tqqz76iYBcx8szPHweurn2bIWWc9vv0eiLYo4T1TTSVAv_-sZFWLAEk5xkiFiCCd1bhoIlm8S68nAZ5seUCPGuMZJvHa7AQ8OmGX68vV9ct4jRB-92ddfWbJJ-TBLEgHmsTHeATNmDoHmKZ_LU7_QSkjWnJiZOKoJW5lQifSWS9YSkuez6dRVa1fPb05pjmzI4EpnBkSOYEDFjSmumhDB9r4QIgwBZoRaacsViz5MYAYPYZW2fCh4rwbXrC6Q21JfcW4OpXr-n14EIrqSrRCzbEjGBVJIjeaSxcCXFyOryIhzkixNJq1huGmd0o0xrmUY4vZGZ3iLsjkY-ZSodP4wp5esbWT8dRkat3uc-bkRF2E9X8lf7qNk4N9eNvw7cgdnabaMe1S-bV5swR03dhClmrJRgKhk86y2YkS9JZzjYtsD9BPMq9XY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1ifK4ieos1mY7J4ErUqtqWIFW9h3QcotS02ikd_gr_RX-JssqkVFARPIWQmhJ2ZnY_NzDcA25TGoYziwKMRNx4TvvJizAweVayiEVIwlVVb3NSiRiO-veXNETgsemFyfojBgZuNjGy_tgGue8rsD7GGPuo9S7M7CmPMzpApwdjJVbVVG_xEQKwTFBUeIY_9gnu2QvcL3e_Z6AtiDgPVLNNUZ_71jbMw7QAmOco9Yg5GdGceZhzYJC6U-_MwNcREiHf1AX1rfwEe6q7M8OPt_azZIpYfvN3WbdezSbqGpOgD9rGy0wFyZg-C6pk_k173vpOSfDg1sXlSEdSypxLZKxGspySrZdevi9Cqnl4fn3tuKIMnERkceIIJYRhTWjMlhJ17JUQcRYgKtdCUK2aCQGIGjIzP7kIquFGCaz8UCG1oKHmwBKVOt6OXgQiupK-EkXcSfQKhJEfwSI3wJcXM6vMy7BbGSaRjLLeDM9pJzrVME1zexC5vGbYGkr2cpeMHmbXCvomL035i2epDHuJGVIadzJK_6ieN-qm9rvxVcBMmmifVpHbRuFyFSWrbJmwvY2UNSunTs16HcfmS3vefNpzffgKP3PTx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple%E2%80%90GPU+parallelization+of+three%E2%80%90dimensional+material+point+method+based+on+single%E2%80%90root+complex&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Dong%2C+Youkou&rft.au=Cui%2C+Lan&rft.au=Zhang%2C+Xue&rft.date=2022-03-30&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=123&rft.issue=6&rft.spage=1481&rft.epage=1504&rft_id=info:doi/10.1002%2Fnme.6906&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_6906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon