A new hierarchy framework for feature engineering through multi‐objective evolutionary algorithm in text classification

Summary Sentiment classification is a field of sentiment analysis concerned with analyzing opinions, emotions, evaluations, and attitudes regarding a special topic like a product, an organization, a person, or an incident. With the growth of user‐generated content on the Web, this field gained great...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation Vol. 34; no. 3
Main Authors: Asgarnezhad, Razieh, Monadjemi, S. Amirhassan, Aghaei, Mohammadreza Soltan
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.02.2022
Wiley Subscription Services, Inc
Subjects:
ISSN:1532-0626, 1532-0634
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Sentiment classification is a field of sentiment analysis concerned with analyzing opinions, emotions, evaluations, and attitudes regarding a special topic like a product, an organization, a person, or an incident. With the growth of user‐generated content on the Web, this field gained great importance in online reviews. With a wide range of reviews, customers cannot read all reviews. Considering the increasing rate of electronic documents and the urgent need manually mine for keywords that are hard and time‐consuming, doing the same automatically is of high demand. A new framework proposed here to mine and classify users' comments based on mining keywords by applying the sequence pattern mining through the Separation‐Power concept, a multi‐objective evolutionary algorithm based on decomposition with four objectives, and a neural network as the final classifier. Some modifications are made on multi‐objective evolutionary algorithm based on decomposition and Apriori algorithms to improve the text classification efficiency. To evaluate the proposed framework, three datasets applied; which compared with the two methods to measure accuracy, precision, recall, and error‐index. The results indicate that this framework provides a better outcome than its counterparts with 99.45 precision, 99.34 accuracy, 99.48 recall, and 99.28% f‐measure.
AbstractList Sentiment classification is a field of sentiment analysis concerned with analyzing opinions, emotions, evaluations, and attitudes regarding a special topic like a product, an organization, a person, or an incident. With the growth of user‐generated content on the Web, this field gained great importance in online reviews. With a wide range of reviews, customers cannot read all reviews. Considering the increasing rate of electronic documents and the urgent need manually mine for keywords that are hard and time‐consuming, doing the same automatically is of high demand. A new framework proposed here to mine and classify users' comments based on mining keywords by applying the sequence pattern mining through the Separation‐Power concept, a multi‐objective evolutionary algorithm based on decomposition with four objectives, and a neural network as the final classifier. Some modifications are made on multi‐objective evolutionary algorithm based on decomposition and Apriori algorithms to improve the text classification efficiency. To evaluate the proposed framework, three datasets applied; which compared with the two methods to measure accuracy, precision, recall, and error‐index. The results indicate that this framework provides a better outcome than its counterparts with 99.45 precision, 99.34 accuracy, 99.48 recall, and 99.28% f‐measure.
Summary Sentiment classification is a field of sentiment analysis concerned with analyzing opinions, emotions, evaluations, and attitudes regarding a special topic like a product, an organization, a person, or an incident. With the growth of user‐generated content on the Web, this field gained great importance in online reviews. With a wide range of reviews, customers cannot read all reviews. Considering the increasing rate of electronic documents and the urgent need manually mine for keywords that are hard and time‐consuming, doing the same automatically is of high demand. A new framework proposed here to mine and classify users' comments based on mining keywords by applying the sequence pattern mining through the Separation‐Power concept, a multi‐objective evolutionary algorithm based on decomposition with four objectives, and a neural network as the final classifier. Some modifications are made on multi‐objective evolutionary algorithm based on decomposition and Apriori algorithms to improve the text classification efficiency. To evaluate the proposed framework, three datasets applied; which compared with the two methods to measure accuracy, precision, recall, and error‐index. The results indicate that this framework provides a better outcome than its counterparts with 99.45 precision, 99.34 accuracy, 99.48 recall, and 99.28% f‐measure.
Author Monadjemi, S. Amirhassan
Asgarnezhad, Razieh
Aghaei, Mohammadreza Soltan
Author_xml – sequence: 1
  givenname: Razieh
  orcidid: 0000-0002-2563-1007
  surname: Asgarnezhad
  fullname: Asgarnezhad, Razieh
  organization: Islamic Azad University
– sequence: 2
  givenname: S. Amirhassan
  orcidid: 0000-0002-8094-2449
  surname: Monadjemi
  fullname: Monadjemi, S. Amirhassan
  email: sleam@nus.edu.sg, monadjemi@eng.ui.ac.ir
  organization: University of Isfahan
– sequence: 3
  givenname: Mohammadreza Soltan
  orcidid: 0000-0002-2930-9066
  surname: Aghaei
  fullname: Aghaei, Mohammadreza Soltan
  organization: Islamic Azad University
BookMark eNp10LtOwzAUBmALFYlSkHgESywsKb6lTcaqKhepEgwwR45z3LikdnGclmw8As_Ik5C2iAHBdDx8v338n6KedRYQuqBkSAlh12oNw1GciiPUpzFnERlx0fs5s9EJOq3rJSGUEk77qJ1gC1tcGvDSq7LF2ssVbJ1_wdp5rEGGxgMGuzAWwBu7wKH0rlmUeNVUwXy-f7h8CSqYTac2rmqCcVb6Fstq4bwJ5QobiwO8BawqWddGGyV35gwda1nVcP49B-j5ZvY0vYvmD7f308k8UizlIkqpHrNUFEB1ATxnXMuYj1UuQOaSCp4kSrOYSS5iGAtFdSoYLYROSKKKGDQfoMvDvWvvXhuoQ7Z0jbfdkxkb0TGPCRFJp4YHpbyraw86Uybs9wxemiqjJNvVm3X1Zrt6u8DVr8Dam1X38b9odKBbU0H7r8umj7O9_wKSBo9-
CitedBy_id crossref_primary_10_7717_peerj_cs_1190
crossref_primary_10_1007_s42044_022_00105_w
crossref_primary_10_1007_s12065_023_00887_3
Cites_doi 10.1007/s00500-016-2093-2
10.3115/v1/P14-1146
10.1145/1183614.1183625
10.1145/1014052.1014073
10.1016/j.dss.2013.09.004
10.1016/j.eswa.2017.09.051
10.1016/j.dss.2014.07.003
10.1109/4235.996017
10.1016/j.dss.2016.11.001
10.1561/1500000011
10.1016/j.ipm.2015.03.002
10.1109/TEVC.2007.892759
10.1007/s11280-015-0381-x
10.1109/TEVC.2008.925798
10.1016/j.ipm.2017.02.008
10.1109/TR.2019.2954894
10.1016/j.asoc.2012.07.027
10.1007/s00500-016-2331-7
10.1016/j.asoc.2016.11.022
10.1016/j.aci.2017.03.001
10.1016/j.knosys.2016.06.009
10.1016/j.asoc.2019.105836
10.1109/ICCMC.2019.8819770
10.1016/j.ipm.2017.02.004
10.3115/v1/W14-2621
10.1007/s11227-020-03490-w
10.1145/775152.775226
10.1145/1645953.1646003
10.1109/TCYB.2015.2403849
10.1016/j.csl.2013.04.001
10.1007/978-3-319-06608-0_4
10.1007/s13278-011-0023-y
10.18653/v1/S17-2088
10.1007/978-981-10-3874-7_66
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.6594
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_6594
CPE6594
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AFZJQ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2934-91f7294de1fde3b23fa537cb4eaba14388cf252a345e74c1f9421d4f808cd5ef3
IEDL.DBID DRFUL
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692019500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Mon Jul 14 07:43:41 EDT 2025
Sat Nov 29 01:41:26 EST 2025
Tue Nov 18 22:28:47 EST 2025
Wed Jan 22 16:26:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2934-91f7294de1fde3b23fa537cb4eaba14388cf252a345e74c1f9421d4f808cd5ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2930-9066
0000-0002-8094-2449
0000-0002-2563-1007
PQID 2617350048
PQPubID 2045170
PageCount 31
ParticipantIDs proquest_journals_2617350048
crossref_citationtrail_10_1002_cpe_6594
crossref_primary_10_1002_cpe_6594
wiley_primary_10_1002_cpe_6594_CPE6594
PublicationCentury 2000
PublicationDate 1 February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 1 February 2022
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 20
2011; 1
2020; 86
2012
2011
2016; 108
2002; 6
2009
2008
2016; 52
2020; 14
2008; 13
2006
2016; 94
1999; 63
2014; 28
2002
2008; 2
2018; 22
2007; 11
2014; 66
2020; 8
2015; 46
2017; 50
2017; 53
2021; 77
2013; 13
2002; 103
2019; 69
2018; 92
2016; 20
2014; 57
2017
2014; 8443
2007; 5
2014
2013
2007; 1
2006; 500
2018; 11
2018; 14
Zitzler E (e_1_2_9_21_1) 1999; 63
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Kumar P (e_1_2_9_51_1) 2012
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
Teng S (e_1_2_9_53_1) 2013
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
Asgarnezhad R (e_1_2_9_16_1) 2020; 14
e_1_2_9_8_1
Asgarnezhad R (e_1_2_9_17_1) 2020; 8
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
Alpaydin E (e_1_2_9_31_1) 2014
e_1_2_9_28_1
e_1_2_9_47_1
Asgarnezhad R (e_1_2_9_20_1) 2020; 8
Trupthi M (e_1_2_9_44_1) 2018; 11
e_1_2_9_34_1
Pang B (e_1_2_9_11_1) 2002
e_1_2_9_13_1
Ziztler E (e_1_2_9_25_1) 2002; 103
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_36_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_5_1
Han J (e_1_2_9_32_1) 2006
e_1_2_9_3_1
Schütze H (e_1_2_9_49_1) 2008
e_1_2_9_9_1
Coello CAC (e_1_2_9_19_1) 2007
Cha S‐H (e_1_2_9_30_1) 2007; 1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 11
  start-page: 100
  issue: 3
  year: 2018
  end-page: 108
  article-title: Possibilistic fuzzy C‐means topic modelling for twitter sentiment analysis
  publication-title: Int J Intell Eng Syst
– volume: 53
  start-page: 764
  issue: 4
  year: 2017
  end-page: 779
  article-title: Twitter sentiment analysis using hybrid cuckoo search method
  publication-title: Inf Process Manag
– volume: 1
  start-page: 301
  issue: 4
  year: 2011
  end-page: 320
  article-title: Social opinion mining for supporting buyers' complex decision making: exploratory user study and algorithm comparison
  publication-title: Social Netw Anal Mining
– volume: 14
  start-page: 111
  issue: 3
  year: 2020
  end-page: 123
  article-title: FAHPBEP: a fuzzy analytic hierarchy process framework in text classification
  publication-title: Majlesi J Electr Eng
– volume: 103
  start-page: 95
  year: 2002
  end-page: 100
  article-title: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Evol Methods Design Optim Control
– volume: 13
  start-page: 128
  issue: 1
  year: 2013
  end-page: 148
  article-title: A study of two penalty‐parameterless constraint handling techniques in the framework of MOEA/D
  publication-title: Appl Soft Comput
– volume: 52
  start-page: 46
  issue: 1
  year: 2016
  end-page: 60
  article-title: Multi‐lingual opinion mining on YouTube
  publication-title: Inf Process Manag
– start-page: 693
  year: 2017
  end-page: 703
– start-page: 79
  year: 2002
  end-page: 86
  article-title: Thumbs up? sentiment classification using machine learning techniques
  publication-title: Assoc Comput Linguist
– volume: 28
  start-page: 93
  issue: 1
  year: 2014
  end-page: 107
  article-title: Ranked wordnet graph for sentiment polarity classification in twitter
  publication-title: Comput Speech Lang
– volume: 5
  year: 2007
– volume: 50
  start-page: 135
  year: 2017
  end-page: 141
  article-title: A sentiment classification model based on multiple classifiers
  publication-title: Appl Soft Comput
– volume: 14
  start-page: 55
  issue: 1
  year: 2018
  end-page: 64
  article-title: Entropy based classifier for cross‐domain opinion mining
  publication-title: Appl Comput Inform
– volume: 53
  start-page: 814
  issue: 4
  year: 2017
  end-page: 833
  article-title: A hybrid ensemble pruning approach based on consensus clustering and multi‐objective evolutionary algorithm for sentiment classification
  publication-title: Inf Process Manag
– start-page: 151
  year: 2011
  end-page: 160
– start-page: 375
  year: 2009
  end-page: 384
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  end-page: 731
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evol Comput
– volume: 500
  start-page: 105
  year: 2006
  end-page: 150
– volume: 69
  start-page: 382
  issue: 1
  year: 2019
  end-page: 400
  article-title: Minimal path‐based reliability model for wireless sensor networks with multistate nodes
  publication-title: IEEE Trans Reliab
– year: 2014
– volume: 94
  start-page: 65
  year: 2016
  end-page: 76
  article-title: Adapting sentiment lexicons to domain‐specific social media texts
  publication-title: Decis Support Syst
– volume: 108
  start-page: 42
  year: 2016
  end-page: 49
  article-title: Aspect extraction for opinion mining with a deep convolutional neural network
  publication-title: Knowl Based Syst
– volume: 2
  start-page: 1
  issue: 1–2
  year: 2008
  end-page: 135
  article-title: Opinion mining and sentiment analysis
  publication-title: Found Trends Inf Retr
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA‐II
  publication-title: IEEE Trans Evol Comput
– volume: 8443
  year: 2014
– volume: 8
  start-page: 41
  issue: 1
  year: 2020
  end-page: 52
  article-title: A high‐performance model based on ensembles for twitter sentiment classification
  publication-title: J Electr Comput Eng Innovat (JECEI)
– volume: 57
  start-page: 245
  year: 2014
  end-page: 257
  article-title: TOM: twitter opinion mining framework using hybrid classification scheme
  publication-title: Decis Support Syst
– volume: 86
  year: 2020
  article-title: Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision‐making methods
  publication-title: Appl Soft Comput
– year: 2008
– start-page: 1
  year: 2012
  end-page: 286
  article-title: Pattern discovery using sequence data mining: applications and studies
  publication-title: Inf Sci Ref
– volume: 13
  start-page: 284
  issue: 2
  year: 2008
  end-page: 302
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA‐II
  publication-title: IEEE Trans Evol Comput
– volume: 46
  start-page: 474
  issue: 2
  year: 2015
  end-page: 486
  article-title: Adaptive replacement strategies for MOEA/D
  publication-title: IEEE Trans Cybern
– volume: 77
  start-page: 5806
  issue: 6
  year: 2021
  end-page: 5839
  article-title: An application of MOGW optimization for feature selection in text classification
  publication-title: J Supercomput
– volume: 92
  start-page: 430
  year: 2018
  end-page: 446
  article-title: An improved MOEA/D algorithm for bi‐objective optimization problems with complex Pareto fronts and its application to structural optimization
  publication-title: Expert Syst Appl
– volume: 20
  start-page: 3821
  issue: 10
  year: 2016
  end-page: 3834
  article-title: Particle swarm optimization‐based feature selection in sentiment classification
  publication-title: Soft Comput
– volume: 1
  start-page: 1
  issue: 2
  year: 2007
  article-title: Comprehensive survey on distance/similarity measures between probability density functions
  publication-title: City
– start-page: 43
  year: 2006
  end-page: 50
– volume: 22
  start-page: 253
  issue: 1
  year: 2018
  end-page: 272
  article-title: A stopping criterion for decomposition‐based multi‐objective evolutionary algorithms
  publication-title: Soft Comput
– volume: 66
  start-page: 170
  year: 2014
  end-page: 179
  article-title: Tweet sentiment analysis with classifier ensembles
  publication-title: Decis Support Syst
– volume: 63
  start-page: 1
  year: 1999
  end-page: 134
  article-title: Evolutionary algorithms for multiobjective optimization
  publication-title: Methods Appl
– volume: 8
  start-page: 183
  issue: 2
  year: 2020
  end-page: 192
  article-title: NSE‐PSO: toward an effective model using optimization algorithm and sampling methods for text classification
  publication-title: J Electr Comput Eng Innovat (JECEI).
– volume: 20
  start-page: 135
  issue: 2
  year: 2017
  end-page: 154
  article-title: Aspect term extraction for sentiment analysis in large movie reviews using Gini index feature selection method and SVM classifier
  publication-title: World Wide Web
– year: 2013
– start-page: 1
  year: 2012
  ident: e_1_2_9_51_1
  article-title: Pattern discovery using sequence data mining: applications and studies
  publication-title: Inf Sci Ref
– volume-title: Introduction to Information Retrieval
  year: 2008
  ident: e_1_2_9_49_1
– ident: e_1_2_9_13_1
  doi: 10.1007/s00500-016-2093-2
– ident: e_1_2_9_5_1
  doi: 10.3115/v1/P14-1146
– ident: e_1_2_9_35_1
  doi: 10.1145/1183614.1183625
– volume-title: Introduction to Machine Learning
  year: 2014
  ident: e_1_2_9_31_1
– ident: e_1_2_9_34_1
  doi: 10.1145/1014052.1014073
– ident: e_1_2_9_47_1
– ident: e_1_2_9_2_1
  doi: 10.1016/j.dss.2013.09.004
– ident: e_1_2_9_29_1
  doi: 10.1016/j.eswa.2017.09.051
– ident: e_1_2_9_3_1
  doi: 10.1016/j.dss.2014.07.003
– ident: e_1_2_9_24_1
  doi: 10.1109/4235.996017
– ident: e_1_2_9_15_1
  doi: 10.1016/j.dss.2016.11.001
– ident: e_1_2_9_8_1
  doi: 10.1561/1500000011
– ident: e_1_2_9_37_1
  doi: 10.1016/j.ipm.2015.03.002
– volume: 63
  start-page: 1
  year: 1999
  ident: e_1_2_9_21_1
  article-title: Evolutionary algorithms for multiobjective optimization
  publication-title: Methods Appl
– ident: e_1_2_9_22_1
  doi: 10.1109/TEVC.2007.892759
– ident: e_1_2_9_33_1
  doi: 10.1007/s11280-015-0381-x
– volume: 8
  start-page: 183
  issue: 2
  year: 2020
  ident: e_1_2_9_20_1
  article-title: NSE‐PSO: toward an effective model using optimization algorithm and sampling methods for text classification
  publication-title: J Electr Comput Eng Innovat (JECEI).
– ident: e_1_2_9_23_1
  doi: 10.1109/TEVC.2008.925798
– ident: e_1_2_9_14_1
  doi: 10.1016/j.ipm.2017.02.008
– ident: e_1_2_9_45_1
  doi: 10.1109/TR.2019.2954894
– ident: e_1_2_9_28_1
  doi: 10.1016/j.asoc.2012.07.027
– ident: e_1_2_9_27_1
  doi: 10.1007/s00500-016-2331-7
– volume: 14
  start-page: 111
  issue: 3
  year: 2020
  ident: e_1_2_9_16_1
  article-title: FAHPBEP: a fuzzy analytic hierarchy process framework in text classification
  publication-title: Majlesi J Electr Eng
– ident: e_1_2_9_12_1
  doi: 10.1016/j.asoc.2016.11.022
– volume: 103
  start-page: 95
  year: 2002
  ident: e_1_2_9_25_1
  article-title: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Evol Methods Design Optim Control
– volume: 8
  start-page: 41
  issue: 1
  year: 2020
  ident: e_1_2_9_17_1
  article-title: A high‐performance model based on ensembles for twitter sentiment classification
  publication-title: J Electr Comput Eng Innovat (JECEI)
– ident: e_1_2_9_43_1
  doi: 10.1016/j.aci.2017.03.001
– volume-title: The Calculation of Similarity and Its Application in Data Mining
  year: 2013
  ident: e_1_2_9_53_1
– ident: e_1_2_9_38_1
  doi: 10.1016/j.knosys.2016.06.009
– ident: e_1_2_9_10_1
  doi: 10.1016/j.asoc.2019.105836
– volume: 1
  start-page: 1
  issue: 2
  year: 2007
  ident: e_1_2_9_30_1
  article-title: Comprehensive survey on distance/similarity measures between probability density functions
  publication-title: City
– ident: e_1_2_9_7_1
– ident: e_1_2_9_54_1
– start-page: 79
  year: 2002
  ident: e_1_2_9_11_1
  article-title: Thumbs up? sentiment classification using machine learning techniques
  publication-title: Assoc Comput Linguist
– volume: 11
  start-page: 100
  issue: 3
  year: 2018
  ident: e_1_2_9_44_1
  article-title: Possibilistic fuzzy C‐means topic modelling for twitter sentiment analysis
  publication-title: Int J Intell Eng Syst
– ident: e_1_2_9_40_1
– ident: e_1_2_9_46_1
  doi: 10.1109/ICCMC.2019.8819770
– ident: e_1_2_9_4_1
  doi: 10.1016/j.ipm.2017.02.004
– ident: e_1_2_9_50_1
  doi: 10.3115/v1/W14-2621
– ident: e_1_2_9_18_1
  doi: 10.1007/s11227-020-03490-w
– ident: e_1_2_9_41_1
  doi: 10.1145/775152.775226
– ident: e_1_2_9_36_1
  doi: 10.1145/1645953.1646003
– ident: e_1_2_9_26_1
  doi: 10.1109/TCYB.2015.2403849
– ident: e_1_2_9_6_1
  doi: 10.1016/j.csl.2013.04.001
– start-page: 105
  volume-title: Data Mining: Concepts and Techniques
  year: 2006
  ident: e_1_2_9_32_1
– ident: e_1_2_9_52_1
  doi: 10.1007/978-3-319-06608-0_4
– ident: e_1_2_9_39_1
  doi: 10.1007/s13278-011-0023-y
– ident: e_1_2_9_9_1
– ident: e_1_2_9_42_1
  doi: 10.18653/v1/S17-2088
– ident: e_1_2_9_48_1
  doi: 10.1007/978-981-10-3874-7_66
– volume-title: Evolutionary Algorithms for Solving Multi‐objective Problems
  year: 2007
  ident: e_1_2_9_19_1
SSID ssj0011031
Score 2.3118908
Snippet Summary Sentiment classification is a field of sentiment analysis concerned with analyzing opinions, emotions, evaluations, and attitudes regarding a special...
Sentiment classification is a field of sentiment analysis concerned with analyzing opinions, emotions, evaluations, and attitudes regarding a special topic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Apriori algorithm
Classification
Data mining
Decomposition
Electronic documents
Error analysis
Evaluation
Evolutionary algorithms
feature selection
Genetic algorithms
multi‐objective evolutionary algorithm
Neural networks
Pattern analysis
Recall
Sentiment analysis
sequence pattern mining
Text categorization
text classification
User generated content
Title A new hierarchy framework for feature engineering through multi‐objective evolutionary algorithm in text classification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6594
https://www.proquest.com/docview/2617350048
Volume 34
WOSCitedRecordID wos000692019500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH7RzYMX5ydOp0QQPVW7fKztccwND2MMcbJbSdNEJ7Mb2xzs5k_wN_pLTNp0U1AQPPXyBkLer4f0zfMAnHuc8UAy1-GBLxzdbyMniBR2JFckrgkW41R57qHtdTp-vx907VSleQuT8UMsL9xMZqT12iQ4j6bXK9JQMZZXNRbQdShiHba0AMWbu1avvfyHYAQMMrZU7Lgat-fUsy6-ztd-b0YrhPkVp6aNplX6zxa3YcvCS1TP4mEH1mSyC6VcugHZTN6DRR1pPI2MELaJ9AVS-ZAW0igWKZnyfSK5YitEVtEHpSOIH2_vo-g5K5ZIzm386p0iPnwcTQazpxc0SJAZK0HCAHQzkZQGwT70Ws37xq1jVRgcoaEA1dVQaQBOY1lVsSQRJooz4omISh5xI57uC4UZ5oQy6VFRVQHF1Zgq3_VFzKQiB1BIRok8BCSJK3xFOYk0iGFCBB7njPkepkTVdFssw2XujlBYinKjlDEMM3JlHOoTDc2JluFsaTnOaDl-sKnkHg1tYk5DQ0BPmKlbZbhIfffr-rDRbZrv0V8Nj2ETm8cR6Ux3BQqzyas8gQ0xnw2mk1Mbnp8DrO2k
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFL1oFXTjW6zPCKKrsdM8OjO4KtVScSwiKt0NmUyilTotbS105yf4jX6JyTxaBQXB1WxuIOS-DpmbcwCOHM64J5ltcc8Vlu63oeWFCluSKxJVBItwojz34DvNpttqeTczcJa_hUn5ISYXbiYzknptEtxcSJemrKGiJ08rzKOzMEd1FLECzJ3f1u_9yU8Eo2CQ0qViy9bAPeeetXEpX_u9G00h5legmnSa-vK_9rgCSxnARNU0IlZhRsZrsJyLN6Asl9dhXEUaUSMjhW1ifYxUPqaFNI5FSiaMn0hO-QpRpumDkiHEj7f3bviclkskR1kE660i3nns9tvDpxfUjpEZLEHCQHQzk5SEwQbc1y_uag0r02GwhAYDVNdDpSE4jWRZRZKEmCjOiCNCKnnIjXy6KxRmmBPKpENFWXkUlyOqXNsVEZOKbEIh7sZyC5AktnAV5STUMIYJ4TmcM-Y6mBJV0Y2xCCe5PwKRkZQbrYxOkNIr40CfaGBOtAiHE8teSszxg81u7tIgS81BYCjoCTOVqwjHifN-XR_Ubi7Md_uvhgew0Li79gP_snm1A4vYPJVIJrx3oTDsv8o9mBejYXvQ389i9RMwxvGU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFL1UK-LGt1ifEURXY6d5zANXYh0USylixd2QySRaqdNSa6E7P8Fv9EtM5tEqKAiuZnMDIfd1yNycA3DocsZ9yWyL-56wdL-NLD9S2JJckdgRLMap8txdw202vft7v1WC0-ItTMYPMblwM5mR1muT4LIfq-qUNVT05YnDfDoDZcp8R2dluX4TtBuTnwhGwSCjS8WWrYF7wT1r42qx9ns3mkLMr0A17TTB0r_2uAyLOcBEZ1lErEBJJquwVIg3oDyX12B8hjSiRkYK28T6GKliTAtpHIuUTBk_kZzyFaJc0welQ4gfb--96Ckrl0iO8gjWW0W8-9AbdIaPz6iTIDNYgoSB6GYmKQ2DdWgHF7fnl1auw2AJDQaorodKQ3Aay5qKJYkwUZwRV0RU8ogb-XRPKMwwJ5RJl4qa8imuxVR5tidiJhXZgNmkl8hNQJLYwlOUk0jDGCaE73LOmOdiSpSjG2MFjgt_hCInKTdaGd0wo1fGoT7R0JxoBQ4mlv2MmOMHm53CpWGemi-hoaAnzFSuChylzvt1fXjeujDfrb8a7sN8qx6Ejavm9TYsYPNSIh3w3oHZ4eBV7sKcGA07L4O9PFQ_AdNd8Q8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hierarchy+framework+for+feature+engineering+through+multi%E2%80%90objective+evolutionary+algorithm+in+text+classification&rft.jtitle=Concurrency+and+computation&rft.au=Asgarnezhad%2C+Razieh&rft.au=Monadjemi%2C+S.+Amirhassan&rft.au=Aghaei%2C+Mohammadreza+Soltan&rft.date=2022-02-01&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=3&rft_id=info:doi/10.1002%2Fcpe.6594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_6594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon