A new hierarchy framework for feature engineering through multi‐objective evolutionary algorithm in text classification
Summary Sentiment classification is a field of sentiment analysis concerned with analyzing opinions, emotions, evaluations, and attitudes regarding a special topic like a product, an organization, a person, or an incident. With the growth of user‐generated content on the Web, this field gained great...
Uložené v:
| Vydané v: | Concurrency and computation Ročník 34; číslo 3 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken, USA
John Wiley & Sons, Inc
01.02.2022
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 1532-0626, 1532-0634 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Summary
Sentiment classification is a field of sentiment analysis concerned with analyzing opinions, emotions, evaluations, and attitudes regarding a special topic like a product, an organization, a person, or an incident. With the growth of user‐generated content on the Web, this field gained great importance in online reviews. With a wide range of reviews, customers cannot read all reviews. Considering the increasing rate of electronic documents and the urgent need manually mine for keywords that are hard and time‐consuming, doing the same automatically is of high demand. A new framework proposed here to mine and classify users' comments based on mining keywords by applying the sequence pattern mining through the Separation‐Power concept, a multi‐objective evolutionary algorithm based on decomposition with four objectives, and a neural network as the final classifier. Some modifications are made on multi‐objective evolutionary algorithm based on decomposition and Apriori algorithms to improve the text classification efficiency. To evaluate the proposed framework, three datasets applied; which compared with the two methods to measure accuracy, precision, recall, and error‐index. The results indicate that this framework provides a better outcome than its counterparts with 99.45 precision, 99.34 accuracy, 99.48 recall, and 99.28% f‐measure. |
|---|---|
| AbstractList | Sentiment classification is a field of sentiment analysis concerned with analyzing opinions, emotions, evaluations, and attitudes regarding a special topic like a product, an organization, a person, or an incident. With the growth of user‐generated content on the Web, this field gained great importance in online reviews. With a wide range of reviews, customers cannot read all reviews. Considering the increasing rate of electronic documents and the urgent need manually mine for keywords that are hard and time‐consuming, doing the same automatically is of high demand. A new framework proposed here to mine and classify users' comments based on mining keywords by applying the sequence pattern mining through the Separation‐Power concept, a multi‐objective evolutionary algorithm based on decomposition with four objectives, and a neural network as the final classifier. Some modifications are made on multi‐objective evolutionary algorithm based on decomposition and Apriori algorithms to improve the text classification efficiency. To evaluate the proposed framework, three datasets applied; which compared with the two methods to measure accuracy, precision, recall, and error‐index. The results indicate that this framework provides a better outcome than its counterparts with 99.45 precision, 99.34 accuracy, 99.48 recall, and 99.28% f‐measure. Summary Sentiment classification is a field of sentiment analysis concerned with analyzing opinions, emotions, evaluations, and attitudes regarding a special topic like a product, an organization, a person, or an incident. With the growth of user‐generated content on the Web, this field gained great importance in online reviews. With a wide range of reviews, customers cannot read all reviews. Considering the increasing rate of electronic documents and the urgent need manually mine for keywords that are hard and time‐consuming, doing the same automatically is of high demand. A new framework proposed here to mine and classify users' comments based on mining keywords by applying the sequence pattern mining through the Separation‐Power concept, a multi‐objective evolutionary algorithm based on decomposition with four objectives, and a neural network as the final classifier. Some modifications are made on multi‐objective evolutionary algorithm based on decomposition and Apriori algorithms to improve the text classification efficiency. To evaluate the proposed framework, three datasets applied; which compared with the two methods to measure accuracy, precision, recall, and error‐index. The results indicate that this framework provides a better outcome than its counterparts with 99.45 precision, 99.34 accuracy, 99.48 recall, and 99.28% f‐measure. |
| Author | Monadjemi, S. Amirhassan Asgarnezhad, Razieh Aghaei, Mohammadreza Soltan |
| Author_xml | – sequence: 1 givenname: Razieh orcidid: 0000-0002-2563-1007 surname: Asgarnezhad fullname: Asgarnezhad, Razieh organization: Islamic Azad University – sequence: 2 givenname: S. Amirhassan orcidid: 0000-0002-8094-2449 surname: Monadjemi fullname: Monadjemi, S. Amirhassan email: sleam@nus.edu.sg, monadjemi@eng.ui.ac.ir organization: University of Isfahan – sequence: 3 givenname: Mohammadreza Soltan orcidid: 0000-0002-2930-9066 surname: Aghaei fullname: Aghaei, Mohammadreza Soltan organization: Islamic Azad University |
| BookMark | eNp10LtOwzAUBmALFYlSkHgESywsKb6lTcaqKhepEgwwR45z3LikdnGclmw8As_Ik5C2iAHBdDx8v338n6KedRYQuqBkSAlh12oNw1GciiPUpzFnERlx0fs5s9EJOq3rJSGUEk77qJ1gC1tcGvDSq7LF2ssVbJ1_wdp5rEGGxgMGuzAWwBu7wKH0rlmUeNVUwXy-f7h8CSqYTac2rmqCcVb6Fstq4bwJ5QobiwO8BawqWddGGyV35gwda1nVcP49B-j5ZvY0vYvmD7f308k8UizlIkqpHrNUFEB1ATxnXMuYj1UuQOaSCp4kSrOYSS5iGAtFdSoYLYROSKKKGDQfoMvDvWvvXhuoQ7Z0jbfdkxkb0TGPCRFJp4YHpbyraw86Uybs9wxemiqjJNvVm3X1Zrt6u8DVr8Dam1X38b9odKBbU0H7r8umj7O9_wKSBo9- |
| CitedBy_id | crossref_primary_10_7717_peerj_cs_1190 crossref_primary_10_1007_s42044_022_00105_w crossref_primary_10_1007_s12065_023_00887_3 |
| Cites_doi | 10.1007/s00500-016-2093-2 10.3115/v1/P14-1146 10.1145/1183614.1183625 10.1145/1014052.1014073 10.1016/j.dss.2013.09.004 10.1016/j.eswa.2017.09.051 10.1016/j.dss.2014.07.003 10.1109/4235.996017 10.1016/j.dss.2016.11.001 10.1561/1500000011 10.1016/j.ipm.2015.03.002 10.1109/TEVC.2007.892759 10.1007/s11280-015-0381-x 10.1109/TEVC.2008.925798 10.1016/j.ipm.2017.02.008 10.1109/TR.2019.2954894 10.1016/j.asoc.2012.07.027 10.1007/s00500-016-2331-7 10.1016/j.asoc.2016.11.022 10.1016/j.aci.2017.03.001 10.1016/j.knosys.2016.06.009 10.1016/j.asoc.2019.105836 10.1109/ICCMC.2019.8819770 10.1016/j.ipm.2017.02.004 10.3115/v1/W14-2621 10.1007/s11227-020-03490-w 10.1145/775152.775226 10.1145/1645953.1646003 10.1109/TCYB.2015.2403849 10.1016/j.csl.2013.04.001 10.1007/978-3-319-06608-0_4 10.1007/s13278-011-0023-y 10.18653/v1/S17-2088 10.1007/978-981-10-3874-7_66 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.6594 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_6594 CPE6594 |
| Genre | article |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AFZJQ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2934-91f7294de1fde3b23fa537cb4eaba14388cf252a345e74c1f9421d4f808cd5ef3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692019500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0626 |
| IngestDate | Mon Jul 14 07:43:41 EDT 2025 Sat Nov 29 01:41:26 EST 2025 Tue Nov 18 22:28:47 EST 2025 Wed Jan 22 16:26:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2934-91f7294de1fde3b23fa537cb4eaba14388cf252a345e74c1f9421d4f808cd5ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2930-9066 0000-0002-8094-2449 0000-0002-2563-1007 |
| PQID | 2617350048 |
| PQPubID | 2045170 |
| PageCount | 31 |
| ParticipantIDs | proquest_journals_2617350048 crossref_citationtrail_10_1002_cpe_6594 crossref_primary_10_1002_cpe_6594 wiley_primary_10_1002_cpe_6594_CPE6594 |
| PublicationCentury | 2000 |
| PublicationDate | 1 February 2022 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 1 February 2022 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2017; 20 2011; 1 2020; 86 2012 2011 2016; 108 2002; 6 2009 2008 2016; 52 2020; 14 2008; 13 2006 2016; 94 1999; 63 2014; 28 2002 2008; 2 2018; 22 2007; 11 2014; 66 2020; 8 2015; 46 2017; 50 2017; 53 2021; 77 2013; 13 2002; 103 2019; 69 2018; 92 2016; 20 2014; 57 2017 2014; 8443 2007; 5 2014 2013 2007; 1 2006; 500 2018; 11 2018; 14 Zitzler E (e_1_2_9_21_1) 1999; 63 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Kumar P (e_1_2_9_51_1) 2012 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 Teng S (e_1_2_9_53_1) 2013 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 Asgarnezhad R (e_1_2_9_16_1) 2020; 14 e_1_2_9_8_1 Asgarnezhad R (e_1_2_9_17_1) 2020; 8 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 Alpaydin E (e_1_2_9_31_1) 2014 e_1_2_9_28_1 e_1_2_9_47_1 Asgarnezhad R (e_1_2_9_20_1) 2020; 8 Trupthi M (e_1_2_9_44_1) 2018; 11 e_1_2_9_34_1 Pang B (e_1_2_9_11_1) 2002 e_1_2_9_13_1 Ziztler E (e_1_2_9_25_1) 2002; 103 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_36_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_5_1 Han J (e_1_2_9_32_1) 2006 e_1_2_9_3_1 Schütze H (e_1_2_9_49_1) 2008 e_1_2_9_9_1 Coello CAC (e_1_2_9_19_1) 2007 Cha S‐H (e_1_2_9_30_1) 2007; 1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 11 start-page: 100 issue: 3 year: 2018 end-page: 108 article-title: Possibilistic fuzzy C‐means topic modelling for twitter sentiment analysis publication-title: Int J Intell Eng Syst – volume: 53 start-page: 764 issue: 4 year: 2017 end-page: 779 article-title: Twitter sentiment analysis using hybrid cuckoo search method publication-title: Inf Process Manag – volume: 1 start-page: 301 issue: 4 year: 2011 end-page: 320 article-title: Social opinion mining for supporting buyers' complex decision making: exploratory user study and algorithm comparison publication-title: Social Netw Anal Mining – volume: 14 start-page: 111 issue: 3 year: 2020 end-page: 123 article-title: FAHPBEP: a fuzzy analytic hierarchy process framework in text classification publication-title: Majlesi J Electr Eng – volume: 103 start-page: 95 year: 2002 end-page: 100 article-title: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization publication-title: Evol Methods Design Optim Control – volume: 13 start-page: 128 issue: 1 year: 2013 end-page: 148 article-title: A study of two penalty‐parameterless constraint handling techniques in the framework of MOEA/D publication-title: Appl Soft Comput – volume: 52 start-page: 46 issue: 1 year: 2016 end-page: 60 article-title: Multi‐lingual opinion mining on YouTube publication-title: Inf Process Manag – start-page: 693 year: 2017 end-page: 703 – start-page: 79 year: 2002 end-page: 86 article-title: Thumbs up? sentiment classification using machine learning techniques publication-title: Assoc Comput Linguist – volume: 28 start-page: 93 issue: 1 year: 2014 end-page: 107 article-title: Ranked wordnet graph for sentiment polarity classification in twitter publication-title: Comput Speech Lang – volume: 5 year: 2007 – volume: 50 start-page: 135 year: 2017 end-page: 141 article-title: A sentiment classification model based on multiple classifiers publication-title: Appl Soft Comput – volume: 14 start-page: 55 issue: 1 year: 2018 end-page: 64 article-title: Entropy based classifier for cross‐domain opinion mining publication-title: Appl Comput Inform – volume: 53 start-page: 814 issue: 4 year: 2017 end-page: 833 article-title: A hybrid ensemble pruning approach based on consensus clustering and multi‐objective evolutionary algorithm for sentiment classification publication-title: Inf Process Manag – start-page: 151 year: 2011 end-page: 160 – start-page: 375 year: 2009 end-page: 384 – volume: 11 start-page: 712 issue: 6 year: 2007 end-page: 731 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans Evol Comput – volume: 500 start-page: 105 year: 2006 end-page: 150 – volume: 69 start-page: 382 issue: 1 year: 2019 end-page: 400 article-title: Minimal path‐based reliability model for wireless sensor networks with multistate nodes publication-title: IEEE Trans Reliab – year: 2014 – volume: 94 start-page: 65 year: 2016 end-page: 76 article-title: Adapting sentiment lexicons to domain‐specific social media texts publication-title: Decis Support Syst – volume: 108 start-page: 42 year: 2016 end-page: 49 article-title: Aspect extraction for opinion mining with a deep convolutional neural network publication-title: Knowl Based Syst – volume: 2 start-page: 1 issue: 1–2 year: 2008 end-page: 135 article-title: Opinion mining and sentiment analysis publication-title: Found Trends Inf Retr – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 article-title: A fast and elitist multiobjective genetic algorithm: NSGA‐II publication-title: IEEE Trans Evol Comput – volume: 8443 year: 2014 – volume: 8 start-page: 41 issue: 1 year: 2020 end-page: 52 article-title: A high‐performance model based on ensembles for twitter sentiment classification publication-title: J Electr Comput Eng Innovat (JECEI) – volume: 57 start-page: 245 year: 2014 end-page: 257 article-title: TOM: twitter opinion mining framework using hybrid classification scheme publication-title: Decis Support Syst – volume: 86 year: 2020 article-title: Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision‐making methods publication-title: Appl Soft Comput – year: 2008 – start-page: 1 year: 2012 end-page: 286 article-title: Pattern discovery using sequence data mining: applications and studies publication-title: Inf Sci Ref – volume: 13 start-page: 284 issue: 2 year: 2008 end-page: 302 article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA‐II publication-title: IEEE Trans Evol Comput – volume: 46 start-page: 474 issue: 2 year: 2015 end-page: 486 article-title: Adaptive replacement strategies for MOEA/D publication-title: IEEE Trans Cybern – volume: 77 start-page: 5806 issue: 6 year: 2021 end-page: 5839 article-title: An application of MOGW optimization for feature selection in text classification publication-title: J Supercomput – volume: 92 start-page: 430 year: 2018 end-page: 446 article-title: An improved MOEA/D algorithm for bi‐objective optimization problems with complex Pareto fronts and its application to structural optimization publication-title: Expert Syst Appl – volume: 20 start-page: 3821 issue: 10 year: 2016 end-page: 3834 article-title: Particle swarm optimization‐based feature selection in sentiment classification publication-title: Soft Comput – volume: 1 start-page: 1 issue: 2 year: 2007 article-title: Comprehensive survey on distance/similarity measures between probability density functions publication-title: City – start-page: 43 year: 2006 end-page: 50 – volume: 22 start-page: 253 issue: 1 year: 2018 end-page: 272 article-title: A stopping criterion for decomposition‐based multi‐objective evolutionary algorithms publication-title: Soft Comput – volume: 66 start-page: 170 year: 2014 end-page: 179 article-title: Tweet sentiment analysis with classifier ensembles publication-title: Decis Support Syst – volume: 63 start-page: 1 year: 1999 end-page: 134 article-title: Evolutionary algorithms for multiobjective optimization publication-title: Methods Appl – volume: 8 start-page: 183 issue: 2 year: 2020 end-page: 192 article-title: NSE‐PSO: toward an effective model using optimization algorithm and sampling methods for text classification publication-title: J Electr Comput Eng Innovat (JECEI). – volume: 20 start-page: 135 issue: 2 year: 2017 end-page: 154 article-title: Aspect term extraction for sentiment analysis in large movie reviews using Gini index feature selection method and SVM classifier publication-title: World Wide Web – year: 2013 – start-page: 1 year: 2012 ident: e_1_2_9_51_1 article-title: Pattern discovery using sequence data mining: applications and studies publication-title: Inf Sci Ref – volume-title: Introduction to Information Retrieval year: 2008 ident: e_1_2_9_49_1 – ident: e_1_2_9_13_1 doi: 10.1007/s00500-016-2093-2 – ident: e_1_2_9_5_1 doi: 10.3115/v1/P14-1146 – ident: e_1_2_9_35_1 doi: 10.1145/1183614.1183625 – volume-title: Introduction to Machine Learning year: 2014 ident: e_1_2_9_31_1 – ident: e_1_2_9_34_1 doi: 10.1145/1014052.1014073 – ident: e_1_2_9_47_1 – ident: e_1_2_9_2_1 doi: 10.1016/j.dss.2013.09.004 – ident: e_1_2_9_29_1 doi: 10.1016/j.eswa.2017.09.051 – ident: e_1_2_9_3_1 doi: 10.1016/j.dss.2014.07.003 – ident: e_1_2_9_24_1 doi: 10.1109/4235.996017 – ident: e_1_2_9_15_1 doi: 10.1016/j.dss.2016.11.001 – ident: e_1_2_9_8_1 doi: 10.1561/1500000011 – ident: e_1_2_9_37_1 doi: 10.1016/j.ipm.2015.03.002 – volume: 63 start-page: 1 year: 1999 ident: e_1_2_9_21_1 article-title: Evolutionary algorithms for multiobjective optimization publication-title: Methods Appl – ident: e_1_2_9_22_1 doi: 10.1109/TEVC.2007.892759 – ident: e_1_2_9_33_1 doi: 10.1007/s11280-015-0381-x – volume: 8 start-page: 183 issue: 2 year: 2020 ident: e_1_2_9_20_1 article-title: NSE‐PSO: toward an effective model using optimization algorithm and sampling methods for text classification publication-title: J Electr Comput Eng Innovat (JECEI). – ident: e_1_2_9_23_1 doi: 10.1109/TEVC.2008.925798 – ident: e_1_2_9_14_1 doi: 10.1016/j.ipm.2017.02.008 – ident: e_1_2_9_45_1 doi: 10.1109/TR.2019.2954894 – ident: e_1_2_9_28_1 doi: 10.1016/j.asoc.2012.07.027 – ident: e_1_2_9_27_1 doi: 10.1007/s00500-016-2331-7 – volume: 14 start-page: 111 issue: 3 year: 2020 ident: e_1_2_9_16_1 article-title: FAHPBEP: a fuzzy analytic hierarchy process framework in text classification publication-title: Majlesi J Electr Eng – ident: e_1_2_9_12_1 doi: 10.1016/j.asoc.2016.11.022 – volume: 103 start-page: 95 year: 2002 ident: e_1_2_9_25_1 article-title: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization publication-title: Evol Methods Design Optim Control – volume: 8 start-page: 41 issue: 1 year: 2020 ident: e_1_2_9_17_1 article-title: A high‐performance model based on ensembles for twitter sentiment classification publication-title: J Electr Comput Eng Innovat (JECEI) – ident: e_1_2_9_43_1 doi: 10.1016/j.aci.2017.03.001 – volume-title: The Calculation of Similarity and Its Application in Data Mining year: 2013 ident: e_1_2_9_53_1 – ident: e_1_2_9_38_1 doi: 10.1016/j.knosys.2016.06.009 – ident: e_1_2_9_10_1 doi: 10.1016/j.asoc.2019.105836 – volume: 1 start-page: 1 issue: 2 year: 2007 ident: e_1_2_9_30_1 article-title: Comprehensive survey on distance/similarity measures between probability density functions publication-title: City – ident: e_1_2_9_7_1 – ident: e_1_2_9_54_1 – start-page: 79 year: 2002 ident: e_1_2_9_11_1 article-title: Thumbs up? sentiment classification using machine learning techniques publication-title: Assoc Comput Linguist – volume: 11 start-page: 100 issue: 3 year: 2018 ident: e_1_2_9_44_1 article-title: Possibilistic fuzzy C‐means topic modelling for twitter sentiment analysis publication-title: Int J Intell Eng Syst – ident: e_1_2_9_40_1 – ident: e_1_2_9_46_1 doi: 10.1109/ICCMC.2019.8819770 – ident: e_1_2_9_4_1 doi: 10.1016/j.ipm.2017.02.004 – ident: e_1_2_9_50_1 doi: 10.3115/v1/W14-2621 – ident: e_1_2_9_18_1 doi: 10.1007/s11227-020-03490-w – ident: e_1_2_9_41_1 doi: 10.1145/775152.775226 – ident: e_1_2_9_36_1 doi: 10.1145/1645953.1646003 – ident: e_1_2_9_26_1 doi: 10.1109/TCYB.2015.2403849 – ident: e_1_2_9_6_1 doi: 10.1016/j.csl.2013.04.001 – start-page: 105 volume-title: Data Mining: Concepts and Techniques year: 2006 ident: e_1_2_9_32_1 – ident: e_1_2_9_52_1 doi: 10.1007/978-3-319-06608-0_4 – ident: e_1_2_9_39_1 doi: 10.1007/s13278-011-0023-y – ident: e_1_2_9_9_1 – ident: e_1_2_9_42_1 doi: 10.18653/v1/S17-2088 – ident: e_1_2_9_48_1 doi: 10.1007/978-981-10-3874-7_66 – volume-title: Evolutionary Algorithms for Solving Multi‐objective Problems year: 2007 ident: e_1_2_9_19_1 |
| SSID | ssj0011031 |
| Score | 2.3118908 |
| Snippet | Summary
Sentiment classification is a field of sentiment analysis concerned with analyzing opinions, emotions, evaluations, and attitudes regarding a special... Sentiment classification is a field of sentiment analysis concerned with analyzing opinions, emotions, evaluations, and attitudes regarding a special topic... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Apriori algorithm Classification Data mining Decomposition Electronic documents Error analysis Evaluation Evolutionary algorithms feature selection Genetic algorithms multi‐objective evolutionary algorithm Neural networks Pattern analysis Recall Sentiment analysis sequence pattern mining Text categorization text classification User generated content |
| Title | A new hierarchy framework for feature engineering through multi‐objective evolutionary algorithm in text classification |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6594 https://www.proquest.com/docview/2617350048 |
| Volume | 34 |
| WOSCitedRecordID | wos000692019500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH7R6cGL8xOnUyKInuq6fDTZccwNDzKGONittGmik7mNbQ528yf4G_0lJm26KSgInnp5AyHv19P2zfMAXPg8iXjAlRf7iXlBCYjyhPZNXgnNfaUTLphMxSZ4uy16vVrHTVXauzAZP8Tyg5vNjLRe2wSP4mllRRoqx-o6YDW6DhvYhC0twMbNfat7t_yHYAUMMrZU7PkGt-fUsz6u5Gu_N6MVwvyKU9NG0yr-Z4s7sO3gJapn8bALa2q4B8VcugG5TN6HRR0ZPI2sELaN9AXS-ZAWMigWaZXyfSK1YitETtEHpSOIH2_vo_g5K5ZIzV38mp2iaPA4mvRnTy-oP0R2rARJC9DtRFIaBAfQbTUfGreeU2HwpIEC1FRDbQA4TVRVJ4rEmOiIES5jqqI4suLpQmrMcEQoU5zKqq5RXE2oFr6QCVOaHEJhOBqqI0CBNAVGxFXCBTV90NSKGmEBN5CDxTQhrARXuTtC6SjKrVLGIMzIlXFoTjS0J1qC86XlOKPl-MGmnHs0dIk5DS0BPWG2bpXgMvXdr-vDRqdpn8d_NTyBLWwvR6Qz3WUozCav6hQ25XzWn07OXHh-AgxY7EI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJuiL84rzGkH0qa5tkibFJ1GH4hxDFHwrbZroZHZjm4O9-RP8jf4Sk142BQXBp76c0JCcy9f05PsADmwWh8xj0orsWH-geFhaXNk6rrhitlQx41SkYhOs2eQPD35rBk6KuzAZP8TkwM1ERpqvTYCbA-nalDVU9OSxR30yC2X9Dk5LUD6_rd83Jj8RjIJBRpfqWrYG7gX3rO3WirHfq9EUYn4FqmmlqVf-NcclWMwBJjrNPGIZZmSyApVCvAHlsbwK41OkETUyUtjG18dIFW1aSONYpGTK-InklK8Q5Zo-KG1C_Hh770bPWbpEcpR7sJ4qCjuP3X57-PSC2gkyjSVIGIhuepJSN1iD-_rF3dmlleswWEKDAaLzodIQnMTSUbHEkYtVSDETEZFhFBr5dC6US90QEyoZEY7yievERHGbi5hKhdehlHQTuQHIEzrF8MjBjBNdCXW28DH1mAYdNCIxplU4KvYjEDlJudHK6AQZvbIb6BUNzIpWYX9i2cuIOX6w2S62NMhDcxAYCnpMTeaqwmG6eb-OD85aF-a5-VfDPZi_vLtpBI2r5vUWLLjmqkTa4b0NpWH_Ve7AnBgN24P-bu6rnyhE8DI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL1oK-LGt1ifI4iuYpPMTGaCK7EWRSlFLHQXknlopbalVqE7P8Fv9EucyaNVUBBcZXMHhrmvk-TOOQCHLpMxC5hyEleaF5QAK4dr1-QV18xVWjJORSo2wRoN3m6HzRk4Le7CZPwQkw9uNjPSem0TXA2krk5ZQ8VAnQQ0JLNQJjQMTFaWa7f11s3kJ4JVMMjoUn3HNcC94J51_Wqx9ns3mkLMr0A17TT1pX_tcRkWc4CJzrKIWIEZ1VuFpUK8AeW5vAbjM2QQNbJS2DbWx0gXY1rI4FikVcr4idSUrxDlmj4oHUL8eHvvJ49ZuUTqNY9gs1UUd-_7w87o4Ql1esgOliBhIbqdSUrDYB1a9Yu780sn12FwhAEDxNRDbSA4kcrTUuHExzqmmImEqDiJrXw6F9qnfowJVYwIT4fE9yTR3OVCUqXxBpR6_Z7aBBQIU2J44mHGiemEplqEmAbMgA6aEIlpBY4Lf0QiJym3WhndKKNX9iNzopE90QocTCwHGTHHDzY7hUujPDWfI0tBj6mtXBU4Sp336_rovHlhn1t_NdyH-WatHt1cNa63YcG3NyXSAe8dKI2GL2oX5sTrqPM83MtD9RPMPe-t |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hierarchy+framework+for+feature+engineering+through+multi%E2%80%90objective+evolutionary+algorithm+in+text+classification&rft.jtitle=Concurrency+and+computation&rft.au=Asgarnezhad%2C+Razieh&rft.au=Monadjemi%2C+S.+Amirhassan&rft.au=Aghaei%2C+Mohammadreza+Soltan&rft.date=2022-02-01&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=3&rft_id=info:doi/10.1002%2Fcpe.6594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_6594 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |