A polynomial‐time algorithm for simple undirected graph isomorphism

Summary The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper solves the simple undirected graph isomorphism problem with an algorithmic approach as NP=P and proposes a polynomial‐time solution to check if t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Concurrency and computation Ročník 33; číslo 7; s. 1
Hlavní autoři: He, Jing, Chen, Jinjun, Huang, Guangyan, Cao, Jie, Zhang, Zhiwang, Zheng, Hui, Zhang, Peng, Zarei, Roozbeh, Sansoto, Ferry, Wang, Ruchuan, Ji, Yimu, Fan, Weibei, Xie, Zhijun, Wang, Xiancheng, Guo, Mengjiao, Chi, Chi‐Hung, Souza, Paulo A., Zhang, Jiekui, Li, Youtao, Chen, Xiaojun, Shi, Yong, Green, David, Kersi, Taraporewalla, Van Zundert, André
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 10.04.2021
Témata:
ISSN:1532-0626, 1532-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper solves the simple undirected graph isomorphism problem with an algorithmic approach as NP=P and proposes a polynomial‐time solution to check if two simple undirected graphs are isomorphic or not. Three new representation methods of a graph as vertex/edge adjacency matrix and triple tuple are proposed. A duality of edge and vertex and a reflexivity between vertex adjacency matrix and edge adjacency matrix were first introduced to present the core idea. Beyond this, the mathematical approval is based on an equivalence between permutation and bijection. Because only addition and multiplication operations satisfy the commutative law, we propose a permutation theorem to check fast whether one of two sets of arrays is a permutation of another or not. The permutation theorem was mathematically approved by Integer Factorization Theory, Pythagorean Triples Theorem, and Fundamental Theorem of Arithmetic. For each of two n‐ary arrays, the linear and squared sums of elements were respectively calculated to produce the results.
AbstractList The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper solves the simple undirected graph isomorphism problem with an algorithmic approach as NP=P and proposes a polynomial‐time solution to check if two simple undirected graphs are isomorphic or not. Three new representation methods of a graph as vertex/edge adjacency matrix and triple tuple are proposed. A duality of edge and vertex and a reflexivity between vertex adjacency matrix and edge adjacency matrix were first introduced to present the core idea. Beyond this, the mathematical approval is based on an equivalence between permutation and bijection. Because only addition and multiplication operations satisfy the commutative law, we propose a permutation theorem to check fast whether one of two sets of arrays is a permutation of another or not. The permutation theorem was mathematically approved by Integer Factorization Theory, Pythagorean Triples Theorem, and Fundamental Theorem of Arithmetic. For each of two n‐ary arrays, the linear and squared sums of elements were respectively calculated to produce the results.
Summary The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper solves the simple undirected graph isomorphism problem with an algorithmic approach as NP=P and proposes a polynomial‐time solution to check if two simple undirected graphs are isomorphic or not. Three new representation methods of a graph as vertex/edge adjacency matrix and triple tuple are proposed. A duality of edge and vertex and a reflexivity between vertex adjacency matrix and edge adjacency matrix were first introduced to present the core idea. Beyond this, the mathematical approval is based on an equivalence between permutation and bijection. Because only addition and multiplication operations satisfy the commutative law, we propose a permutation theorem to check fast whether one of two sets of arrays is a permutation of another or not. The permutation theorem was mathematically approved by Integer Factorization Theory, Pythagorean Triples Theorem, and Fundamental Theorem of Arithmetic. For each of two n‐ary arrays, the linear and squared sums of elements were respectively calculated to produce the results.
The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper solves the simple undirected graph isomorphism problem with an algorithmic approach as NP=P and proposes a polynomial‐time solution to check if two simple undirected graphs are isomorphic or not. Three new representation methods of a graph as vertex/edge adjacency matrix and triple tuple are proposed. A duality of edge and vertex and a reflexivity between vertex adjacency matrix and edge adjacency matrix were first introduced to present the core idea. Beyond this, the mathematical approval is based on an equivalence between permutation and bijection. Because only addition and multiplication operations satisfy the commutative law, we propose a permutation theorem to check fast whether one of two sets of arrays is a permutation of another or not. The permutation theorem was mathematically approved by Integer Factorization Theory, Pythagorean Triples Theorem, and Fundamental Theorem of Arithmetic. For each of two n ‐ary arrays, the linear and squared sums of elements were respectively calculated to produce the results.
Author Zarei, Roozbeh
Chen, Xiaojun
Zhang, Peng
Chi, Chi‐Hung
Xie, Zhijun
Fan, Weibei
Zhang, Jiekui
Huang, Guangyan
He, Jing
Ji, Yimu
Shi, Yong
Green, David
Souza, Paulo A.
Van Zundert, André
Wang, Xiancheng
Cao, Jie
Chen, Jinjun
Guo, Mengjiao
Kersi, Taraporewalla
Li, Youtao
Zheng, Hui
Wang, Ruchuan
Zhang, Zhiwang
Sansoto, Ferry
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0001-6488-1052
  surname: He
  fullname: He, Jing
  email: lotusjing@gmail.com
  organization: Swinburne University of Technology
– sequence: 2
  givenname: Jinjun
  orcidid: 0000-0003-1677-9525
  surname: Chen
  fullname: Chen, Jinjun
  organization: Swinburne University of Technology
– sequence: 3
  givenname: Guangyan
  orcidid: 0000-0002-1821-8644
  surname: Huang
  fullname: Huang, Guangyan
  organization: Deakin University
– sequence: 4
  givenname: Jie
  surname: Cao
  fullname: Cao, Jie
  organization: Nanjing University of Finance and Economics
– sequence: 5
  givenname: Zhiwang
  surname: Zhang
  fullname: Zhang, Zhiwang
  organization: Nanjing University of Finance and Economics
– sequence: 6
  givenname: Hui
  surname: Zheng
  fullname: Zheng, Hui
  organization: Swinburne University of Technology
– sequence: 7
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: Swinburne University of Technology
– sequence: 8
  givenname: Roozbeh
  surname: Zarei
  fullname: Zarei, Roozbeh
  organization: Swinburne University of Technology
– sequence: 9
  givenname: Ferry
  surname: Sansoto
  fullname: Sansoto, Ferry
  organization: Swinburne University of Technology
– sequence: 10
  givenname: Ruchuan
  surname: Wang
  fullname: Wang, Ruchuan
  organization: Nanjing University of Posts and Telecommunications
– sequence: 11
  givenname: Yimu
  surname: Ji
  fullname: Ji, Yimu
  organization: Nanjing University of Posts and Telecommunications
– sequence: 12
  givenname: Weibei
  surname: Fan
  fullname: Fan, Weibei
  organization: Nanjing University of Posts and Telecommunications
– sequence: 13
  givenname: Zhijun
  surname: Xie
  fullname: Xie, Zhijun
  organization: Ningbo University
– sequence: 14
  givenname: Xiancheng
  surname: Wang
  fullname: Wang, Xiancheng
  organization: Zhejiang University
– sequence: 15
  givenname: Mengjiao
  orcidid: 0000-0001-7029-5797
  surname: Guo
  fullname: Guo, Mengjiao
  organization: Swinburne University of Technology
– sequence: 16
  givenname: Chi‐Hung
  surname: Chi
  fullname: Chi, Chi‐Hung
  organization: CSIRO
– sequence: 17
  givenname: Paulo A.
  surname: Souza
  fullname: Souza, Paulo A.
  organization: CSIRO
– sequence: 18
  givenname: Jiekui
  surname: Zhang
  fullname: Zhang, Jiekui
  organization: JingQi Smart Healthcare Pty Ltd
– sequence: 19
  givenname: Youtao
  surname: Li
  fullname: Li, Youtao
  organization: JingQi Smart Healthcare Pty Ltd
– sequence: 20
  givenname: Xiaojun
  surname: Chen
  fullname: Chen, Xiaojun
  organization: The Hong Kong Polytechnic University
– sequence: 21
  givenname: Yong
  surname: Shi
  fullname: Shi, Yong
  organization: Research Center on Fictitious Economy and Data Sciences, Chinese Academy of Sciences
– sequence: 22
  givenname: David
  surname: Green
  fullname: Green, David
  organization: Monash University
– sequence: 23
  givenname: Taraporewalla
  surname: Kersi
  fullname: Kersi, Taraporewalla
  organization: Royal Brisbane and Women's Hospital
– sequence: 24
  givenname: André
  surname: Van Zundert
  fullname: Van Zundert, André
  organization: Royal Brisbane and Women's Hospital
BookMark eNp10MtKAzEUBuAgCrZV8BEG3LiZmsuZ27KUeoGCLroPmVzalJlJTKZIdz6Cz-iTOLXiQnR1zuL7z4F_jE4712mErgieEozprfR6mkEJJ2hEMkZTnDM4_dlpfo7GMW4xJgQzMkKLWeJds-9ca0Xz8fbe21Ynolm7YPtNmxgXkmhb3-hk1ykbtOy1StZB-E1io2td8Bsb2wt0ZkQT9eX3nKDV3WI1f0iXT_eP89kylbRikBZQiZwpUyuGAaDOQQGWRsoqK1hR6VJBaRQoXehS5Jmpa5C1yvKqJiarNJug6-NZH9zLTseeb90udMNHTjNcUaBAyKCmRyWDizFow6XtRW9d1wdhG04wPzTFh6b4oakhcPMr4INtRdj_RdMjfbWN3v_r-Px58eU_AfgfezI
CitedBy_id crossref_primary_10_1007_s11227_021_04123_6
crossref_primary_10_1016_j_procs_2022_11_342
crossref_primary_10_1177_10943420211017188
crossref_primary_10_1109_ACCESS_2020_3024974
crossref_primary_10_1108_EC_07_2022_0476
Cites_doi 10.1007/978-3-642-02011-7_21
10.1016/S0303-2647(99)00041-6
10.1126/science.aad7416
10.1007/s00034-010-9248-7
10.1145/2815400.2815410
10.1016/j.jfranklin.2005.04.006
10.1109/IEOM.2015.7093815
10.54870/1551-3440.1166
10.1145/800119.803896
10.1137/120892234
10.1016/0022-0000(82)90009-5
10.1080/10020070512331341960
10.1137/0210015
10.1142/S0218001497000081
10.1016/0262-8856(95)91467-R
10.1145/2897518.2897542
10.1145/321958.321963
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.5484
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage 1
ExternalDocumentID 10_1002_cpe_5484
CPE5484
Genre article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2017YFB1401302; 2017YFB0202200
– fundername: Key R&D Program of Jiangsu
  funderid: BE2017166
– fundername: National Grain Bureau public welfare industry research project
  funderid: 201513004
– fundername: ARC
  funderid: DE140100387; DE130100911
– fundername: National Natural Science Foundation of P. R. China
  funderid: 61572260; 61872196
– fundername: Outstanding Youth of Jiangsu Natural Science Foundation
  funderid: BK20170100
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2934-749a63dfbd30444b64d40cfcc957379e8d48fd4de7e8a65fbb4cbd569b1f59e3
IEDL.DBID DRFUL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481383300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sun Nov 09 07:51:39 EST 2025
Sat Nov 29 01:41:22 EST 2025
Tue Nov 18 21:06:48 EST 2025
Wed Jan 22 16:31:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2934-749a63dfbd30444b64d40cfcc957379e8d48fd4de7e8a65fbb4cbd569b1f59e3
Notes Jing He, John Street, Hawthorn VIC 3122, Australia
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1677-9525
0000-0002-1821-8644
0000-0001-6488-1052
0000-0001-7029-5797
PQID 2509242411
PQPubID 2045170
PageCount 25
ParticipantIDs proquest_journals_2509242411
crossref_citationtrail_10_1002_cpe_5484
crossref_primary_10_1002_cpe_5484
wiley_primary_10_1002_cpe_5484_CPE5484
PublicationCentury 2000
PublicationDate 10 April 2021
PublicationDateYYYYMMDD 2021-04-10
PublicationDate_xml – month: 04
  year: 2021
  text: 10 April 2021
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1976; 23
2015; 4
2011
1995; 13
2009
2011; 30
1974
2007
2006
1979
1999
1982; 25
2012; 3
2001
1997; 11
2005; 342
2015; 44
2017
2016
2015
2009; 6
1999; 52
1981
2005; 15
1981; 10
e_1_2_10_23_1
Garey MR (e_1_2_10_2_1) 1979
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
McKay BD (e_1_2_10_18_1) 1981
Balpande V (e_1_2_10_25_1) 2012; 3
Dana‐Picard T (e_1_2_10_6_1) 2009; 6
e_1_2_10_4_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Aho AV (e_1_2_10_15_1) 1974
Silverman JH (e_1_2_10_35_1) 2006
Balpande V (e_1_2_10_26_1) 2015; 4
e_1_2_10_29_1
Wussing H (e_1_2_10_33_1) 2007
e_1_2_10_27_1
e_1_2_10_28_1
References_xml – year: 2011
– year: 2009
– year: 1981
– volume: 23
  start-page: 433
  issue: 3
  year: 1976
  end-page: 445
  article-title: A fast backtracking algorithm to test directed graphs for isomorphism using distance matrices
  publication-title: J ACM
– year: 2001
– year: 2007
– volume: 44
  start-page: 114
  issue: 1
  year: 2015
  end-page: 159
  article-title: Structure theorem and isomorphism test for graphs with excluded topological subgraphs
  publication-title: SIAM J Comput
– year: 2015
  article-title: Mathematician claims breakthrough in complexity theory
  publication-title: Science News
– volume: 6
  start-page: 477
  issue: 3
  year: 2009
  end-page: 494
  article-title: Graph isomorphisms and matrix similarity: switching between representations
  publication-title: Math Enthus
– year: 1979
– volume: 342
  start-page: 657
  issue: 6
  year: 2005
  end-page: 673
  article-title: Some further development on the eigensystem approach for graph isomorphism detection
  publication-title: J Franklin Inst
– year: 2016
– volume: 3
  issue: 6
  year: 2012
  article-title: Graph invariants and graph isomorphism
  publication-title: IJCTA
– volume: 10
  start-page: 203
  issue: 1
  year: 1981
  end-page: 225
  article-title: Linear time automorphism algorithms for trees, interval graphs, and planar graphs
  publication-title: SIAM J Comput
– volume: 15
  start-page: 181
  issue: 2
  year: 2005
  end-page: 184
  article-title: Algorithm of graph isomorphism with three dimensional DNA graph structures
  publication-title: Prog Nat Sci
– volume: 30
  start-page: 1115
  issue: 5
  year: 2011
  end-page: 1130
  article-title: A new algorithm for isomorphism determination of undirected graphs‐circuit simulation method
  publication-title: Circuits Syst Signal Process
– volume: 13
  start-page: 45
  issue: 1
  year: 1995
  end-page: 60
  article-title: Pattern recognition by homomorphic graph matching using Hopfield neural networks
  publication-title: Image Vis Comput
– year: 2006
– year: 1974
– volume: 11
  start-page: 169
  issue: 01
  year: 1997
  end-page: 203
  article-title: Recent advances in graph matching
  publication-title: Int J Pattern Recognit Artif Intell
– volume: 4
  start-page: 1
  issue: 4
  year: 2015
  end-page: 5
  article-title: An approach of graph isomorphism detection based on vertex‐invariant
  publication-title: Int J Adv Stud Comput Sci Eng
– year: 2017
– volume: 25
  start-page: 42
  issue: 1
  year: 1982
  end-page: 65
  article-title: Isomorphism of graphs of bounded valence can be tested in polynomial time
  publication-title: J Comput Syst Sci
– year: 2015
– year: 1999
– volume: 52
  start-page: 143
  issue: 1‐3
  year: 1999
  end-page: 153
  article-title: Three dimensional DNA structures in computing
  publication-title: Biosystems
– ident: e_1_2_10_19_1
  doi: 10.1007/978-3-642-02011-7_21
– ident: e_1_2_10_28_1
  doi: 10.1016/S0303-2647(99)00041-6
– ident: e_1_2_10_5_1
– ident: e_1_2_10_30_1
– ident: e_1_2_10_13_1
– ident: e_1_2_10_3_1
  doi: 10.1126/science.aad7416
– ident: e_1_2_10_36_1
– ident: e_1_2_10_9_1
  doi: 10.1007/s00034-010-9248-7
– ident: e_1_2_10_12_1
  doi: 10.1145/2815400.2815410
– ident: e_1_2_10_32_1
– volume-title: Practical Graph Isomorphism
  year: 1981
  ident: e_1_2_10_18_1
– ident: e_1_2_10_21_1
– volume: 3
  issue: 6
  year: 2012
  ident: e_1_2_10_25_1
  article-title: Graph invariants and graph isomorphism
  publication-title: IJCTA
– ident: e_1_2_10_8_1
  doi: 10.1016/j.jfranklin.2005.04.006
– volume-title: The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory
  year: 2007
  ident: e_1_2_10_33_1
– ident: e_1_2_10_24_1
– volume-title: Computers and Intractability: A Guide to the Theory of np‐Completeness
  year: 1979
  ident: e_1_2_10_2_1
– volume: 4
  start-page: 1
  issue: 4
  year: 2015
  ident: e_1_2_10_26_1
  article-title: An approach of graph isomorphism detection based on vertex‐invariant
  publication-title: Int J Adv Stud Comput Sci Eng
– ident: e_1_2_10_10_1
  doi: 10.1109/IEOM.2015.7093815
– ident: e_1_2_10_20_1
– volume: 6
  start-page: 477
  issue: 3
  year: 2009
  ident: e_1_2_10_6_1
  article-title: Graph isomorphisms and matrix similarity: switching between representations
  publication-title: Math Enthus
  doi: 10.54870/1551-3440.1166
– ident: e_1_2_10_14_1
  doi: 10.1145/800119.803896
– ident: e_1_2_10_34_1
– ident: e_1_2_10_7_1
  doi: 10.1137/120892234
– ident: e_1_2_10_17_1
  doi: 10.1016/0022-0000(82)90009-5
– ident: e_1_2_10_31_1
– ident: e_1_2_10_27_1
  doi: 10.1080/10020070512331341960
– ident: e_1_2_10_16_1
  doi: 10.1137/0210015
– ident: e_1_2_10_22_1
  doi: 10.1142/S0218001497000081
– ident: e_1_2_10_11_1
  doi: 10.1016/0262-8856(95)91467-R
– ident: e_1_2_10_4_1
– volume-title: A Friendly Introduction to Number Theory
  year: 2006
  ident: e_1_2_10_35_1
– ident: e_1_2_10_29_1
  doi: 10.1145/2897518.2897542
– volume-title: The Design and Analysis of Computer Algorithms
  year: 1974
  ident: e_1_2_10_15_1
– ident: e_1_2_10_23_1
  doi: 10.1145/321958.321963
SSID ssj0011031
Score 2.3198528
Snippet Summary The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper...
The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial‐time solution. This paper solves the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Arrays
equivalence between permutation and bijection
graph isomorphism
Graphical representations
Graphs
Isomorphism
Mathematical analysis
Matrix methods
Multiplication
Permutations
Polynomials
polynomial‐time solution
reflexivity and duality
simple undirected graph
Theorems
vertex/edge adjacency matrix
Title A polynomial‐time algorithm for simple undirected graph isomorphism
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.5484
https://www.proquest.com/docview/2509242411
Volume 33
WOSCitedRecordID wos000481383300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcHbT14sT6xWmUF0VPsJtm8jqW2eJBSpEJvYbMPDaRNaVrBmx_Bz-gncTePVkFB8JTLLITZmZ0_yc5vAC4lo640TduQEmODBIQbPsWOQZjpYotz2ycsHzbhDQb-eBwMy1uVuhem4EOsPrjpzMjPa53gNMraa2gom4kbJbfJJtQtFbakBvXbh_7j_eofgh5gUNBSLQMr3V6hZ7HVrtZ-L0ZrhflVp-aFpt_4zyvuwk4pL1GniIc92BDTfWhUoxtQmckH0OugWZq86p5kmny8vesR84gmT-k8XjxPkFKyKIs1OBgtp0XVExzlcGsUZ-kkVbsTZ5NDGPV7o-6dUU5UMJgq68TwSEBdm8uI25oTF7mEE8wkY4Hj2V4gfE58yQkXnvCp68goIizijhtEpnQCYR9BbZpOxTEg6mHmea7Sm0IjsySVSslFlk24o2q-T5twXXk2ZCVtXA-9SMKCk2yFyjmhdk4TLlaWs4Kw8YNNq9qcsMyxLFTiLdDNLabZhKt8G35dH3aHPf08-avhKWxb-vKKhjriFtQW86U4gy32soiz-XkZaZ-F39ia
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcHbQW9-BbrcwXRU-wm2bzwJNqiWEuRCr2FzT400DalqYI3P4Kf0U_ibh6tgoLgKZdZCLMzO382md8AHEtGXWmatiElxgYJCDd8ih2DMNPFFue2T1g2bMJrt_1eL-jMwXnZC5PzIaYXbjozsvNaJ7i-kK7PqKFsJM6U3ibzUCUqipwKVK_umw-t6UcEPcEgx6VaBlbCvWTPYqterv1ejWYS86tQzSpNc-Vf77gKy4XARBd5RKzBnBiuw0o5vAEVubwBjQs0SvqvuiuZ9j_e3vWQeUT7j8k4njwNkNKyKI01Ohg9D_O6JzjK8NYoTpNBovYnTgeb0G02upfXRjFTwWCqsBPDIwF1bS4jbmtSXOQSTjCTjAWOZ3uB8DnxJSdceMKnriOjiLCIO24QmdIJhL0FlWEyFNuAqIeZ57lKcQoNzZJUKi0XWTbhjqr6Pq3BaenakBW8cT32oh_mpGQrVM4JtXNqcDS1HOWMjR9s9srdCYssS0Ml3wLd3mKaNTjJ9uHX9eFlp6GfO381PITF6-5dK2zdtG93YcnSv7JoxCPeg8pk_Cz2YYG9TOJ0fFCE3Sd_RNyK
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsNAFIYP9YK48S7W6wiiq-gkmVwGV1JbFEspouAuTOaigbYpTRXc-Qg-o0_iTC6tgoLgKpszEM7MyflJcr4f4Ehx5ivbdi2lMLYIJcIKGfYswm0fO0K4IeG52UTQ6YQPD7Rbg_NqFqbgQ0xeuJnKyJ_XpsDlUKizKTWUD-Wp1ttkBuaIR31dlXOXt6379uQjgnEwKHCpjoW1cK_Ys9g5q9Z-70ZTiflVqOadprX8r3tcgaVSYKKL4kSsQk0O1mC5Mm9AZS2vQ_MCDdPeq5lKZr2Pt3djMo9Y7zEdJeOnPtJaFmWJQQej50HR96RAOd4aJVnaT_X-JFl_A-5azbvGlVV6KlhcN3ZiBYQy3xUqFq4hxcU-EQRzxTn1AjegMhQkVIIIGciQ-Z6KY8Jj4fk0tpVHpbsJs4N0ILcAsQDzIPC14pQGmqWY0loudlwiPN31Q1aHkyq1ES9548b2ohcVpGQn0smJTHLqcDiJHBaMjR9idqvdicoqyyIt36gZb7HtOhzn-_Dr-qjRbZrr9l8DD2Che9mK2tedmx1YdMyfLIbwiHdhdjx6lnswz1_GSTbaL0_dJz9y3AU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+polynomial%E2%80%90time+algorithm+for+simple+undirected+graph+isomorphism&rft.jtitle=Concurrency+and+computation&rft.au=He%2C+Jing&rft.au=Chen%2C+Jinjun&rft.au=Huang%2C+Guangyan&rft.au=Cao%2C+Jie&rft.date=2021-04-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=33&rft.issue=7&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1002%2Fcpe.5484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_5484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon