Algebraic algorithms for a class of Schrödinger equations in split quaternionic mechanics

With the breakthroughs made by physicists in high‐dimensional mathematics, it has become possible to represent and solve a number of classical mathematical physics problems using the split quaternion algebra. In this paper, we study the least squares approximation of a class of Schrödinger equations...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical methods in the applied sciences Ročník 47; číslo 7; s. 6205 - 6215
Hlavní autoři: Jiang, Tongsong, Wang, Gang, Guo, Zhenwei, Zhang, Dong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Freiburg Wiley Subscription Services, Inc 15.05.2024
Témata:
ISSN:0170-4214, 1099-1476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:With the breakthroughs made by physicists in high‐dimensional mathematics, it has become possible to represent and solve a number of classical mathematical physics problems using the split quaternion algebra. In this paper, we study the least squares approximation of a class of Schrödinger equations in split quaternionic mechanics and propose two algebraic algorithms to the generalized right eigen‐problem for an i‐Hermitian split quaternion matrix pencil by using two isomorphic mappings. Numerical examples show the effectiveness of the proposed theories and algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.9916