Fast optimization of sparse antenna array using numerical Green's function and genetic algorithm

A single‐element antenna is unfit for application in most wireless systems and an alternative is an array of antenna. The desire to reduce weight and cost of antenna arrays gave rise to sparse arrays. The design of a sparse antenna array requires an optimization process, which is time‐consuming for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of numerical modelling Ročník 33; číslo 4
Hlavní autoři: Raji, Mordecai F., Zhao, Huapeng, Monday, Happy N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis Wiley Subscription Services, Inc 01.07.2020
Témata:
ISSN:0894-3370, 1099-1204
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A single‐element antenna is unfit for application in most wireless systems and an alternative is an array of antenna. The desire to reduce weight and cost of antenna arrays gave rise to sparse arrays. The design of a sparse antenna array requires an optimization process, which is time‐consuming for large arrays. In order to accelerate the optimization process, a method combining the numerical Green's function (NGF) and genetic algorithm (GA) is presented in this paper. In the proposed method, binary coding is applied to describe the status of antenna elements, and GA optimization is performed to sparsify the array subject to constraint on the peak side lobe level (PSLL). The PSLL is calculated efficiently by the NGF. Simulation results are presented to illustrate the advantage of the proposed method. It is shown that the proposed method significantly reduces the optimization time.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0894-3370
1099-1204
DOI:10.1002/jnm.2544