Automatic bias correction for testing in high‐dimensional linear models
Hypothesis testing is challenging due to the test statistic's complicated asymptotic distribution when it is based on a regularized estimator in high dimensions. We propose a robust testing framework for ℓ1$$ {\ell}_1 $$‐regularized M‐estimators to cope with non‐Gaussian distributed regression...
Gespeichert in:
| Veröffentlicht in: | Statistica Neerlandica Jg. 77; H. 1; S. 71 - 98 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Blackwell Publishing Ltd
01.02.2023
|
| Schlagworte: | |
| ISSN: | 0039-0402, 1467-9574 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Hypothesis testing is challenging due to the test statistic's complicated asymptotic distribution when it is based on a regularized estimator in high dimensions. We propose a robust testing framework for ℓ1$$ {\ell}_1 $$‐regularized M‐estimators to cope with non‐Gaussian distributed regression errors, using the robust approximate message passing algorithm. The proposed framework enjoys an automatically built‐in bias correction and is applicable with general convex nondifferentiable loss functions which also allows inference when the focus is a conditional quantile instead of the mean of the response. The estimator compares numerically well with the debiased and desparsified approaches while using the least squares loss function. The use of the Huber loss function demonstrates that the proposed construction provides stable confidence intervals under different regression error distributions. |
|---|---|
| Bibliographie: | Funding information Fonds Wetenschappelijk Onderzoek Junior Postdoc Fellowship, KU Leuven Research Fund, Grant/Award Number: C16/20/002 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0039-0402 1467-9574 |
| DOI: | 10.1111/stan.12274 |