Perovskites informatics: Studying the impact of thicknesses, doping, and defects on the perovskite solar cell efficiency using a machine learning algorithm

The integration of machine learning (ML) models in studying, investigating, and optimizing various electronic devices and materials has significantly glow up. With the aid of ML algorithms and input datasets, data regression and prediction can show the output characteristic performance under a wide...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of numerical modelling Ročník 37; číslo 2
Hlavní autori: Ismail, Zahraa S., Sawires, Eman F., Amer, Fathy Z., Abdellatif, Sameh O.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Inc 01.03.2024
Wiley Subscription Services, Inc
Predmet:
ISSN:0894-3370, 1099-1204
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The integration of machine learning (ML) models in studying, investigating, and optimizing various electronic devices and materials has significantly glow up. With the aid of ML algorithms and input datasets, data regression and prediction can show the output characteristic performance under a wide range of input combinations. Herein, we utilize a random‐forest ML algorithm to study the influence of nine input design parameters on the overall power conversion efficiency (PCE) of cesium lead halides perovskites cells. The doping levels, the defects densities, and the thicknesses among the perovskite thin film, as well as the hole and electron transport layers, are studied against the cell PCE. The seeded dataset is managed using experimental data and experimentally validated numerical simulations. Datasets of more than 1 512 000 points were generated and seeded to the ML model. The PCE variation against the inputs for the three metal halides was investigated. A 17.8% PCE for CsPbI3 was reached, while PCE of 14.6% and 6.5% were recorded for CsPbBr3, and CsPbCl3, respectively.
AbstractList The integration of machine learning (ML) models in studying, investigating, and optimizing various electronic devices and materials has significantly glow up. With the aid of ML algorithms and input datasets, data regression and prediction can show the output characteristic performance under a wide range of input combinations. Herein, we utilize a random‐forest ML algorithm to study the influence of nine input design parameters on the overall power conversion efficiency (PCE) of cesium lead halides perovskites cells. The doping levels, the defects densities, and the thicknesses among the perovskite thin film, as well as the hole and electron transport layers, are studied against the cell PCE. The seeded dataset is managed using experimental data and experimentally validated numerical simulations. Datasets of more than 1 512 000 points were generated and seeded to the ML model. The PCE variation against the inputs for the three metal halides was investigated. A 17.8% PCE for CsPbI3 was reached, while PCE of 14.6% and 6.5% were recorded for CsPbBr3, and CsPbCl3, respectively.
The integration of machine learning (ML) models in studying, investigating, and optimizing various electronic devices and materials has significantly glow up. With the aid of ML algorithms and input datasets, data regression and prediction can show the output characteristic performance under a wide range of input combinations. Herein, we utilize a random‐forest ML algorithm to study the influence of nine input design parameters on the overall power conversion efficiency (PCE) of cesium lead halides perovskites cells. The doping levels, the defects densities, and the thicknesses among the perovskite thin film, as well as the hole and electron transport layers, are studied against the cell PCE. The seeded dataset is managed using experimental data and experimentally validated numerical simulations. Datasets of more than 1 512 000 points were generated and seeded to the ML model. The PCE variation against the inputs for the three metal halides was investigated. A 17.8% PCE for CsPbI 3 was reached, while PCE of 14.6% and 6.5% were recorded for CsPbBr 3 , and CsPbCl 3 , respectively.
Author Amer, Fathy Z.
Ismail, Zahraa S.
Abdellatif, Sameh O.
Sawires, Eman F.
Author_xml – sequence: 1
  givenname: Zahraa S.
  surname: Ismail
  fullname: Ismail, Zahraa S.
  organization: British University in Egypt (BUE)
– sequence: 2
  givenname: Eman F.
  surname: Sawires
  fullname: Sawires, Eman F.
  organization: Helwan University
– sequence: 3
  givenname: Fathy Z.
  surname: Amer
  fullname: Amer, Fathy Z.
  organization: Helwan University
– sequence: 4
  givenname: Sameh O.
  orcidid: 0000-0001-8677-9497
  surname: Abdellatif
  fullname: Abdellatif, Sameh O.
  email: sameh.osama@bue.edu.eg
  organization: British University in Egypt (BUE)
BookMark eNp1kE1v1DAQhi1UJLYLEj_BUi8cmu04tpOYG6oKtCofEnCOjD3uepvYwfYW7W_hz5LdRT0gOI1m9LzvSM8pOQkxICEvGawYQH2xCeOKs0Y8IQsGSlWsBnFCFtApUXHewjNymvMGADiT9YL8-owpPuR7XzBTH1xMoy7e5Nf0S9nanQ93tKyR-nHSptDo5s2b-4A5Yz6nNk4zcU51sNSiQ1MyjeGQmB57aY6DTtTgMFB0zhuPwezoNu_LNR21WfuAdECdwuE03MXky3p8Tp46PWR88Wcuybe3V18v31e3n95dX765rUytuKicay1H6ywTBlVnAFhbO_wuW6kEV4YJqaHhqBrspJDcNgxR286JhmsJHV-Ss2PvlOKPLebSb-I2hfllz4GrRoKU7Uy9OlImxZwTun5KftRp1zPo9-r7WX2_Vz-jq79Q48usNYaStB_-FaiOgZ9-wN1_i_ubjx8O_G9GoZm_
CitedBy_id crossref_primary_10_1016_j_engappai_2025_110909
crossref_primary_10_1016_j_isci_2024_109200
crossref_primary_10_1109_JPHOTOV_2023_3336474
crossref_primary_10_1007_s11664_024_10988_z
crossref_primary_10_1007_s40843_025_3416_3
crossref_primary_10_1002_adts_202400652
crossref_primary_10_1007_s11082_024_07409_0
crossref_primary_10_1002_jnm_3278
crossref_primary_10_1007_s10854_024_12289_x
crossref_primary_10_1016_j_jics_2025_101612
crossref_primary_10_1016_j_solener_2025_113509
crossref_primary_10_1109_JSTQE_2025_3560119
crossref_primary_10_1155_er_1215175
crossref_primary_10_1007_s00542_025_05879_0
crossref_primary_10_1109_JPHOTOV_2024_3453653
crossref_primary_10_1016_j_jechem_2024_09_043
crossref_primary_10_1016_j_egyai_2025_100559
crossref_primary_10_1016_j_optmat_2024_114922
crossref_primary_10_1109_TIM_2024_3488138
crossref_primary_10_1038_s41524_024_01383_7
Cites_doi 10.1021/acs.chemrev.6b00136
10.1088/1742-6596/1299/1/012129
10.1021/acsaem.8b01263
10.1021/acsphotonics.8b00124
10.1038/s41578-019-0080-9
10.1063/1.5128016
10.1002/aenm.202201463
10.1016/j.micromeso.2018.01.011
10.1021/acsanm.2c01550
10.1109/JPHOTOV.2020.2965399
10.1016/j.joule.2018.04.012
10.1039/D1EE02882K
10.1016/j.solener.2021.04.030
10.1038/s41467‐018‐06915‐6
10.1002/smtd.201600018
10.1016/j.solener.2022.01.060
10.1016/j.mattod.2022.11.002
10.1016/j.nanoen.2019.01.034
10.1016/j.solener.2021.09.030
10.1038/s43246-022-00291-x
10.1016/j.joule.2021.04.008
10.1016/j.solener.2022.08.001
10.1007/s11801‐022‐1115‐9
10.1016/j.solener.2019.11.005
10.1016/j.solener.2020.01.081
10.1016/j.nanoen.2022.107394
10.1039/C6TA09582H
10.1016/j.jallcom.2017.02.147
10.1021/acsami.7b18902
10.1002/advs.201700780
10.1016/j.optmat.2022.112075
10.1109/JPHOTOV.2021.3086443
10.1038/s41560-018-0190-4
10.1002/aenm.201501066
10.1109/JPHOTOV.2022.3226711
10.1016/j.nanoen.2020.105546
10.1116/6.0000718
10.1002/adma.201902851
10.1002/smll.201800682
10.1016/j.jechem.2021.07.020
10.1021/acsnano.8b07850
10.1039/C8TA08900K
10.1016/j.joule.2022.03.003
10.1002/aenm.201901891
10.1016/j.solener.2020.09.003
10.1016/j.nanoen.2018.12.038
10.1039/D1TC05851G
10.1117/1.JPE.12.022202
10.1016/j.nanoen.2018.11.069
10.1002/adfm.201909972
10.1016/j.solmat.2019.110284
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/jnm.3164
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1099-1204
EndPage n/a
ExternalDocumentID 10_1002_jnm_3164
JNM3164
Genre article
GrantInformation_xml – fundername: Science and Technology Development Fund
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2934-ff7d3edfd14ce98c00172feb5759439c145a063e96e85453d61eead8f463a5083
IEDL.DBID DRFUL
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001045814100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0894-3370
IngestDate Sun Jul 27 07:11:17 EDT 2025
Tue Nov 18 22:20:06 EST 2025
Sat Nov 29 06:25:15 EST 2025
Wed Jan 22 17:19:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2934-ff7d3edfd14ce98c00172feb5759439c145a063e96e85453d61eead8f463a5083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8677-9497
PQID 3039650557
PQPubID 1026348
PageCount 10
ParticipantIDs proquest_journals_3039650557
crossref_primary_10_1002_jnm_3164
crossref_citationtrail_10_1002_jnm_3164
wiley_primary_10_1002_jnm_3164_JNM3164
PublicationCentury 2000
PublicationDate March/April 2024
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March/April 2024
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of numerical modelling
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 5
2017; 1
2019; 57
2019; 13
2019; 56
2019; 58
2020; 205
2022; 66
2020; 10
2020; 209
2022; 244
2018; 6
2018; 9
2018; 3
2018; 2
2018; 5
2018; 1
2021; 39
2016; 116
2019; 194
2019; 1299
2022; 125
2021; 80
2022; 233
2019; 9
2018; 264
2019; 4
2021; 5
2015; 5
2019; 31
2021; 228
2021; 221
2017; 705
2021; 11
2022; 3
2020; 152
2020; 30
2022; 5
2022; 61
2021
2020
2022; 6
2020; 198
2022; 12
2022; 15
2022; 10
2022; 1
2022; 99
2018; 10
2018; 14
2022; 18
e_1_2_12_4_1
e_1_2_12_6_1
Abdellatif SO (e_1_2_12_45_1) 2021
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_24_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_9_1
References_xml – volume: 9
  year: 2019
  article-title: Predictions and strategies learned from machine learning to develop high‐performing perovskite solar cells
  publication-title: Adv Energy Mater
– volume: 1
  start-page: 158
  year: 2022
  end-page: 164
  article-title: Experimental studies for glass light transmission degradation in solar cells due to dust accumulation using effective optical scattering parameters and machine learning algorithm
  publication-title: IEEE J Photovolt
– volume: 5
  start-page: 2066
  year: 2017
  end-page: 2072
  article-title: Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells
  publication-title: J Mater Chem A
– volume: 30
  year: 2020
  article-title: Controlled n‐doping in air‐stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%
  publication-title: Adv Funct Mater
– volume: 264
  start-page: 84
  year: 2018
  end-page: 91
  article-title: Refractive index and scattering of porous TiO films
  publication-title: Micropor Mesopor Mater
– volume: 57
  start-page: 74
  year: 2019
  end-page: 93
  article-title: A comprehensive review of flexible piezoelectric generators based on organic‐inorganic metal halide perovskites
  publication-title: Nano Energy
– volume: 5
  year: 2015
  article-title: Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells
  publication-title: Adv Energy Mater
– year: 2021
– volume: 5
  year: 2018
  article-title: Organic/inorganic metal halide perovskite optoelectronic devices beyond solar cells
  publication-title: Adv Sci
– volume: 228
  start-page: 689
  year: 2021
  end-page: 699
  article-title: Machine learning stability and band gap of lead‐free halide double perovskite materials for perovskite solar cells
  publication-title: Solar Energy
– volume: 31
  year: 2019
  article-title: Review on recent progress of all‐inorganic metal halide perovskites and solar cells
  publication-title: Adv Mater
– volume: 10
  start-page: 7145
  year: 2018
  article-title: All‐ambient processed binary CsPbBr ‐CsPb Br perovskites with synergistic enhancement for high‐efficiency Cs‐Pb‐Br‐based solar cells
  publication-title: ACS Appl Mater Interfaces
– volume: 12
  year: 2022
  article-title: Machine‐learning modeling for ultra‐stable high‐efficiency perovskite solar cells
  publication-title: Adv Energy Mater
– volume: 6
  start-page: 24324
  year: 2018
  end-page: 24329
  article-title: All‐inorganic CsPbBr perovskite solar cell with 10.26% efficiency by spectra engineering
  publication-title: J Mater Chem A
– volume: 66
  start-page: 74
  year: 2022
  end-page: 90
  article-title: Is machine learning redefining the perovskite solar cells?
  publication-title: J Energy Chem
– volume: 4
  start-page: 169
  year: 2019
  end-page: 188
  article-title: Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties
  publication-title: Nat Rev Mater
– volume: 264
  start-page: 84
  year: 2018
  article-title: Refractive index and scattering of porous TiO films. Microporous and mesoporous materials
  publication-title: Micropor Mesopor Mater
– volume: 12
  year: 2022
  article-title: Investigating the variation in the optical properties of TiO thin‐film utilized in bifacial solar cells using machine learning algorithm
  publication-title: J Photon Energy
– volume: 10
  start-page: 522
  year: 2020
  end-page: 530
  article-title: Transparency and diffused light efficiency of dye‐sensitized solar cells: tuning and a new figure of merit
  publication-title: IEEE J Photovolt
– volume: 56
  start-page: 770
  year: 2019
  end-page: 791
  article-title: Performance analysis of perovskite solar cells in 2013–2018 using machine‐learning tools
  publication-title: Nano Energy
– volume: 5
  start-page: 2970
  year: 2018
  end-page: 2977
  article-title: Research direction toward theoretical efficiency in perovskite solar cells
  publication-title: ACS Photonics
– volume: 2
  start-page: 1500
  year: 2018
  article-title: Graded bandgap CsPbI Br perovskite solar cells with a stabilized efficiency of 14.4%
  publication-title: Joule
– volume: 152
  year: 2020
  article-title: Understanding size dependence of phase stability and band gap in CsPbI3 perovskite nanocrystals
  publication-title: J Chem Phys
– volume: 14
  year: 2018
  article-title: Photonics and optoelectronics of 2D metal‐halide perovskites
  publication-title: Small
– volume: 11
  start-page: 1222
  year: 2021
  end-page: 1235
  article-title: Investigating the tradeoff between transparency and efficiency in semitransparent bifacial Mesosuperstructured solar cells for millimeter‐scale applications
  publication-title: IEEE J Photovolt
– volume: 80
  year: 2021
  article-title: Critical review of machine learning applications in perovskite solar research
  publication-title: Nano Energy
– volume: 6
  start-page: 834
  year: 2022
  end-page: 849
  article-title: Machine learning with knowledge constraints for process optimization of open‐air perovskite solar cell manufacturing
  publication-title: Joule
– volume: 39
  year: 2021
  article-title: Evidence of improved power conversion efficiency in lead‐free CsGeI based perovskite solar cell heterostructure via scaps simulation
  publication-title: J Vacuum Sci Technol B
– volume: 1
  year: 2017
  article-title: Two‐dimensional metal halide perovskites: theory, synthesis, and optoelectronics
  publication-title: Small Methods
– volume: 1
  start-page: 6227
  year: 2018
  end-page: 6233
  article-title: Room‐temperature‐sputtered Nanocrystalline nickel oxide as hole transport layer for p–i–n perovskite solar cells
  publication-title: ACS Appl Energy Mater
– volume: 1299
  issue: 1
  year: 2019
  article-title: First principles calculations of the optoelectronic properties of magnesium substitutes in Lead based ABX3 compounds
  publication-title: J Phys
– volume: 244
  start-page: 516
  year: 2022
  end-page: 535
  article-title: Stability and efficiency issues, solutions and advancements in perovskite solar cells: A review
  publication-title: Solar Energy
– volume: 194
  start-page: 886
  year: 2019
  end-page: 892
  article-title: Numerical study of Cs2TiX6 (X = Br−, I−, F− and Cl−) based perovskite solar cell using SCAPS‐1D device simulation
  publication-title: Solar Energy
– volume: 13
  start-page: 1772
  year: 2019
  article-title: High‐performance all‐inorganic CsPbCl perovskite nanocrystal photodetectors with superior stability
  publication-title: ACS Nano
– volume: 9
  start-page: 4544
  year: 2018
  article-title: All‐inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15
  publication-title: Nat Commun
– volume: 198
  start-page: 454
  year: 2020
  end-page: 460
  article-title: Simulated development and optimized performance of CsPbI3 based all‐inorganic perovskite solar cells
  publication-title: Solar Energy
– volume: 116
  start-page: 12956
  year: 2016
  end-page: 13008
  article-title: Intriguing optoelectronic properties of metal halide perovskites
  publication-title: Chem Rev
– volume: 99
  year: 2022
  article-title: Machine learning enabled development of unexplored perovskite solar cells with high efficiency
  publication-title: Nano Energy
– volume: 209
  start-page: 79
  year: 2020
  article-title: Optimizing the working mechanism of the CsPbBr ‐based inorganic perovskite solar cells for enhanced efficiency
  publication-title: Solar Energy
– volume: 205
  year: 2020
  article-title: Machine learning analysis on stability of perovskite solar cells
  publication-title: Solar Energy Mater Solar Cells
– volume: 705
  start-page: 828
  year: 2017
  end-page: 839
  article-title: Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications
  publication-title: J Alloys Compd
– volume: 58
  start-page: 175
  year: 2019
  article-title: Chlorine doping for black γ‐CsPbI solar cells with stabilized efficiency beyond 16%
  publication-title: Nano Energy
– volume: 18
  start-page: 148
  year: 2022
  end-page: 151
  article-title: Optoelectronic devices informatics: optimizing DSSC performance using random‐forest machine learning algorithm
  publication-title: Optoelectronics Lett
– volume: 3
  start-page: 828
  year: 2018
  end-page: 838
  article-title: Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors
  publication-title: Nat Energy
– volume: 5
  start-page: 10097
  year: 2022
  end-page: 10117
  article-title: Charge transfer in Photoexcited cesium–Lead halide perovskite nanocrystals: review of materials and applications
  publication-title: ACS Appl Nano Mater
– volume: 125
  year: 2022
  article-title: Numerical modeling and performance optimization of carbon‐based hole transport layer free perovskite solar cells
  publication-title: Opt Mater
– volume: 3
  start-page: 1
  year: 2022
  article-title: Improving the stability of inverted perovskite solar cells towards commercialization
  publication-title: Commun Mater
– year: 2020
– volume: 15
  start-page: 13
  year: 2022
  end-page: 55
  article-title: Development of encapsulation strategies towards the commercialization of perovskite solar cells
  publication-title: Energ Environ Sci
– volume: 221
  start-page: 99
  year: 2021
  end-page: 108
  article-title: Simulation and optimization studies on CsPbI3 based inorganic perovskite solar cells
  publication-title: Solar Energy
– volume: 10
  start-page: 4999
  year: 2022
  end-page: 5023
  article-title: Strategies for highly efficient and stable cesium lead iodide perovskite photovoltaics: mechanisms and processes
  publication-title: J Mater Chem C
– volume: 61
  start-page: 191
  year: 2022
  end-page: 217
  article-title: Inorganic lead‐based halide perovskites: From fundamental properties to photovoltaic applications
  publication-title: Mater Today
– volume: 233
  start-page: 421
  year: 2022
  end-page: 434
  article-title: Review on efficiency improvement effort of perovskite solar cell
  publication-title: Solar Energy
– volume: 5
  start-page: 1033
  year: 2021
  end-page: 1035
  article-title: Development of perovskite solar cells with >25% conversion efficiency
  publication-title: Joule
– ident: e_1_2_12_7_1
  doi: 10.1021/acs.chemrev.6b00136
– ident: e_1_2_12_13_1
  doi: 10.1088/1742-6596/1299/1/012129
– ident: e_1_2_12_43_1
  doi: 10.1021/acsaem.8b01263
– ident: e_1_2_12_26_1
  doi: 10.1021/acsphotonics.8b00124
– ident: e_1_2_12_6_1
  doi: 10.1038/s41578-019-0080-9
– ident: e_1_2_12_22_1
  doi: 10.1063/1.5128016
– ident: e_1_2_12_37_1
  doi: 10.1002/aenm.202201463
– ident: e_1_2_12_40_1
  doi: 10.1016/j.micromeso.2018.01.011
– ident: e_1_2_12_18_1
  doi: 10.1021/acsanm.2c01550
– ident: e_1_2_12_39_1
  doi: 10.1109/JPHOTOV.2020.2965399
– ident: e_1_2_12_55_1
  doi: 10.1016/j.joule.2018.04.012
– ident: e_1_2_12_17_1
  doi: 10.1039/D1EE02882K
– ident: e_1_2_12_48_1
  doi: 10.1016/j.solener.2021.04.030
– ident: e_1_2_12_52_1
  doi: 10.1038/s41467‐018‐06915‐6
– ident: e_1_2_12_41_1
  doi: 10.1016/j.micromeso.2018.01.011
– volume-title: International Conference on Interactive Collaborative and Blended Learning
  year: 2021
  ident: e_1_2_12_45_1
– ident: e_1_2_12_4_1
  doi: 10.1002/smtd.201600018
– ident: e_1_2_12_10_1
  doi: 10.1016/j.solener.2022.01.060
– ident: e_1_2_12_20_1
  doi: 10.1016/j.mattod.2022.11.002
– ident: e_1_2_12_53_1
  doi: 10.1016/j.nanoen.2019.01.034
– ident: e_1_2_12_38_1
  doi: 10.1016/j.solener.2021.09.030
– ident: e_1_2_12_50_1
– ident: e_1_2_12_16_1
  doi: 10.1038/s43246-022-00291-x
– ident: e_1_2_12_11_1
  doi: 10.1016/j.joule.2021.04.008
– ident: e_1_2_12_14_1
  doi: 10.1016/j.solener.2022.08.001
– ident: e_1_2_12_30_1
  doi: 10.1007/s11801‐022‐1115‐9
– ident: e_1_2_12_46_1
  doi: 10.1016/j.solener.2019.11.005
– ident: e_1_2_12_49_1
  doi: 10.1016/j.solener.2020.01.081
– ident: e_1_2_12_12_1
  doi: 10.1016/j.nanoen.2022.107394
– ident: e_1_2_12_21_1
  doi: 10.1039/C6TA09582H
– ident: e_1_2_12_24_1
  doi: 10.1016/j.jallcom.2017.02.147
– ident: e_1_2_12_54_1
  doi: 10.1021/acsami.7b18902
– ident: e_1_2_12_9_1
  doi: 10.1002/advs.201700780
– ident: e_1_2_12_27_1
  doi: 10.1016/j.optmat.2022.112075
– ident: e_1_2_12_42_1
  doi: 10.1109/JPHOTOV.2021.3086443
– ident: e_1_2_12_8_1
  doi: 10.1038/s41560-018-0190-4
– ident: e_1_2_12_15_1
  doi: 10.1002/aenm.201501066
– ident: e_1_2_12_29_1
  doi: 10.1109/JPHOTOV.2022.3226711
– ident: e_1_2_12_31_1
  doi: 10.1016/j.nanoen.2020.105546
– ident: e_1_2_12_47_1
  doi: 10.1116/6.0000718
– ident: e_1_2_12_3_1
  doi: 10.1002/adma.201902851
– ident: e_1_2_12_5_1
  doi: 10.1002/smll.201800682
– ident: e_1_2_12_32_1
  doi: 10.1016/j.jechem.2021.07.020
– ident: e_1_2_12_57_1
  doi: 10.1021/acsnano.8b07850
– ident: e_1_2_12_23_1
  doi: 10.1039/C8TA08900K
– ident: e_1_2_12_35_1
  doi: 10.1016/j.joule.2022.03.003
– ident: e_1_2_12_36_1
  doi: 10.1002/aenm.201901891
– ident: e_1_2_12_56_1
  doi: 10.1016/j.solener.2020.09.003
– ident: e_1_2_12_2_1
  doi: 10.1016/j.nanoen.2018.12.038
– ident: e_1_2_12_19_1
  doi: 10.1039/D1TC05851G
– ident: e_1_2_12_51_1
  doi: 10.1117/1.JPE.12.022202
– ident: e_1_2_12_34_1
  doi: 10.1016/j.nanoen.2018.11.069
– ident: e_1_2_12_28_1
  doi: 10.1002/adfm.201909972
– ident: e_1_2_12_44_1
– ident: e_1_2_12_33_1
  doi: 10.1016/j.solmat.2019.110284
– ident: e_1_2_12_25_1
SSID ssj0003152
Score 2.4386945
Snippet The integration of machine learning (ML) models in studying, investigating, and optimizing various electronic devices and materials has significantly glow up....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Cesium
cesium lead halides
data regression
Datasets
Defects
Design parameters
Doping
Electron transport
Energy conversion efficiency
Lead compounds
Machine learning
Mathematical models
Metal halides
optimization
Perovskites
Photovoltaic cells
power conversion efficiency
random‐forest algorithm
Solar cells
Thickness
Thin films
Title Perovskites informatics: Studying the impact of thicknesses, doping, and defects on the perovskite solar cell efficiency using a machine learning algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnm.3164
https://www.proquest.com/docview/3039650557
Volume 37
WOSCitedRecordID wos001045814100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1204
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003152
  issn: 0894-3370
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFB6s9qF9qPYibmvlFEr7YjDJzCYzfRPtIqKLlAq-hclc1tsmstn6Z_yznjPJRgstCD6FJGdCyFzOdybf-Q5jXz1Ptc11HGl0hpFwqYm0ylSEYEMnaaoRoehQbCIfj-XZmTrpWJWUC9PqQ_QbbjQzwnpNE1yXzc6DaOhlNcWAMxMv2ArlVGHgtbL_a3R61K_DvK23E0slIs7zeCE9G6c7i7Z_O6MHhPkYpwZHM1p9ziuusTcdvITddjy8ZUuuesdePxIdxLPjXqm1ec_uTtysvm1oD7eBTkWV7vwAYhhSDhSgNbTJlFB7IH78Fa2PrtkGG9KttkFXFqwLzBCoq9Dipn8uNBQ-A_0iABcUKyjdE4hxPwEN00DndNDVr8BL15N6djE_n35gp6Ofv_cOoq5gQ2QQNYjI-9xyZ71NhHFKmhBgeldSEVAEPiYRQ42QyKnMSURu3GaJw5Esvci4Jl36dbZc1ZXbYKAw7FSee66NFLyUWsmhN8ImsSzjMrUD9n3Rc4Xp1MypqMZ10eowpwV-_II-_oB96S1vWgWPf9hsLjq_6OZwU6BzV4hfh8N8wL6Fbv5v--JwfEzHj081_MRepYiOWjLbJluez_64z-yluZ1fNLOtbiTfA6-O-nI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRJwKG-xbYFBQnBp1CT2JjacELAqsLuqUCv1Fnn9KH1sUm22_TP8WTzOo0UCCYlTlGQcWR7b840z8w3Aa8dSZXIVR8obw4jbVEdKZjLyYEMlaao8QlGh2EQ-m4mjI7m_Bu-7XJiGH6I_cKOVEfZrWuB0IL17zRp6Wi68x5nxW7DOM5aLAax_-j4-nPQbMWsK7sRC8oixPO64Z-N0t2v7uzW6hpg3gWqwNOP7_9XHB7DRAkz80MyIh7Bmy0dw7wbtoL-b9lyt9WP4uW-X1VVNp7g1tjyq9OYdUowhZUGhl8YmnRIrhxQhf0Y7pK130ISEqx1UpUFjQ2wIVmVocdF_F2tyoJF-EqANnBWU8IkUc3-MChchoNNiW8HCPzo_rpYnqx-LJ3A4_nzwcS9qSzZE2uMGHjmXG2aNMwnXVgodXExn51QG1EMfnfCR8qDIyswKj92YyRLr57JwXoOKmOmfwqCsSvsMUHrHUzrmmNKCs7lQUoyc5iaJxTyep2YIbzvVFbrlM6eyGudFw8ScFn7wCxr8IbzqJS8aDo8_yGx32i_aVVwX3rxLj2BHo3wIb4Ke_9q--Dqb0nXzXwVfwp29g-mkmHyZfduCu6nHSk1o2zYMVstL-xxu66vVSb180U7rX6ED_mI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLUJw4FnUhQKDhODSqEnsJDacEGXFo12tEJV6i7x-lNJustos_TP8WTzOo0UCCYlTlGQcWR7b840z8w3AC8dSZQoVR8obw4jbVEdK5jLyYEMlaao8QlGh2EQxnYrjYznbgDd9LkzLDzEcuNHKCPs1LXC7NG7vkjX0e7XwHmfOr8Emz2TGR7C5_2VydDBsxKwtuBMLySPGirjnno3Tvb7t79boEmJeBarB0kzu_Fcf78LtDmDi23ZG3IMNW92HW1doB_3d4cDV2jyAnzO7qi8aOsVtsONRpTevkWIMKQsKvTS26ZRYO6QI-TPaIW2ziyYkXO2iqgwaG2JDsK5Ci-XwXWzIgUb6SYA2cFZQwidSzP0JKlyEgE6LXQUL_-j8pF6drr8ttuBo8v7ruw9RV7Ih0h438Mi5wjBrnEm4tlLo4GI6O6cyoB766IRnyoMiK3MrPHZjJk-sn8vC8ZwpYqZ_CKOqruw2oPSOp3TMMaUFZ3OhpMic5iaJxTyep2YMr3rVlbrjM6eyGudly8Scln7wSxr8MTwfJJcth8cfZHZ67ZfdKm5Kb96lR7BZVozhZdDzX9uXn6aHdH30r4LP4MZsf1IefJx-fgw3Uw-V2si2HRitVz_sE7iuL9anzeppN6t_AS_7_d0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskites+informatics%3A+Studying+the+impact+of+thicknesses%2C+doping%2C+and+defects+on+the+perovskite+solar+cell+efficiency+using+a+machine+learning+algorithm&rft.jtitle=International+journal+of+numerical+modelling&rft.au=Ismail%2C+Zahraa+S&rft.au=Sawires%2C+Eman+F&rft.au=Amer%2C+Fathy+Z&rft.au=Abdellatif%2C+Sameh+O&rft.date=2024-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0894-3370&rft.eissn=1099-1204&rft.volume=37&rft.issue=2&rft_id=info:doi/10.1002%2Fjnm.3164&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-3370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-3370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-3370&client=summon