A polynomial‐time algorithm for simple undirected graph isomorphism
Summary The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper solves the simple undirected graph isomorphism problem with an algorithmic approach as NP=P and proposes a polynomial‐time solution to check if t...
Uloženo v:
| Vydáno v: | Concurrency and computation Ročník 33; číslo 7; s. 1 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
10.04.2021
|
| Témata: | |
| ISSN: | 1532-0626, 1532-0634 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper solves the simple undirected graph isomorphism problem with an algorithmic approach as NP=P and proposes a polynomial‐time solution to check if two simple undirected graphs are isomorphic or not. Three new representation methods of a graph as vertex/edge adjacency matrix and triple tuple are proposed. A duality of edge and vertex and a reflexivity between vertex adjacency matrix and edge adjacency matrix were first introduced to present the core idea. Beyond this, the mathematical approval is based on an equivalence between permutation and bijection. Because only addition and multiplication operations satisfy the commutative law, we propose a permutation theorem to check fast whether one of two sets of arrays is a permutation of another or not. The permutation theorem was mathematically approved by Integer Factorization Theory, Pythagorean Triples Theorem, and Fundamental Theorem of Arithmetic. For each of two n‐ary arrays, the linear and squared sums of elements were respectively calculated to produce the results. |
|---|---|
| AbstractList | The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper solves the simple undirected graph isomorphism problem with an algorithmic approach as NP=P and proposes a polynomial‐time solution to check if two simple undirected graphs are isomorphic or not. Three new representation methods of a graph as vertex/edge adjacency matrix and triple tuple are proposed. A duality of edge and vertex and a reflexivity between vertex adjacency matrix and edge adjacency matrix were first introduced to present the core idea. Beyond this, the mathematical approval is based on an equivalence between permutation and bijection. Because only addition and multiplication operations satisfy the commutative law, we propose a permutation theorem to check fast whether one of two sets of arrays is a permutation of another or not. The permutation theorem was mathematically approved by Integer Factorization Theory, Pythagorean Triples Theorem, and Fundamental Theorem of Arithmetic. For each of two n‐ary arrays, the linear and squared sums of elements were respectively calculated to produce the results. Summary The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper solves the simple undirected graph isomorphism problem with an algorithmic approach as NP=P and proposes a polynomial‐time solution to check if two simple undirected graphs are isomorphic or not. Three new representation methods of a graph as vertex/edge adjacency matrix and triple tuple are proposed. A duality of edge and vertex and a reflexivity between vertex adjacency matrix and edge adjacency matrix were first introduced to present the core idea. Beyond this, the mathematical approval is based on an equivalence between permutation and bijection. Because only addition and multiplication operations satisfy the commutative law, we propose a permutation theorem to check fast whether one of two sets of arrays is a permutation of another or not. The permutation theorem was mathematically approved by Integer Factorization Theory, Pythagorean Triples Theorem, and Fundamental Theorem of Arithmetic. For each of two n‐ary arrays, the linear and squared sums of elements were respectively calculated to produce the results. The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper solves the simple undirected graph isomorphism problem with an algorithmic approach as NP=P and proposes a polynomial‐time solution to check if two simple undirected graphs are isomorphic or not. Three new representation methods of a graph as vertex/edge adjacency matrix and triple tuple are proposed. A duality of edge and vertex and a reflexivity between vertex adjacency matrix and edge adjacency matrix were first introduced to present the core idea. Beyond this, the mathematical approval is based on an equivalence between permutation and bijection. Because only addition and multiplication operations satisfy the commutative law, we propose a permutation theorem to check fast whether one of two sets of arrays is a permutation of another or not. The permutation theorem was mathematically approved by Integer Factorization Theory, Pythagorean Triples Theorem, and Fundamental Theorem of Arithmetic. For each of two n ‐ary arrays, the linear and squared sums of elements were respectively calculated to produce the results. |
| Author | Zarei, Roozbeh Chen, Xiaojun Zhang, Peng Chi, Chi‐Hung Xie, Zhijun Fan, Weibei Zhang, Jiekui Huang, Guangyan He, Jing Ji, Yimu Shi, Yong Green, David Souza, Paulo A. Van Zundert, André Wang, Xiancheng Cao, Jie Chen, Jinjun Guo, Mengjiao Kersi, Taraporewalla Li, Youtao Zheng, Hui Wang, Ruchuan Zhang, Zhiwang Sansoto, Ferry |
| Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0001-6488-1052 surname: He fullname: He, Jing email: lotusjing@gmail.com organization: Swinburne University of Technology – sequence: 2 givenname: Jinjun orcidid: 0000-0003-1677-9525 surname: Chen fullname: Chen, Jinjun organization: Swinburne University of Technology – sequence: 3 givenname: Guangyan orcidid: 0000-0002-1821-8644 surname: Huang fullname: Huang, Guangyan organization: Deakin University – sequence: 4 givenname: Jie surname: Cao fullname: Cao, Jie organization: Nanjing University of Finance and Economics – sequence: 5 givenname: Zhiwang surname: Zhang fullname: Zhang, Zhiwang organization: Nanjing University of Finance and Economics – sequence: 6 givenname: Hui surname: Zheng fullname: Zheng, Hui organization: Swinburne University of Technology – sequence: 7 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: Swinburne University of Technology – sequence: 8 givenname: Roozbeh surname: Zarei fullname: Zarei, Roozbeh organization: Swinburne University of Technology – sequence: 9 givenname: Ferry surname: Sansoto fullname: Sansoto, Ferry organization: Swinburne University of Technology – sequence: 10 givenname: Ruchuan surname: Wang fullname: Wang, Ruchuan organization: Nanjing University of Posts and Telecommunications – sequence: 11 givenname: Yimu surname: Ji fullname: Ji, Yimu organization: Nanjing University of Posts and Telecommunications – sequence: 12 givenname: Weibei surname: Fan fullname: Fan, Weibei organization: Nanjing University of Posts and Telecommunications – sequence: 13 givenname: Zhijun surname: Xie fullname: Xie, Zhijun organization: Ningbo University – sequence: 14 givenname: Xiancheng surname: Wang fullname: Wang, Xiancheng organization: Zhejiang University – sequence: 15 givenname: Mengjiao orcidid: 0000-0001-7029-5797 surname: Guo fullname: Guo, Mengjiao organization: Swinburne University of Technology – sequence: 16 givenname: Chi‐Hung surname: Chi fullname: Chi, Chi‐Hung organization: CSIRO – sequence: 17 givenname: Paulo A. surname: Souza fullname: Souza, Paulo A. organization: CSIRO – sequence: 18 givenname: Jiekui surname: Zhang fullname: Zhang, Jiekui organization: JingQi Smart Healthcare Pty Ltd – sequence: 19 givenname: Youtao surname: Li fullname: Li, Youtao organization: JingQi Smart Healthcare Pty Ltd – sequence: 20 givenname: Xiaojun surname: Chen fullname: Chen, Xiaojun organization: The Hong Kong Polytechnic University – sequence: 21 givenname: Yong surname: Shi fullname: Shi, Yong organization: Research Center on Fictitious Economy and Data Sciences, Chinese Academy of Sciences – sequence: 22 givenname: David surname: Green fullname: Green, David organization: Monash University – sequence: 23 givenname: Taraporewalla surname: Kersi fullname: Kersi, Taraporewalla organization: Royal Brisbane and Women's Hospital – sequence: 24 givenname: André surname: Van Zundert fullname: Van Zundert, André organization: Royal Brisbane and Women's Hospital |
| BookMark | eNp10MtKAzEUBuAgCrZV8BEG3LiZmsuZ27KUeoGCLroPmVzalJlJTKZIdz6Cz-iTOLXiQnR1zuL7z4F_jE4712mErgieEozprfR6mkEJJ2hEMkZTnDM4_dlpfo7GMW4xJgQzMkKLWeJds-9ca0Xz8fbe21Ynolm7YPtNmxgXkmhb3-hk1ykbtOy1StZB-E1io2td8Bsb2wt0ZkQT9eX3nKDV3WI1f0iXT_eP89kylbRikBZQiZwpUyuGAaDOQQGWRsoqK1hR6VJBaRQoXehS5Jmpa5C1yvKqJiarNJug6-NZH9zLTseeb90udMNHTjNcUaBAyKCmRyWDizFow6XtRW9d1wdhG04wPzTFh6b4oakhcPMr4INtRdj_RdMjfbWN3v_r-Px58eU_AfgfezI |
| CitedBy_id | crossref_primary_10_1007_s11227_021_04123_6 crossref_primary_10_1016_j_procs_2022_11_342 crossref_primary_10_1177_10943420211017188 crossref_primary_10_1109_ACCESS_2020_3024974 crossref_primary_10_1108_EC_07_2022_0476 |
| Cites_doi | 10.1007/978-3-642-02011-7_21 10.1016/S0303-2647(99)00041-6 10.1126/science.aad7416 10.1007/s00034-010-9248-7 10.1145/2815400.2815410 10.1016/j.jfranklin.2005.04.006 10.1109/IEOM.2015.7093815 10.54870/1551-3440.1166 10.1145/800119.803896 10.1137/120892234 10.1016/0022-0000(82)90009-5 10.1080/10020070512331341960 10.1137/0210015 10.1142/S0218001497000081 10.1016/0262-8856(95)91467-R 10.1145/2897518.2897542 10.1145/321958.321963 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons, Ltd. 2021 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.5484 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | 1 |
| ExternalDocumentID | 10_1002_cpe_5484 CPE5484 |
| Genre | article |
| GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2017YFB1401302; 2017YFB0202200 – fundername: Key R&D Program of Jiangsu funderid: BE2017166 – fundername: National Grain Bureau public welfare industry research project funderid: 201513004 – fundername: ARC funderid: DE140100387; DE130100911 – fundername: National Natural Science Foundation of P. R. China funderid: 61572260; 61872196 – fundername: Outstanding Youth of Jiangsu Natural Science Foundation funderid: BK20170100 |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2934-749a63dfbd30444b64d40cfcc957379e8d48fd4de7e8a65fbb4cbd569b1f59e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481383300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0626 |
| IngestDate | Sun Nov 09 07:51:39 EST 2025 Sat Nov 29 01:41:22 EST 2025 Tue Nov 18 21:06:48 EST 2025 Wed Jan 22 16:31:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2934-749a63dfbd30444b64d40cfcc957379e8d48fd4de7e8a65fbb4cbd569b1f59e3 |
| Notes | Jing He, John Street, Hawthorn VIC 3122, Australia ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1677-9525 0000-0002-1821-8644 0000-0001-6488-1052 0000-0001-7029-5797 |
| PQID | 2509242411 |
| PQPubID | 2045170 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2509242411 crossref_citationtrail_10_1002_cpe_5484 crossref_primary_10_1002_cpe_5484 wiley_primary_10_1002_cpe_5484_CPE5484 |
| PublicationCentury | 2000 |
| PublicationDate | 10 April 2021 |
| PublicationDateYYYYMMDD | 2021-04-10 |
| PublicationDate_xml | – month: 04 year: 2021 text: 10 April 2021 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1976; 23 2015; 4 2011 1995; 13 2009 2011; 30 1974 2007 2006 1979 1999 1982; 25 2012; 3 2001 1997; 11 2005; 342 2015; 44 2017 2016 2015 2009; 6 1999; 52 1981 2005; 15 1981; 10 e_1_2_10_23_1 Garey MR (e_1_2_10_2_1) 1979 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 McKay BD (e_1_2_10_18_1) 1981 Balpande V (e_1_2_10_25_1) 2012; 3 Dana‐Picard T (e_1_2_10_6_1) 2009; 6 e_1_2_10_4_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Aho AV (e_1_2_10_15_1) 1974 Silverman JH (e_1_2_10_35_1) 2006 Balpande V (e_1_2_10_26_1) 2015; 4 e_1_2_10_29_1 Wussing H (e_1_2_10_33_1) 2007 e_1_2_10_27_1 e_1_2_10_28_1 |
| References_xml | – year: 2011 – year: 2009 – year: 1981 – volume: 23 start-page: 433 issue: 3 year: 1976 end-page: 445 article-title: A fast backtracking algorithm to test directed graphs for isomorphism using distance matrices publication-title: J ACM – year: 2001 – year: 2007 – volume: 44 start-page: 114 issue: 1 year: 2015 end-page: 159 article-title: Structure theorem and isomorphism test for graphs with excluded topological subgraphs publication-title: SIAM J Comput – year: 2015 article-title: Mathematician claims breakthrough in complexity theory publication-title: Science News – volume: 6 start-page: 477 issue: 3 year: 2009 end-page: 494 article-title: Graph isomorphisms and matrix similarity: switching between representations publication-title: Math Enthus – year: 1979 – volume: 342 start-page: 657 issue: 6 year: 2005 end-page: 673 article-title: Some further development on the eigensystem approach for graph isomorphism detection publication-title: J Franklin Inst – year: 2016 – volume: 3 issue: 6 year: 2012 article-title: Graph invariants and graph isomorphism publication-title: IJCTA – volume: 10 start-page: 203 issue: 1 year: 1981 end-page: 225 article-title: Linear time automorphism algorithms for trees, interval graphs, and planar graphs publication-title: SIAM J Comput – volume: 15 start-page: 181 issue: 2 year: 2005 end-page: 184 article-title: Algorithm of graph isomorphism with three dimensional DNA graph structures publication-title: Prog Nat Sci – volume: 30 start-page: 1115 issue: 5 year: 2011 end-page: 1130 article-title: A new algorithm for isomorphism determination of undirected graphs‐circuit simulation method publication-title: Circuits Syst Signal Process – volume: 13 start-page: 45 issue: 1 year: 1995 end-page: 60 article-title: Pattern recognition by homomorphic graph matching using Hopfield neural networks publication-title: Image Vis Comput – year: 2006 – year: 1974 – volume: 11 start-page: 169 issue: 01 year: 1997 end-page: 203 article-title: Recent advances in graph matching publication-title: Int J Pattern Recognit Artif Intell – volume: 4 start-page: 1 issue: 4 year: 2015 end-page: 5 article-title: An approach of graph isomorphism detection based on vertex‐invariant publication-title: Int J Adv Stud Comput Sci Eng – year: 2017 – volume: 25 start-page: 42 issue: 1 year: 1982 end-page: 65 article-title: Isomorphism of graphs of bounded valence can be tested in polynomial time publication-title: J Comput Syst Sci – year: 2015 – year: 1999 – volume: 52 start-page: 143 issue: 1‐3 year: 1999 end-page: 153 article-title: Three dimensional DNA structures in computing publication-title: Biosystems – ident: e_1_2_10_19_1 doi: 10.1007/978-3-642-02011-7_21 – ident: e_1_2_10_28_1 doi: 10.1016/S0303-2647(99)00041-6 – ident: e_1_2_10_5_1 – ident: e_1_2_10_30_1 – ident: e_1_2_10_13_1 – ident: e_1_2_10_3_1 doi: 10.1126/science.aad7416 – ident: e_1_2_10_36_1 – ident: e_1_2_10_9_1 doi: 10.1007/s00034-010-9248-7 – ident: e_1_2_10_12_1 doi: 10.1145/2815400.2815410 – ident: e_1_2_10_32_1 – volume-title: Practical Graph Isomorphism year: 1981 ident: e_1_2_10_18_1 – ident: e_1_2_10_21_1 – volume: 3 issue: 6 year: 2012 ident: e_1_2_10_25_1 article-title: Graph invariants and graph isomorphism publication-title: IJCTA – ident: e_1_2_10_8_1 doi: 10.1016/j.jfranklin.2005.04.006 – volume-title: The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory year: 2007 ident: e_1_2_10_33_1 – ident: e_1_2_10_24_1 – volume-title: Computers and Intractability: A Guide to the Theory of np‐Completeness year: 1979 ident: e_1_2_10_2_1 – volume: 4 start-page: 1 issue: 4 year: 2015 ident: e_1_2_10_26_1 article-title: An approach of graph isomorphism detection based on vertex‐invariant publication-title: Int J Adv Stud Comput Sci Eng – ident: e_1_2_10_10_1 doi: 10.1109/IEOM.2015.7093815 – ident: e_1_2_10_20_1 – volume: 6 start-page: 477 issue: 3 year: 2009 ident: e_1_2_10_6_1 article-title: Graph isomorphisms and matrix similarity: switching between representations publication-title: Math Enthus doi: 10.54870/1551-3440.1166 – ident: e_1_2_10_14_1 doi: 10.1145/800119.803896 – ident: e_1_2_10_34_1 – ident: e_1_2_10_7_1 doi: 10.1137/120892234 – ident: e_1_2_10_17_1 doi: 10.1016/0022-0000(82)90009-5 – ident: e_1_2_10_31_1 – ident: e_1_2_10_27_1 doi: 10.1080/10020070512331341960 – ident: e_1_2_10_16_1 doi: 10.1137/0210015 – ident: e_1_2_10_22_1 doi: 10.1142/S0218001497000081 – ident: e_1_2_10_11_1 doi: 10.1016/0262-8856(95)91467-R – ident: e_1_2_10_4_1 – volume-title: A Friendly Introduction to Number Theory year: 2006 ident: e_1_2_10_35_1 – ident: e_1_2_10_29_1 doi: 10.1145/2897518.2897542 – volume-title: The Design and Analysis of Computer Algorithms year: 1974 ident: e_1_2_10_15_1 – ident: e_1_2_10_23_1 doi: 10.1145/321958.321963 |
| SSID | ssj0011031 |
| Score | 2.3198528 |
| Snippet | Summary
The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper... The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper solves the... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Arrays equivalence between permutation and bijection graph isomorphism Graphical representations Graphs Isomorphism Mathematical analysis Matrix methods Multiplication Permutations Polynomials polynomial‐time solution reflexivity and duality simple undirected graph Theorems vertex/edge adjacency matrix |
| Title | A polynomial‐time algorithm for simple undirected graph isomorphism |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.5484 https://www.proquest.com/docview/2509242411 |
| Volume | 33 |
| WOSCitedRecordID | wos000481383300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcHbT14sT6xWmUF0VPsJtm8jqW2eJBSpEJvYbMPDaRNaVrBmx_Bz-gncTePVkFB8JTLLITZmZ0_yc5vAC4lo640TduQEmODBIQbPsWOQZjpYotz2ycsHzbhDQb-eBwMy1uVuhem4EOsPrjpzMjPa53gNMraa2gom4kbJbfJJtQtFbakBvXbh_7j_eofgh5gUNBSLQMr3V6hZ7HVrtZ-L0ZrhflVp-aFpt_4zyvuwk4pL1GniIc92BDTfWhUoxtQmckH0OugWZq86p5kmny8vesR84gmT-k8XjxPkFKyKIs1OBgtp0XVExzlcGsUZ-kkVbsTZ5NDGPV7o-6dUU5UMJgq68TwSEBdm8uI25oTF7mEE8wkY4Hj2V4gfE58yQkXnvCp68goIizijhtEpnQCYR9BbZpOxTEg6mHmea7Sm0IjsySVSslFlk24o2q-T5twXXk2ZCVtXA-9SMKCk2yFyjmhdk4TLlaWs4Kw8YNNq9qcsMyxLFTiLdDNLabZhKt8G35dH3aHPf08-avhKWxb-vKKhjriFtQW86U4gy32soiz-XkZaZ-F39ia |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcHbQW9-BbrcwXRU-wm2bzwJNqiWEuRCr2FzT400DalqYI3P4Kf0U_ibh6tgoLgKZdZCLMzO382md8AHEtGXWmatiElxgYJCDd8ih2DMNPFFue2T1g2bMJrt_1eL-jMwXnZC5PzIaYXbjozsvNaJ7i-kK7PqKFsJM6U3ibzUCUqipwKVK_umw-t6UcEPcEgx6VaBlbCvWTPYqterv1ejWYS86tQzSpNc-Vf77gKy4XARBd5RKzBnBiuw0o5vAEVubwBjQs0SvqvuiuZ9j_e3vWQeUT7j8k4njwNkNKyKI01Ohg9D_O6JzjK8NYoTpNBovYnTgeb0G02upfXRjFTwWCqsBPDIwF1bS4jbmtSXOQSTjCTjAWOZ3uB8DnxJSdceMKnriOjiLCIO24QmdIJhL0FlWEyFNuAqIeZ57lKcQoNzZJUKi0XWTbhjqr6Pq3BaenakBW8cT32oh_mpGQrVM4JtXNqcDS1HOWMjR9s9srdCYssS0Ml3wLd3mKaNTjJ9uHX9eFlp6GfO381PITF6-5dK2zdtG93YcnSv7JoxCPeg8pk_Cz2YYG9TOJ0fFCE3Sd_RNyK |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsNAFIYP9YK48S7W6wiiq-gkmVwGV1JbFEspouAuTOaigbYpTRXc-Qg-o0_iTC6tgoLgKpszEM7MyflJcr4f4Ehx5ivbdi2lMLYIJcIKGfYswm0fO0K4IeG52UTQ6YQPD7Rbg_NqFqbgQ0xeuJnKyJ_XpsDlUKizKTWUD-Wp1ttkBuaIR31dlXOXt6379uQjgnEwKHCpjoW1cK_Ys9g5q9Z-70ZTiflVqOadprX8r3tcgaVSYKKL4kSsQk0O1mC5Mm9AZS2vQ_MCDdPeq5lKZr2Pt3djMo9Y7zEdJeOnPtJaFmWJQQej50HR96RAOd4aJVnaT_X-JFl_A-5azbvGlVV6KlhcN3ZiBYQy3xUqFq4hxcU-EQRzxTn1AjegMhQkVIIIGciQ-Z6KY8Jj4fk0tpVHpbsJs4N0ILcAsQDzIPC14pQGmqWY0loudlwiPN31Q1aHkyq1ES9548b2ohcVpGQn0smJTHLqcDiJHBaMjR9idqvdicoqyyIt36gZb7HtOhzn-_Dr-qjRbZrr9l8DD2Che9mK2tedmx1YdMyfLIbwiHdhdjx6lnswz1_GSTbaL0_dJz9y3AU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+polynomial%E2%80%90time+algorithm+for+simple+undirected+graph+isomorphism&rft.jtitle=Concurrency+and+computation&rft.au=He%2C+Jing&rft.au=Chen%2C+Jinjun&rft.au=Huang%2C+Guangyan&rft.au=Cao%2C+Jie&rft.date=2021-04-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=33&rft.issue=7&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1002%2Fcpe.5484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_5484 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |