Cost‐efficient numerical algorithm for solving the linear inverse problem of finding a variable magnetization

The paper is devoted to developing an original cost‐efficient algorithm for solving the inverse problem of finding a variable magnetization in a rectangular parallelepiped. The problem is ill‐posed and is described by the integral Fredholm equation. It is shown that after discretization of the area...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical methods in the applied sciences Ročník 43; číslo 13; s. 7647 - 7656
Hlavní autoři: Akimova, Elena N., Martyshko, Petr S., Misilov, Vladimir E., Miftakhov, Valeriy O.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Freiburg Wiley Subscription Services, Inc 15.09.2020
Témata:
ISSN:0170-4214, 1099-1476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper is devoted to developing an original cost‐efficient algorithm for solving the inverse problem of finding a variable magnetization in a rectangular parallelepiped. The problem is ill‐posed and is described by the integral Fredholm equation. It is shown that after discretization of the area and approximation of the integral operator, this problem is reduced to solving a system of linear algebraic equations with the Toeplitz‐block‐Toeplitz matrix. We have constructed the memory efficient variant of the stabilized biconjugate gradient method BiCGSTABmem. This optimized algorithm exploits the special structure of the matrix to reduce the memory requirements and computing time. The efficient implementation is developed for multicore CPU and GPU. A series of the model problems with synthetic and real magnetic data are solved. Investigation of efficiency and speedup of parallel algorithm is performed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.6024