Automatic bias correction for testing in high‐dimensional linear models

Hypothesis testing is challenging due to the test statistic's complicated asymptotic distribution when it is based on a regularized estimator in high dimensions. We propose a robust testing framework for ℓ1$$ {\ell}_1 $$‐regularized M‐estimators to cope with non‐Gaussian distributed regression...

Full description

Saved in:
Bibliographic Details
Published in:Statistica Neerlandica Vol. 77; no. 1; pp. 71 - 98
Main Authors: Zhou, Jing, Claeskens, Gerda
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.02.2023
Subjects:
ISSN:0039-0402, 1467-9574
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hypothesis testing is challenging due to the test statistic's complicated asymptotic distribution when it is based on a regularized estimator in high dimensions. We propose a robust testing framework for ℓ1$$ {\ell}_1 $$‐regularized M‐estimators to cope with non‐Gaussian distributed regression errors, using the robust approximate message passing algorithm. The proposed framework enjoys an automatically built‐in bias correction and is applicable with general convex nondifferentiable loss functions which also allows inference when the focus is a conditional quantile instead of the mean of the response. The estimator compares numerically well with the debiased and desparsified approaches while using the least squares loss function. The use of the Huber loss function demonstrates that the proposed construction provides stable confidence intervals under different regression error distributions.
AbstractList Hypothesis testing is challenging due to the test statistic's complicated asymptotic distribution when it is based on a regularized estimator in high dimensions. We propose a robust testing framework for ℓ1$$ {\ell}_1 $$‐regularized M‐estimators to cope with non‐Gaussian distributed regression errors, using the robust approximate message passing algorithm. The proposed framework enjoys an automatically built‐in bias correction and is applicable with general convex nondifferentiable loss functions which also allows inference when the focus is a conditional quantile instead of the mean of the response. The estimator compares numerically well with the debiased and desparsified approaches while using the least squares loss function. The use of the Huber loss function demonstrates that the proposed construction provides stable confidence intervals under different regression error distributions.
Hypothesis testing is challenging due to the test statistic's complicated asymptotic distribution when it is based on a regularized estimator in high dimensions. We propose a robust testing framework for ‐regularized M‐estimators to cope with non‐Gaussian distributed regression errors, using the robust approximate message passing algorithm. The proposed framework enjoys an automatically built‐in bias correction and is applicable with general convex nondifferentiable loss functions which also allows inference when the focus is a conditional quantile instead of the mean of the response. The estimator compares numerically well with the debiased and desparsified approaches while using the least squares loss function. The use of the Huber loss function demonstrates that the proposed construction provides stable confidence intervals under different regression error distributions.
Author Zhou, Jing
Claeskens, Gerda
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-8894-9100
  surname: Zhou
  fullname: Zhou, Jing
  organization: KU Leuven
– sequence: 2
  givenname: Gerda
  orcidid: 0000-0002-3863-5197
  surname: Claeskens
  fullname: Claeskens, Gerda
  email: gerda.claeskens@kuleuven.be
  organization: KU Leuven
BookMark eNp9kEtOwzAQhi1UJNrChhNYYoeU4mcSL6uKR6UKFpS15ThO6yqxi50KdccROCMnwSWsmc0s5pvRP98EjJx3BoBrjGY41V3slZthQgp2BsaY5UUmeMFGYIwQFRliiFyASYw7hHAhWD4Gy_mh953qrYaVVRFqH4LRvfUONj7A3sTeug20Dm7tZvv9-VXbzriY5qqFrXVGBdj52rTxEpw3qo3m6q9PwdvD_XrxlK1eHpeL-SrTRFCWlQTlTOmGsBrxShiCS2V0zUzFRcE11SVvsEbIKF4KjauypIwRrhWqeGNURafgZri7D_79kPLJnT-EFCfK9DYtSpJTnqjbgdLBxxhMI_fBdiocJUbypEqeVMlfVQnGA_xhW3P8h5Sv6_nzsPMDBc5vDA
Cites_doi 10.1007/s00440-015-0675-z
10.1214/20-EJS1728
10.1214/16-EJS1212
10.1198/016214501753382273
10.1111/j.2517-6161.1996.tb02080.x
10.1214/08-AOS646
10.1073/pnas.1810420116
10.1007/s00440-018-00896-9
10.1109/TIT.2010.2094817
10.1109/TIT.2011.2174612
10.1198/073500106000000251
10.1073/pnas.1802705116
10.2307/1913643
10.1017/CBO9780511754098
10.1080/01621459.2018.1543124
10.1198/016214506000000735
10.1198/jasa.2009.tm08647
10.1214/14-AOS1221
10.1007/978-3-642-20192-9
10.1007/s11749-017-0554-2
10.1007/BFb0081737
10.1093/biomet/75.4.800
10.1214/10-AOS827
10.1016/j.jeconom.2017.11.005
10.1214/19-AOS1923
10.1007/BF02759761
10.1073/pnas.0909892106
10.1109/TIT.2018.2840720
10.1007/s00440-017-0824-7
10.1198/016214507000000950
10.1109/18.382009
10.1093/biomet/81.3.425
10.1214/12-AOAS575
10.1214/15-AOS1371
10.1111/sjos.12285
10.2307/2283989
10.1214/18-AOS1789
10.1111/j.1467-9868.2010.00764.x
10.1073/pnas.1307842110
10.1080/01621459.2016.1166114
ContentType Journal Article
Copyright 2022 Netherlands Society for Statistics and Operations Research.
2023 Netherlands Society for Statistics and Operations Research
Copyright_xml – notice: 2022 Netherlands Society for Statistics and Operations Research.
– notice: 2023 Netherlands Society for Statistics and Operations Research
DBID AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1111/stan.12274
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9574
EndPage 98
ExternalDocumentID 10_1111_stan_12274
STAN12274
Genre article
GrantInformation_xml – fundername: KU Leuven Research Fund
  funderid: C16/20/002
– fundername: Fonds Wetenschappelijk Onderzoek Junior Postdoc Fellowship
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29Q
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FSPIC
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
U5U
UB1
V8K
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2934-82064acf24d05b9e218aecd4eb5975c3c85f1c00ea589c1b8834425ca0b5feab3
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000830217900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0039-0402
IngestDate Sat Sep 06 14:16:55 EDT 2025
Sat Nov 29 06:38:01 EST 2025
Wed Jan 22 16:21:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2934-82064acf24d05b9e218aecd4eb5975c3c85f1c00ea589c1b8834425ca0b5feab3
Notes Funding information
Fonds Wetenschappelijk Onderzoek Junior Postdoc Fellowship, KU Leuven Research Fund, Grant/Award Number: C16/20/002
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8894-9100
0000-0002-3863-5197
PQID 2743782635
PQPubID 30850
PageCount 28
ParticipantIDs proquest_journals_2743782635
crossref_primary_10_1111_stan_12274
wiley_primary_10_1111_stan_12274_STAN12274
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Statistica Neerlandica
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2007; 102
2004; 523
2018; 203
1967; 62
2020; 14
1988; 75
2013; 7
2018; 45
2011; 196
2017; 112
1979
1978
2018; 172
2011b; 58
2011; 73
2019; 116
2014; 15
2020; 48
2013; 110
1985; 50
2001; 96
2007; 25
1988
2016; 44
2017; 26
2019; 31
2011
2016; 10
2016; 166
2005
2011; 39
1994; 81
1996; 58
2018; 64
2011a; 57
2014; 42
1995; 41
2022
2020
2020; 115
2017
2016
2014
2013
2006; 101
2009; 104
2009; 37
2019; 175
2009; 106
e_1_2_10_23_1
e_1_2_10_46_1
Javanmard A. (e_1_2_10_30_1) 2014; 15
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
Huber P. J. (e_1_2_10_29_1) 2004
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
Hampel F. R. (e_1_2_10_25_1) 2011
Holm S. (e_1_2_10_27_1) 1979
e_1_2_10_51_1
Signal Developers (e_1_2_10_40_1) 2014
R Core Team (e_1_2_10_38_1) 2022
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Zhao W. (e_1_2_10_53_1) 2019; 31
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – year: 2011
– volume: 10
  start-page: 3894
  year: 2016
  end-page: 3944
  article-title: Robustness in sparse high‐dimensional linear models: Relative efficiency and robust approximate message passing
  publication-title: Electronic Journal of Statistics
– year: 2005
– volume: 110
  start-page: 14557
  year: 2013
  end-page: 14562
  article-title: On robust regression with high‐dimensional predictors
  publication-title: Proceedings of the National Academy of Sciences
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– volume: 81
  start-page: 425
  year: 1994
  end-page: 455
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
– volume: 62
  start-page: 626
  year: 1967
  end-page: 633
  article-title: Rectangular confidence regions for the means of multivariate normal distributions
  publication-title: Journal of the American Statistical Association
– volume: 112
  start-page: 757
  year: 2017
  end-page: 768
  article-title: Simultaneous inference for high‐dimensional linear models
  publication-title: Journal of the American Statistical Association
– volume: 58
  start-page: 1997
  year: 2011b
  end-page: 2017
  article-title: The LASSO risk for Gaussian matrices
  publication-title: IEEE Transactions on Information Theory
– year: 2014
– volume: 25
  start-page: 347
  year: 2007
  end-page: 355
  article-title: Robust regression shrinkage and consistent variable selection through the LAD‐lasso
  publication-title: Journal of Business & Economic Statistics
– volume: 45
  start-page: 34
  year: 2018
  end-page: 61
  article-title: A high‐dimensional focused information criterion
  publication-title: Scandinavian Journal of Statistics
– volume: 106
  start-page: 18914
  year: 2009
  end-page: 18919
  article-title: Message‐passing algorithms for compressed sensing
  publication-title: Proceedings of the National Academy of Sciences
– year: 2022
– start-page: 84
  year: 1988
  end-page: 106
– volume: 175
  start-page: 487
  year: 2019
  end-page: 558
  article-title: The likelihood ratio test in high‐dimensional logistic regression is asymptotically a rescaled chi‐square
  publication-title: Probability Theory and Related Fields
– volume: 42
  start-page: 1166
  year: 2014
  end-page: 1202
  article-title: On asymptotically optimal confidence regions and tests for high‐dimensional models
  publication-title: The Annals of Statistics
– start-page: 33
  year: 1978
  end-page: 50
  article-title: Regression quantiles
  publication-title: Econometrica: Journal of the Econometric Society
– volume: 14
  start-page: 2551
  year: 2020
  end-page: 2599
  article-title: Detangling robustness in high‐dimensions: Composite versus model‐averaged estimation
  publication-title: Electronic Journal of Statistics
– volume: 203
  start-page: 143
  year: 2018
  end-page: 168
  article-title: Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative lasso
  publication-title: Journal of Econometrics
– volume: 7
  start-page: 226
  year: 2013
  end-page: 248
  article-title: Sparse least trimmed squares regression for analyzing high‐dimensional large data sets
  publication-title: The Annals of Applied Statistics
– volume: 523
  year: 2004
– volume: 31
  start-page: 2569
  year: 2019
  end-page: 2577
  article-title: Debiasing and distributed estimation for high‐dimensional quantile regression
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 64
  start-page: 5592
  year: 2018
  end-page: 5628
  article-title: Precise error analysis of regularized M‐estimators in high dimensions
  publication-title: IEEE Transactions on Information Theory
– volume: 44
  start-page: 907
  year: 2016
  end-page: 927
  article-title: Exact post‐selection inference, with application to the lasso
  publication-title: The Annals of Statistics
– volume: 115
  start-page: 254
  year: 2020
  end-page: 265
  article-title: Adaptive Huber regression
  publication-title: Journal of the American Statistical Association
– volume: 104
  start-page: 1671
  year: 2009
  end-page: 1681
  article-title: p‐values for high‐dimensional regression
  publication-title: Journal of the American Statistical Association
– volume: 41
  start-page: 613
  year: 1995
  end-page: 627
  article-title: De‐noising by soft‐thresholding
  publication-title: IEEE Transactions on Information Theory
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: Journal of the American statistical Association
– year: 2016
– volume: 166
  start-page: 935
  year: 2016
  end-page: 969
  article-title: High dimensional robust M‐estimation: Asymptotic variance via approximate message passing
  publication-title: Probability Theory and Related Fields
– volume: 116
  start-page: 14516
  year: 2019
  end-page: 14525
  article-title: A modern maximum‐likelihood theory for high‐dimensional logistic regression
  publication-title: Proceedings of the National Academy of Sciences
– volume: 75
  start-page: 800
  year: 1988
  end-page: 802
  article-title: A sharper Bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
– volume: 26
  start-page: 685
  year: 2017
  end-page: 719
  article-title: High‐dimensional simultaneous inference with the bootstrap
  publication-title: Test
– volume: 196
  year: 2011
– volume: 39
  start-page: 82
  year: 2011
  end-page: 130
  article-title: L penalized quantile regression in high‐dimensional sparse models
  publication-title: The Annals of Statistics
– start-page: 65
  year: 1979
  end-page: 70
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scandinavian Journal of Statistics
– volume: 102
  start-page: 1289
  year: 2007
  end-page: 1299
  article-title: Robust linear model selection based on least angle regression
  publication-title: Journal of the American Statistical Association
– volume: 172
  start-page: 983
  year: 2018
  end-page: 1079
  article-title: Asymptotics for high dimensional regression M‐estimates: Fixed design results
  publication-title: Probability Theory and Related Fields
– volume: 73
  start-page: 325
  year: 2011
  end-page: 349
  article-title: Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 57
  start-page: 764
  year: 2011a
  end-page: 785
  article-title: The dynamics of message passing on dense graphs, with applications to compressed sensing
  publication-title: IEEE Transactions on Information Theory
– volume: 116
  start-page: 5451
  year: 2019
  end-page: 5460
  article-title: Optimal errors and phase transitions in high‐dimensional generalized linear models
  publication-title: Proceedings of the National Academy of Sciences
– volume: 15
  start-page: 2869
  year: 2014
  end-page: 2909
  article-title: Confidence intervals and hypothesis testing for high‐dimensional regression
  publication-title: Journal of Machine Learning Research
– volume: 48
  start-page: 27
  year: 2020
  end-page: 42
  article-title: The phase transition for the existence of the maximum likelihood estimate in high‐dimensional logistic regression
  publication-title: The Annals of Statistics
– year: 2020
– volume: 50
  start-page: 265
  year: 1985
  end-page: 289
  article-title: Some inequalities for Gaussian processes and applications
  publication-title: Israel Journal of Mathematics
– volume: 48
  start-page: 3090
  year: 2020
  end-page: 3111
  article-title: Asymptotic risk and phase transition of ‐penalized robust estimator
  publication-title: The Annals of Statistics
– year: 2017
– volume: 37
  start-page: 2178
  year: 2009
  article-title: High dimensional variable selection
  publication-title: Annals of Statistics
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  article-title: The adaptive lasso and its oracle properties
  publication-title: Journal of the American Statistical Association
– year: 2013
– ident: e_1_2_10_15_1
  doi: 10.1007/s00440-015-0675-z
– ident: e_1_2_10_54_1
  doi: 10.1214/20-EJS1728
– ident: e_1_2_10_7_1
  doi: 10.1214/16-EJS1212
– ident: e_1_2_10_21_1
  doi: 10.1198/016214501753382273
– ident: e_1_2_10_36_1
– ident: e_1_2_10_45_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_10_52_1
– ident: e_1_2_10_49_1
  doi: 10.1214/08-AOS646
– volume-title: Robust statistics: The approach based on influence functions
  year: 2011
  ident: e_1_2_10_25_1
– ident: e_1_2_10_42_1
  doi: 10.1073/pnas.1810420116
– ident: e_1_2_10_43_1
  doi: 10.1007/s00440-018-00896-9
– ident: e_1_2_10_4_1
  doi: 10.1109/TIT.2010.2094817
– start-page: 65
  year: 1979
  ident: e_1_2_10_27_1
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scandinavian Journal of Statistics
– ident: e_1_2_10_20_1
– ident: e_1_2_10_5_1
  doi: 10.1109/TIT.2011.2174612
– ident: e_1_2_10_18_1
– ident: e_1_2_10_47_1
  doi: 10.1198/073500106000000251
– ident: e_1_2_10_3_1
  doi: 10.1073/pnas.1802705116
– ident: e_1_2_10_33_1
  doi: 10.2307/1913643
– ident: e_1_2_10_32_1
  doi: 10.1017/CBO9780511754098
– ident: e_1_2_10_41_1
  doi: 10.1080/01621459.2018.1543124
– ident: e_1_2_10_55_1
  doi: 10.1198/016214506000000735
– ident: e_1_2_10_37_1
  doi: 10.1198/jasa.2009.tm08647
– ident: e_1_2_10_46_1
  doi: 10.1214/14-AOS1221
– ident: e_1_2_10_10_1
  doi: 10.1007/978-3-642-20192-9
– ident: e_1_2_10_13_1
  doi: 10.1007/s11749-017-0554-2
– ident: e_1_2_10_23_1
  doi: 10.1007/BFb0081737
– ident: e_1_2_10_26_1
  doi: 10.1093/biomet/75.4.800
– ident: e_1_2_10_48_1
– ident: e_1_2_10_6_1
  doi: 10.1214/10-AOS827
– ident: e_1_2_10_12_1
  doi: 10.1016/j.jeconom.2017.11.005
– ident: e_1_2_10_28_1
  doi: 10.1214/19-AOS1923
– ident: e_1_2_10_22_1
  doi: 10.1007/BF02759761
– volume-title: Signal: Signal processing
  year: 2014
  ident: e_1_2_10_40_1
– ident: e_1_2_10_14_1
  doi: 10.1073/pnas.0909892106
– volume-title: R: A language and environment for statistical computing
  year: 2022
  ident: e_1_2_10_38_1
– ident: e_1_2_10_44_1
  doi: 10.1109/TIT.2018.2840720
– ident: e_1_2_10_35_1
  doi: 10.1007/s00440-017-0824-7
– volume-title: Robust statistics
  year: 2004
  ident: e_1_2_10_29_1
– ident: e_1_2_10_31_1
  doi: 10.1198/016214507000000950
– ident: e_1_2_10_16_1
  doi: 10.1109/18.382009
– ident: e_1_2_10_17_1
  doi: 10.1093/biomet/81.3.425
– ident: e_1_2_10_2_1
  doi: 10.1214/12-AOAS575
– ident: e_1_2_10_34_1
  doi: 10.1214/15-AOS1371
– ident: e_1_2_10_51_1
– volume: 15
  start-page: 2869
  year: 2014
  ident: e_1_2_10_30_1
  article-title: Confidence intervals and hypothesis testing for high‐dimensional regression
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_10_24_1
  doi: 10.1111/sjos.12285
– ident: e_1_2_10_9_1
– ident: e_1_2_10_39_1
  doi: 10.2307/2283989
– volume: 31
  start-page: 2569
  year: 2019
  ident: e_1_2_10_53_1
  article-title: Debiasing and distributed estimation for high‐dimensional quantile regression
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– ident: e_1_2_10_11_1
  doi: 10.1214/18-AOS1789
– ident: e_1_2_10_8_1
  doi: 10.1111/j.1467-9868.2010.00764.x
– ident: e_1_2_10_19_1
  doi: 10.1073/pnas.1307842110
– ident: e_1_2_10_50_1
  doi: 10.1080/01621459.2016.1166114
SSID ssj0017946
Score 2.2922935
Snippet Hypothesis testing is challenging due to the test statistic's complicated asymptotic distribution when it is based on a regularized estimator in high...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 71
SubjectTerms Algorithms
approximate message passing algorithm
Bias
confidence interval
Confidence intervals
high‐dimensional linear model
hypothesis testing
loss function
Message passing
Robustness (mathematics)
Statistical analysis
ℓ1$$ {\ell}_1 $$‐regularization
Title Automatic bias correction for testing in high‐dimensional linear models
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fstan.12274
https://www.proquest.com/docview/2743782635
Volume 77
WOSCitedRecordID wos000830217900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9574
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017946
  issn: 0039-0402
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEB1q68GLWj-wWiWgJ2FlP5J2F7wUtShIEW2ht2WSzUovW-m2nv0J_kZ_iZnsblsvgnhbwu4SJjOZl2TyHsAFcXhz4zmO56NyOHodJwx54CgtRZQqTjWAVmyiOxiE43H0VIPr6i5MwQ-x3HCjyLDzNQU4ynwtyAk8XXm-WVVtQMM3jivq0Lh97o8el6cIRJ5e0DLSAQBV8jSrSp7V1z8T0gplrmNVm2z6O__r5i5slyCT9QqvaEJNZ3uwRbiyoGXeh4feYj61bK1MTjBnikQ67BUHZlAsmxP3RvbKJhkjPuOvj8-EVAAKBg9GncIZsyI6-QGM-nfDm3unVFVwlEnt3CHCdo4q9XniChlpk-NRq4TT4HSFClQoUk-5rkYRRsqTISlx-EKhK0WqUQaHUM-mmT4CFkmVdDsYRogRT7mHiRYumqk8CKXwObbgvDJt_FaQZ8TVooPsElu7tKBdWT0uAyiPTXtgwIuBQy24tPb95Q_xy7A3sE_Hf3n5BLZIPL6owW5DfT5b6FPYVO9mMGZnpTN9A9gxz0M
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60FexFrQ-sVg3oSVjZR9Jmj0UtLdYi2kJvS5LNSi9b6cOzP8Hf6C8xk91t60UQb8uyWcJkJvMlmXwfwBVyeFPjOY7nC-VQ4TUczmngKC1ZmCiKNYBWbKLZ7_PRKHzKa3PwLkzGD7HccMPIsPM1BjhuSK9FOaKnG883y6pNKFPjR8bBy3fP7WFveYyA7OkZLyOeAGApT7Uo5Vm1_pmRVjBzHazabNPe_Wc_92Anh5mklflFFTZ0ug8VRJYZMfMBdFuL-cTytRI5FjOiUKbDXnIgBseSObJvpK9knBJkNP76-IxRByDj8CDYKzElVkZndgjD9v3gtuPkugqOMsmdOkjZToVKfBq7TIbaZHmhVUxxeJpMBYqzxFOuqwXjofIkRy0OnynhSpZoIYMjKKWTVB8DCaWKmw3BQyFCmlBPxJq5wkzmAZfMp6IGl4Vto7eMPiMqlh1ol8japQb1wuxRHkKzyLwPDHwxgKgG19bAv_whehm0-vbp5C8fX8B2Z_DYi3rd_sMpVFBKPqvIrkNpPl3oM9hS72Zgpue5Z30DQ7_TMw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJrIXdV5wOjWgT0Kll2RrH4ezOBxl6Aa-lSRNZS_d2MVnf4K_0V9iTtpu80UQ30poSzg5J-dLcvJ9ADfI4U2151iOy6VFudOyfJ96llSCBamkWANoxCbaUeS_vgaDojYH78Lk_BCrDTeMDDNfY4CraZJuRDmipzvH1cuqbahSVJGpQLX7HI76q2MEZE_PeRnxBABLeeplKc_6658ZaQ0zN8GqyTbh_j_7eQB7Bcwkndwv6rClskOoIbLMiZmPoNdZLiaGr5WIMZ8TiTId5pID0TiWLJB9I3sj44wgo_HXx2eCOgA5hwfBXvEZMTI682MYhQ_D-0er0FWwpE7u1ELKdspl6tLEZiJQOstzJROKw9Nm0pM-Sx1p24ozP5CO8FGLw2WS24KligvvBCrZJFOnQAIhk3aL-wHnAU2pwxPFbK4nc88XzKW8AdelbeNpTp8Rl8sOtEts7NKAZmn2uAiheazbPQ1fNCBqwK0x8C9_iF-Gncg8nf3l5SvYHXTDuN-Lns6hhkryeUF2EyqL2VJdwI581-Myuywc6xsR6dKu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+bias+correction+for+testing+in+high%E2%80%90dimensional+linear+models&rft.jtitle=Statistica+Neerlandica&rft.au=Zhou%2C+Jing&rft.au=Claeskens%2C+Gerda&rft.date=2023-02-01&rft.issn=0039-0402&rft.eissn=1467-9574&rft.volume=77&rft.issue=1&rft.spage=71&rft.epage=98&rft_id=info:doi/10.1111%2Fstan.12274&rft.externalDBID=10.1111%252Fstan.12274&rft.externalDocID=STAN12274
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-0402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-0402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-0402&client=summon