Hybrid optimization enabled multi‐aggregator‐based charge scheduling of electric vehicle in internet of electric vehicles

Summary In modern days, electric vehicles are quickly industrialized as well as their penetration is also increased highly, which brings more challenges for the power system. The electric vehicle charge scheduling process is vital to encourage the daily usage of the electric vehicle. However, irregu...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation Vol. 35; no. 9
Main Authors: Suresh, Pandian, Shobana, Selvaraj, Ramya, Ganesan, Belsam Jeba Ananth, Manasea Selvin
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 25.04.2023
Wiley Subscription Services, Inc
Subjects:
ISSN:1532-0626, 1532-0634
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary In modern days, electric vehicles are quickly industrialized as well as their penetration is also increased highly, which brings more challenges for the power system. The electric vehicle charge scheduling process is vital to encourage the daily usage of the electric vehicle. However, irregular charging methods for electric vehicles may disturb voltage security areas because of their stochastic characteristics. Moreover, an electric vehicle requires recurrent charging owing to its constrained battery capacity, but it is a time‐consuming process. In this article, an effective charge scheduling model is devised using the fractional social sea lion optimization (Fr‐SSLO) algorithm. At first, IoEV network is simulated along with charge station and electric vehicle location. Furthermore, multi aggregator‐based charge scheduling is done for increasing the profit and amount of scheduled electric vehicles. Then, routing is performed based on developed Fr‐SSLO algorithm. Moreover, several fitness measures, including distance, energy and variable energy purchase are included. Here, the devised Fr‐SSLO model is designed by integrating fractional calculus (FC) and sea lion optimization (SLnO) technique along with SOA. After the completion of routing process, charge scheduling is performed based on developed Fr‐SSLO approach. Moreover, various fitness functions are also considered for computing better performance.
AbstractList Summary In modern days, electric vehicles are quickly industrialized as well as their penetration is also increased highly, which brings more challenges for the power system. The electric vehicle charge scheduling process is vital to encourage the daily usage of the electric vehicle. However, irregular charging methods for electric vehicles may disturb voltage security areas because of their stochastic characteristics. Moreover, an electric vehicle requires recurrent charging owing to its constrained battery capacity, but it is a time‐consuming process. In this article, an effective charge scheduling model is devised using the fractional social sea lion optimization (Fr‐SSLO) algorithm. At first, IoEV network is simulated along with charge station and electric vehicle location. Furthermore, multi aggregator‐based charge scheduling is done for increasing the profit and amount of scheduled electric vehicles. Then, routing is performed based on developed Fr‐SSLO algorithm. Moreover, several fitness measures, including distance, energy and variable energy purchase are included. Here, the devised Fr‐SSLO model is designed by integrating fractional calculus (FC) and sea lion optimization (SLnO) technique along with SOA. After the completion of routing process, charge scheduling is performed based on developed Fr‐SSLO approach. Moreover, various fitness functions are also considered for computing better performance.
In modern days, electric vehicles are quickly industrialized as well as their penetration is also increased highly, which brings more challenges for the power system. The electric vehicle charge scheduling process is vital to encourage the daily usage of the electric vehicle. However, irregular charging methods for electric vehicles may disturb voltage security areas because of their stochastic characteristics. Moreover, an electric vehicle requires recurrent charging owing to its constrained battery capacity, but it is a time‐consuming process. In this article, an effective charge scheduling model is devised using the fractional social sea lion optimization (Fr‐SSLO) algorithm. At first, IoEV network is simulated along with charge station and electric vehicle location. Furthermore, multi aggregator‐based charge scheduling is done for increasing the profit and amount of scheduled electric vehicles. Then, routing is performed based on developed Fr‐SSLO algorithm. Moreover, several fitness measures, including distance, energy and variable energy purchase are included. Here, the devised Fr‐SSLO model is designed by integrating fractional calculus (FC) and sea lion optimization (SLnO) technique along with SOA. After the completion of routing process, charge scheduling is performed based on developed Fr‐SSLO approach. Moreover, various fitness functions are also considered for computing better performance.
Author Suresh, Pandian
Belsam Jeba Ananth, Manasea Selvin
Ramya, Ganesan
Shobana, Selvaraj
Author_xml – sequence: 1
  givenname: Pandian
  orcidid: 0000-0002-9725-2452
  surname: Suresh
  fullname: Suresh, Pandian
  email: psuresh.ee1@gmail.com
  organization: St. Joseph College of Engineering, Sriperumbudur
– sequence: 2
  givenname: Selvaraj
  orcidid: 0000-0002-9403-5866
  surname: Shobana
  fullname: Shobana, Selvaraj
  organization: Prathyusha Engineering College
– sequence: 3
  givenname: Ganesan
  surname: Ramya
  fullname: Ramya, Ganesan
  organization: SRM Institute of Science And Technology, Ramapuram Campus
– sequence: 4
  givenname: Manasea Selvin
  surname: Belsam Jeba Ananth
  fullname: Belsam Jeba Ananth, Manasea Selvin
  organization: SRM Institute of Science and Technology, Kattankulathur
BookMark eNp1kNtKw0AQhhepYFsFHyHgjTepe8jxUkq1QkEv9DrsYZJu2SZxd6NUEHwEn9EnMW3FC6kwMDP83z8D_wgN6qYGhM4JnhCM6ZVsYZImcXSEhiRmNMQJiwa_M01O0Mi5FcaEYEaG6H2-EVaroGm9Xus37nVTB1BzYUAF6854_fXxyavKQsV9Y_tFcNdLcsltBYGTS1Cd0XUVNGUABqS3WgYvsNTSQKDrvjzYGvwh3Z2i45IbB2c_fYyebmaP03m4uL-9m14vQklzFoVKYsU5i0UJEWSM5DKDKAUqKFOEgxJRDoIBqDwVSSLjuIwoZUmecMXKFEo2Rhf7u61tnjtwvlg1na37lwVNs5zEWU6TnprsKWkb5yyUhdR-l4i3XJuC4GIbcdFHXGwj7g2Xfwyt1WtuN4fQcI--agObf7li-jDb8d-ZtZIP
CitedBy_id crossref_primary_10_1007_s00521_024_09530_3
Cites_doi 10.1016/j.epsr.2016.09.018
10.1109/TII.2017.2778762
10.1002/jnm.2764
10.1016/j.omega.2016.04.005
10.1016/j.epsr.2017.02.019
10.1007/978-3-319-74461-2_3
10.1093/comjnl/bxz164
10.1007/s11276-020-02352-w
10.1016/j.energy.2019.02.184
10.1109/TTE.2017.2753403
10.1016/j.asoc.2018.07.008
10.1093/comjnl/bxaa173
10.1109/TIA.2020.3017563
10.1016/j.apenergy.2016.05.034
10.1155/2014/396529
10.1109/TSG.2012.2217761
10.46253/jcmps.v4i1.a5
10.1109/JIOT.2018.2876004
10.1016/j.egypro.2017.12.641
10.1016/j.egypro.2015.07.667
10.1016/j.rser.2014.12.036
10.1109/TSG.2011.2151888
10.1109/COMST.2016.2518628
10.1109/TIA.2020.2990096
10.1109/TSG.2020.3000850
10.1109/ICPADS.2011.42
10.1002/2050-7038.12593
10.1109/TITS.2018.2876287
10.1109/TSG.2018.2817067
10.1016/j.scs.2021.102820
ContentType Journal Article
Copyright 2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.7654
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_7654
CPE7654
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2934-dc0daa35bfe4e8319c8e47e2b23d1aedb49eb3eed97b66c55f4223696ad3f7ef3
IEDL.DBID DRFUL
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000937575600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sun Nov 09 07:03:18 EST 2025
Sat Nov 29 03:49:53 EST 2025
Tue Nov 18 22:27:28 EST 2025
Wed Jan 22 16:22:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2934-dc0daa35bfe4e8319c8e47e2b23d1aedb49eb3eed97b66c55f4223696ad3f7ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9403-5866
0000-0002-9725-2452
PQID 2789158926
PQPubID 2045170
PageCount 20
ParticipantIDs proquest_journals_2789158926
crossref_citationtrail_10_1002_cpe_7654
crossref_primary_10_1002_cpe_7654
wiley_primary_10_1002_cpe_7654_CPE7654
PublicationCentury 2000
PublicationDate 25 April 2023
PublicationDateYYYYMMDD 2023-04-25
PublicationDate_xml – month: 04
  year: 2023
  text: 25 April 2023
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 69
2021; 4
2017; 4
2020; 63
2015; 73
2019; 10
2017; 67
2020; 56
2022; 21
2022; 65
2020; 33
2020; 11
2016; 18
2018; 20
2013; 9
2018; 6
2012; 3
2017; 14
2020; 30
2015; 44
2018
2016; 177
2020; 26
2017; 142
2014
2017; 143
2018; 71
2018; 10
2017; 147
2019; 175
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_33_1
Masadeh R (e_1_2_9_35_1) 2019; 10
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_20_1
Xu S (e_1_2_9_21_1) 2013; 9
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
Poier T (e_1_2_9_12_1) 2022; 21
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Susan Augustine A (e_1_2_9_18_1) 2020; 33
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 10
  issue: 5
  year: 2019
  article-title: Sea lion optimization algorithm
  publication-title: Int J Adv Comput Sci Appl
– start-page: 28
  year: 2018
  end-page: 36
– volume: 69
  year: 2021
  article-title: Intelligent charge scheduling and eco‐routing mechanism for electric vehicles: a multi‐objective heuristic approach
  publication-title: Sustain Cities Soc
– volume: 56
  start-page: 5811
  issue: 5
  year: 2020
  end-page: 5823
  article-title: Optimal electric vehicle charging strategy with Markov decision process and reinforcement learning technique
  publication-title: IEEE Trans Ind Appl
– volume: 30
  issue: 11
  year: 2020
  article-title: Social optimization algorithm with application to economic dispatch problem
  publication-title: Int Trans Electr Energy Syst
– volume: 9
  year: 2013
  article-title: Ant‐based swarm algorithm for charging coordination of electric vehicles
  publication-title: Int J Dis Sens Netw
– volume: 65
  start-page: 1225
  year: 2022
  end-page: 1241
  article-title: Object detection and localization using sparse‐FCM and optimization‐driven deep convolutional neural network
  publication-title: Comput J
– volume: 67
  start-page: 115
  year: 2017
  end-page: 122
  article-title: A linear programming based heuristic algorithm for charge and discharge scheduling of electric vehicles in a building energy management system
  publication-title: Omega
– volume: 3
  start-page: 308
  year: 2012
  end-page: 315
  article-title: Performance evaluation of an EDA‐based large‐scale plug‐in hybrid electric vehicle charging algorithm
  publication-title: IEEE Trans Smart Grid
– volume: 71
  start-page: 538
  year: 2018
  end-page: 552
  article-title: Dynamic resource allocation for parking lot electric vehicle recharging using heuristic fuzzy particle swarm optimization algorithm
  publication-title: Appl Soft Comput
– volume: 20
  start-page: 3386
  issue: 9
  year: 2018
  end-page: 3396
  article-title: Optimal charging scheduling by pricing for EV charging station with dual charging modes
  publication-title: IEEE Trans Intell Transp Syst
– volume: 18
  start-page: 1500
  issue: 2
  year: 2016
  end-page: 1517
  article-title: Smart charging for electric vehicles: a survey from the algorithmic perspective
  publication-title: IEEE Commun Surv Tutor
– volume: 63
  start-page: 900
  issue: 6
  year: 2020
  end-page: 912
  article-title: MapReduce and optimized deep network for rainfall prediction in agriculture
  publication-title: Comput J
– volume: 6
  start-page: 136
  issue: 1
  year: 2018
  end-page: 148
  article-title: Distributed routing and charging scheduling optimization for internet of electric vehicles
  publication-title: IEEE Internet Things J
– volume: 4
  start-page: 76
  issue: 1
  year: 2017
  end-page: 88
  article-title: Smart charging strategy for electric vehicle charging stations
  publication-title: IEEE Trans Transp Electrification
– volume: 142
  start-page: 351
  year: 2017
  end-page: 361
  article-title: Metaheuristic optimization algorithms for the optimal coordination of plug‐in electric vehicle charging in distribution systems with distributed generation
  publication-title: Electr Pow Syst Res
– volume: 11
  start-page: 4949
  issue: 6
  year: 2020
  end-page: 4959
  article-title: Charge scheduling of electric vehicles in smart parking‐lot under future demands uncertainty
  publication-title: IEEE Trans Smart Grid
– volume: 177
  start-page: 354
  year: 2016
  end-page: 365
  article-title: A multi‐agent based scheduling algorithm for adaptive electric vehicles charging
  publication-title: Appl Energy
– volume: 21
  start-page: 1
  issue: 3
  year: 2022
  end-page: 18
  article-title: How higher‐order personal values affect the purchase of electricity storage‐evidence from the German photovoltaic market
  publication-title: J Consum Behav
– volume: 33
  issue: 6
  year: 2020
  article-title: A modified rider optimization algorithm for multihop routing in WSN
  publication-title: Int J Numer Model Electron Netw Devices Fields
– volume: 175
  start-page: 113
  year: 2019
  end-page: 122
  article-title: Joint routing and scheduling for electric vehicles in smart grids with V2G
  publication-title: Energy
– volume: 14
  start-page: 2894
  issue: 7
  year: 2017
  end-page: 2902
  article-title: Multiaggregator collaborative electric vehicle charge scheduling under variable energy purchase and EV cancelation events
  publication-title: IEEE Trans Industri Inform
– volume: 143
  start-page: 15
  year: 2017
  end-page: 20
  article-title: A framework for electric vehicle (EV) charging in Singapore
  publication-title: Energy Procedia
– volume: 10
  start-page: 3020
  issue: 3
  year: 2018
  end-page: 3030
  article-title: Electric vehicle charge scheduling mechanism to maximize cost efficiency and user convenience
  publication-title: IEEE Trans Smart Grid
– volume: 3
  start-page: 1779
  issue: 4
  year: 2012
  end-page: 1789
  article-title: Decentralized plug‐in electric vehicle charging selection algorithm in power systems
  publication-title: IEEE Trans Smart Grid
– volume: 73
  start-page: 173
  year: 2015
  end-page: 181
  article-title: Online optimal charging strategy for electric vehicles
  publication-title: Energy Procedia
– volume: 4
  start-page: 35
  issue: 1
  year: 2021
  end-page: 41
  article-title: Integrating renewable energy sources in electric vehicles via optimization assisted model
  publication-title: J Comput Mech Power Syst Control
– volume: 26
  start-page: 5113
  year: 2020
  end-page: 5132
  article-title: Taylor kernel fuzzy C‐means clustering algorithm for trust and energy‐aware cluster head selection in wireless sensor networks
  publication-title: Wirel Netw
– volume: 147
  start-page: 31
  year: 2017
  end-page: 41
  article-title: Commercial electric vehicle fleet scheduling for secondary frequency control
  publication-title: Electr Pow Syst Res
– volume: 44
  start-page: 473
  year: 2015
  end-page: 495
  article-title: GHG footprint of major cities in India
  publication-title: Renew Sustain Energy Rev
– volume: 56
  start-page: 6914
  issue: 6
  year: 2020
  end-page: 6924
  article-title: Electric vehicle driver response evaluation in multiaggregator charging management with EV routing
  publication-title: IEEE Trans Ind Appl
– year: 2014
  article-title: A clustering approach for the‐diversity model in privacy preserving data mining using fractional calculus‐bacterial foraging optimization algorithm
  publication-title: Adv Comput Eng
– ident: e_1_2_9_25_1
  doi: 10.1016/j.epsr.2016.09.018
– ident: e_1_2_9_31_1
– ident: e_1_2_9_4_1
  doi: 10.1109/TII.2017.2778762
– volume: 33
  issue: 6
  year: 2020
  ident: e_1_2_9_18_1
  article-title: A modified rider optimization algorithm for multihop routing in WSN
  publication-title: Int J Numer Model Electron Netw Devices Fields
  doi: 10.1002/jnm.2764
– ident: e_1_2_9_23_1
  doi: 10.1016/j.omega.2016.04.005
– ident: e_1_2_9_22_1
  doi: 10.1016/j.epsr.2017.02.019
– ident: e_1_2_9_8_1
  doi: 10.1007/978-3-319-74461-2_3
– ident: e_1_2_9_14_1
  doi: 10.1093/comjnl/bxz164
– ident: e_1_2_9_19_1
  doi: 10.1007/s11276-020-02352-w
– ident: e_1_2_9_30_1
  doi: 10.1016/j.energy.2019.02.184
– ident: e_1_2_9_7_1
  doi: 10.1109/TTE.2017.2753403
– ident: e_1_2_9_26_1
  doi: 10.1016/j.asoc.2018.07.008
– ident: e_1_2_9_17_1
  doi: 10.1093/comjnl/bxaa173
– volume: 9
  year: 2013
  ident: e_1_2_9_21_1
  article-title: Ant‐based swarm algorithm for charging coordination of electric vehicles
  publication-title: Int J Dis Sens Netw
– ident: e_1_2_9_29_1
  doi: 10.1109/TIA.2020.3017563
– ident: e_1_2_9_16_1
  doi: 10.1016/j.apenergy.2016.05.034
– ident: e_1_2_9_10_1
– ident: e_1_2_9_34_1
  doi: 10.1155/2014/396529
– ident: e_1_2_9_13_1
  doi: 10.1109/TSG.2012.2217761
– ident: e_1_2_9_15_1
  doi: 10.46253/jcmps.v4i1.a5
– ident: e_1_2_9_11_1
  doi: 10.1109/JIOT.2018.2876004
– ident: e_1_2_9_6_1
  doi: 10.1016/j.egypro.2017.12.641
– ident: e_1_2_9_20_1
  doi: 10.1016/j.egypro.2015.07.667
– ident: e_1_2_9_3_1
  doi: 10.1016/j.rser.2014.12.036
– ident: e_1_2_9_24_1
  doi: 10.1109/TSG.2011.2151888
– ident: e_1_2_9_5_1
  doi: 10.1109/COMST.2016.2518628
– ident: e_1_2_9_27_1
  doi: 10.1109/TIA.2020.2990096
– ident: e_1_2_9_28_1
  doi: 10.1109/TSG.2020.3000850
– ident: e_1_2_9_32_1
  doi: 10.1109/ICPADS.2011.42
– ident: e_1_2_9_36_1
  doi: 10.1002/2050-7038.12593
– ident: e_1_2_9_9_1
  doi: 10.1109/TITS.2018.2876287
– ident: e_1_2_9_33_1
  doi: 10.1109/TSG.2018.2817067
– ident: e_1_2_9_2_1
  doi: 10.1016/j.scs.2021.102820
– volume: 10
  issue: 5
  year: 2019
  ident: e_1_2_9_35_1
  article-title: Sea lion optimization algorithm
  publication-title: Int J Adv Comput Sci Appl
– volume: 21
  start-page: 1
  issue: 3
  year: 2022
  ident: e_1_2_9_12_1
  article-title: How higher‐order personal values affect the purchase of electricity storage‐evidence from the German photovoltaic market
  publication-title: J Consum Behav
SSID ssj0011031
Score 2.3597116
Snippet Summary In modern days, electric vehicles are quickly industrialized as well as their penetration is also increased highly, which brings more challenges for...
In modern days, electric vehicles are quickly industrialized as well as their penetration is also increased highly, which brings more challenges for the power...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Charging
charging scheduling
Electric charge
Electric vehicles
Fitness
Fractional calculus
Optimization
Route planning
Scheduling
sea lion optimization algorithm
social optimization algorithm
Title Hybrid optimization enabled multi‐aggregator‐based charge scheduling of electric vehicle in internet of electric vehicles
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7654
https://www.proquest.com/docview/2789158926
Volume 35
WOSCitedRecordID wos000937575600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwED90-uCL_8XplAiiT3VtmqTNo8wNH0REFHwrbXKdA93GNgUfBD-Cn9FPYpK2m4KC4FMpTdqSu8vdJbnfD-DQ5MUhGkfqceSxSVBC5UmhI7fJGwcijQXLHNlEdHkZ393Jq_JUpa2FKfAhpgtu1jLcfG0NPM3GzRloqBriSSQ4m4cFatSW1WDh7LpzezHdQ7AEBgVaKvV8E7dX0LM-bVZ9vzujWYT5NU51jqaz8p9fXIXlMrwkp4U-rMEc9tdhpaJuIKUlb8Dr-Yst1SIDM2M8lqWYBF0dlSbukOHH23vaNcl412bl5sa6O00csBISkxIbF2Ur2ckgJwWVTk-RZ7y3nyW9Pum5lUac_PR8vAm3nfZN69wrmRg8ZcIB5mnl6zQNeZYjw9hYrYqRRUgzGuogRZ0xaZJy425llAmhOM-ZCTuEFKkO8wjzcAtq_UEft4FIJXOfIyqfKkYxizHKUdgXBjnXUtbhuBJJokqYcsuW8ZAUAMs0MaOa2FGtw8G05bCA5vihTaOSalIa5zixxb8BjyUVdThy8vu1f9K6atvrzl8b7sKSJaS3-02UN6A2GT3hHiyq50lvPNovVfQTY3DvwA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwED90Cvrif3H-jSD6VNelSdrgk6hj4hwiCr6VNrnqQDdxU_BB8CP4Gf0kJmk7FRQEn0pp0obcXe4u6f1-AFsmLw7QOFKPI49MghIoTwodukPeqC6SSLDUkU2E7XZ0dSXPRmCvrIXJ8SGGG27WMtx6bQ3cbkjXPlFD1T3uhoKzURhjRot4BcYOzxuXreEhgmUwyOFSqeebwL3EnvVprez73Rt9hphfA1XnaRrT_xrjDEwVASbZzzViFkawOwfTJXkDKWx5Hl6az7ZYi_TMmnFXFGMSdJVUmrjfDN9f35Jrk45f27zc3FiHp4mDVkJikmLjpGwtO-llJCfT6SjyhDf2s6TTJR2314iDn573F-CycXRx0PQKLgZPmYCAeVr5OkkCnmbIMDJ2qyJkIdKUBrqeoE6ZNGm5cbgyTIVQnGfMBB5CikQHWYhZsAiVbq-LS0CkkpnPEZVPFaOYRhhmKOwL6xnXUlZhp5RJrAqgcsuXcRvnEMs0NrMa21mtwuaw5X0OzvFDm9VSrHFhnv3Ylv_WeSSpqMK2E-Cv_eODsyN7Xf5rww2YaF6ctuLWcftkBSYtPb09faJ8FSqDh0dcg3H1NOj0H9YLff0AqpTzsA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED-6doy9rO22svSvCqN98mrLkmyxp9IkpDSEUBbIm7GlUxvoktBkhT4M-hH6GftJJsl22kIHhT4Z45MtJJ3uTuf7_QC-27g4RmtIA448tQFKrAIpdOKTvGkk8lSwwpNNJL1eOhzK_hL8rGthSnyIxYGb0wy_XzsFx6k2R4-ooWqKPxLB2TtYYVwKq5UrzfP2oLtIIjgGgxIulQahddxr7NmQHtVtn1ujRxfzqaPqLU179U19XINPlYNJjssVsQ5LOP4MqzV5A6l0-Qv87dy6Yi0ysXvG76oYk6CvpNLE_2b4cHefX9hw_MLF5fbGGTxNPLQSEhsUWyPlatnJxJCSTGekyA1eus-S0ZiM_Fkjzl96PvsKg3br10knqLgYAmUdAhZoFeo8j3lhkGFq9ValyBKkBY11lKMumLRhuTW4MimEUJwbZh0PIUWuY5OgiTdgeTwZ4zcgUkkTckQVUsUoFikmBoV7YWS4lrIBh_WcZKoCKnd8GVdZCbFMMzuqmRvVBuwvJKclOMcLMtv1tGaVes4yV_4b8VRS0YADP4H_bZ-d9FvuuvlawT340G-2s-5p72wLPjp2epd8onwblufXf3AH3qub-Wh2vVst139Kg_Mr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+optimization+enabled+multi%E2%80%90aggregator%E2%80%90based+charge+scheduling+of+electric+vehicle+in+internet+of+electric+vehicles&rft.jtitle=Concurrency+and+computation&rft.au=Suresh%2C+Pandian&rft.au=Shobana%2C+Selvaraj&rft.au=Ramya%2C+Ganesan&rft.au=Belsam+Jeba+Ananth%2C+Manasea+Selvin&rft.date=2023-04-25&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=35&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.7654&rft.externalDBID=10.1002%252Fcpe.7654&rft.externalDocID=CPE7654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon