Improving transient performance of discrete‐time model reference adaptive control architectures

Summary Discrete‐time adaptive control algorithms can be executed directly in embedded code unlike their continuous‐time counterparts, which require discretization. However, their designs predicated on quadratic Lyapunov‐based frameworks are quite intricate due to the resulting complexity in the Lya...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of adaptive control and signal processing Jg. 34; H. 7; S. 901 - 918
Hauptverfasser: Dogan, K. Merve, Yucelen, Tansel, Haddad, Wassim M., Muse, Jonathan A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.07.2020
Schlagworte:
ISSN:0890-6327, 1099-1115
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Summary Discrete‐time adaptive control algorithms can be executed directly in embedded code unlike their continuous‐time counterparts, which require discretization. However, their designs predicated on quadratic Lyapunov‐based frameworks are quite intricate due to the resulting complexity in the Lyapunov difference expressions. Therefore, a wide array of available continuous‐time results addressing transient performance issues using adaptive control algorithms cannot be applied or readily extended to the discrete‐time case. In this article, we present a new model reference adaptive control architecture for discrete‐time uncertain dynamical systems. Specifically, the proposed architecture consists of a command governor mechanism that adjusts the trajectory of a given command during the closed‐loop transient response. It is shown that this mechanism is effective in improving transient performance of discrete‐time model reference adaptive control architectures. Using a logarithmic Lyapunov function, we prove Lyapunov stability of the closed‐loop system as well as asymptotic convergence of the system error states involving the difference between the states of the uncertain dynamical system and the states of the reference model, as well as driving the command governor signal to zero.
AbstractList Summary Discrete‐time adaptive control algorithms can be executed directly in embedded code unlike their continuous‐time counterparts, which require discretization. However, their designs predicated on quadratic Lyapunov‐based frameworks are quite intricate due to the resulting complexity in the Lyapunov difference expressions. Therefore, a wide array of available continuous‐time results addressing transient performance issues using adaptive control algorithms cannot be applied or readily extended to the discrete‐time case. In this article, we present a new model reference adaptive control architecture for discrete‐time uncertain dynamical systems. Specifically, the proposed architecture consists of a command governor mechanism that adjusts the trajectory of a given command during the closed‐loop transient response. It is shown that this mechanism is effective in improving transient performance of discrete‐time model reference adaptive control architectures. Using a logarithmic Lyapunov function, we prove Lyapunov stability of the closed‐loop system as well as asymptotic convergence of the system error states involving the difference between the states of the uncertain dynamical system and the states of the reference model, as well as driving the command governor signal to zero.
Discrete‐time adaptive control algorithms can be executed directly in embedded code unlike their continuous‐time counterparts, which require discretization. However, their designs predicated on quadratic Lyapunov‐based frameworks are quite intricate due to the resulting complexity in the Lyapunov difference expressions. Therefore, a wide array of available continuous‐time results addressing transient performance issues using adaptive control algorithms cannot be applied or readily extended to the discrete‐time case. In this article, we present a new model reference adaptive control architecture for discrete‐time uncertain dynamical systems. Specifically, the proposed architecture consists of a command governor mechanism that adjusts the trajectory of a given command during the closed‐loop transient response. It is shown that this mechanism is effective in improving transient performance of discrete‐time model reference adaptive control architectures. Using a logarithmic Lyapunov function, we prove Lyapunov stability of the closed‐loop system as well as asymptotic convergence of the system error states involving the difference between the states of the uncertain dynamical system and the states of the reference model, as well as driving the command governor signal to zero.
Author Muse, Jonathan A.
Haddad, Wassim M.
Dogan, K. Merve
Yucelen, Tansel
Author_xml – sequence: 1
  givenname: K. Merve
  surname: Dogan
  fullname: Dogan, K. Merve
  organization: University of South Florida
– sequence: 2
  givenname: Tansel
  orcidid: 0000-0003-1156-1877
  surname: Yucelen
  fullname: Yucelen, Tansel
  email: yucelen@usf.edu
  organization: University of South Florida
– sequence: 3
  givenname: Wassim M.
  orcidid: 0000-0002-4362-3043
  surname: Haddad
  fullname: Haddad, Wassim M.
  organization: Georgia Institute of Technology
– sequence: 4
  givenname: Jonathan A.
  surname: Muse
  fullname: Muse, Jonathan A.
  organization: U.S. Air Force Research Laboratory
BookMark eNp1kE1OwzAQhS1UJNqCxBEisWGT4knSJF5WFT-VKrEA1pbjTMBVYgfbLeqOI3BGToJDWSFYzeJ9b2bem5CRNhoJOQc6A0qTKyHdLAXIjsgYKGMxAMxHZExLRuM8TYoTMnFuQ2nQIB0Tsep6a3ZKP0feCu0Uah_1aBtjO6ElRqaJauWkRY-f7x9edRh1psY2stigxQERtei92mEkjfbWtJGw8kV5lH5r0Z2S40a0Ds9-5pQ83Vw_Lu_i9f3tarlYxzJhaRYXNBN5kUOdZ0Uq6nnB5pXIaZ5lDS1kXUmaS5rIOmQESBEYlpWEtCqSoNSYp1Nycdgb8rxu0Xm-MVurw0meZMCA0TIrAzU7UNIa50IGLpUXXg2fC9VyoHyokYca-VBjMFz-MvRWdcLu_0LjA_qmWtz_y_HF8uGb_wKKCoUS
CitedBy_id crossref_primary_10_1002_acs_3954
crossref_primary_10_1016_j_automatica_2021_109691
crossref_primary_10_3390_electronics11081243
crossref_primary_10_1109_LCSYS_2022_3183670
crossref_primary_10_1109_TCYB_2024_3387409
crossref_primary_10_1016_j_conengprac_2023_105500
crossref_primary_10_1007_s40313_021_00859_x
crossref_primary_10_1109_LCSYS_2024_3522058
crossref_primary_10_1002_asjc_3326
crossref_primary_10_1109_TNNLS_2023_3287997
Cites_doi 10.3390/machines5010009
10.1109/TAC.1980.1102363
10.1109/TMECH.2012.2193592
10.1109/ACC.1994.751866
10.1137/1.9780898719376
10.1002/acs.4480030206
10.1002/047134608X.W1022.pub2
10.1109/CDC.1999.832826
10.1109/TAC.2012.2218667
10.1109/TAC.2008.920234
10.1109/ACC.2002.1023823
10.1080/00207170310001649900
10.2514/1.55756
10.2514/6.2010-8017
10.1002/acs.2376
10.1007/978-1-4471-4396-3
10.1080/00207178908953402
10.2514/6.2012-4775
10.2514/1.46741
10.1016/S0005-1098(01)00028-0
10.1002/acs.733
10.1515/9781400841042
10.1080/00207170410001699021
10.2514/6.2008-7283
10.1080/00207179.2015.1041001
10.2514/6.2011-6200
10.2514/1.55711
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/acs.3114
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1099-1115
EndPage 918
ExternalDocumentID 10_1002_acs_3114
ACS3114
Genre article
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  funderid: FA9550-20-1-0038
– fundername: Air Force Research Laboratory Aerospace Systems Directorate under the Universal Technology Corporation
  funderid: 17-S8401-02-C1 and 162642-20-25-C1
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3EH
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2934-704a6761d6473ad5795ba60644f07cdbc06c02cd002113e19e8bc13b72c06de63
IEDL.DBID DRFUL
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528661700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0890-6327
IngestDate Fri Jul 25 12:06:49 EDT 2025
Tue Nov 18 21:16:58 EST 2025
Sat Nov 29 05:44:49 EST 2025
Wed Jan 22 16:35:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2934-704a6761d6473ad5795ba60644f07cdbc06c02cd002113e19e8bc13b72c06de63
Notes Funding information
Air Force Office of Scientific Research, FA9550‐20‐1‐0038; Air Force Research Laboratory Aerospace Systems Directorate under the Universal Technology Corporation, 17‐S8401‐02‐C1 and 162642‐20‐25‐C1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4362-3043
0000-0003-1156-1877
PQID 2419190848
PQPubID 996374
PageCount 18
ParticipantIDs proquest_journals_2419190848
crossref_citationtrail_10_1002_acs_3114
crossref_primary_10_1002_acs_3114
wiley_primary_10_1002_acs_3114_ACS3114
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of adaptive control and signal processing
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2010; 33
1980; 25
2013; 27
2012
2011
2010
1995; 10
1998
2008
1996
1995
1994
2003; 17
2005
2006; 4
2002
2008; 53
2012; 35
2008 7283
1999
2004; 77
2013; 18
1989; 50
2013; 58
2013; 36
2015; 88
2019
2016
2001; 37
2018; 51
2013
1989
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Gruenwald BC (e_1_2_8_36_1) 2018; 51
Qu Z (e_1_2_8_6_1) 1998
e_1_2_8_2_1
Yedavalli RK (e_1_2_8_7_1) 2016
e_1_2_8_4_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
Johansson R (e_1_2_8_16_1) 1995; 10
e_1_2_8_19_1
e_1_2_8_13_1
Topsok F (e_1_2_8_32_1) 2006; 4
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_37_1
Antsaklis PJ (e_1_2_8_31_1) 2005
Ioannou PA (e_1_2_8_3_1) 1996
Krstic M (e_1_2_8_33_1) 1995
e_1_2_8_10_1
Zhou K (e_1_2_8_5_1) 1998
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – year: 2008 7283
– year: 2005
– volume: 5
  start-page: 1
  issue: 1
  year: 2017
  end-page: 20
  article-title: Direct uncertainty minimization framework for system performance improvement in model reference adaptive control
  publication-title: Machines
– year: 1989
– start-page: 1773
  year: 2002
  end-page: 1778
– start-page: 487
  year: 1999
  end-page: 492
– year: 1996
– volume: 27
  start-page: 1065
  issue: 12
  year: 2013
  end-page: 1085
  article-title: A new command governor architecture for transient response shaping
  publication-title: Int J Adapt Control Signal Process
– volume: 53
  start-page: 912
  issue: 4
  year: 2008
  end-page: 928
  article-title: Discrete‐time adaptive command following and disturbance rejection with unknown exogenous dynamics
  publication-title: IEEE Trans Automatic Control
– volume: 77
  start-page: 630
  issue: 7
  year: 2004
  end-page: 638
  article-title: Logarithmic Lyapunov functions for direct adaptive stabilization with normalized adaptive laws
  publication-title: Int J Control
– start-page: 6200
  year: 2011
– volume: 17
  start-page: 67
  year: 2003
  end-page: 84
  article-title: Lyapunov‐based backward‐horizon discrete‐time adaptive control
  publication-title: Adaptive Contr Sig Proc
– year: 2016
– volume: 33
  start-page: 289
  issue: 2
  year: 2010
  end-page: 304
  article-title: Adaptive control based on retrospective cost optimization
  publication-title: J Guid Control Dynam
– start-page: 4775
  year: 2012
– volume: 50
  start-page: 859
  issue: 3
  year: 1989
  end-page: 869
  article-title: Global Lyapunov stability and exponential convergence of direct adaptive control
  publication-title: Int J Control
– start-page: 1
  year: 2019
  end-page: 13
– year: 1998
– year: 2010
– start-page: 867
  year: 1994
  end-page: 869
– volume: 36
  start-page: 1194
  issue: 4
  year: 2013
  end-page: 1209
  article-title: Neural network based modified state observer for orbit uncertainty estimation
  publication-title: J Guid Control Dynam
– volume: 35
  start-page: 1370
  issue: 4
  year: 2012
  end-page: 1374
  article-title: Adaptive control with reference model modification
  publication-title: J Guid Control Dynam
– volume: 77
  start-page: 250
  issue: 3
  year: 2004
  end-page: 263
  article-title: A Lyapunov‐based adaptive control framework for discrete‐time non‐linear systems with exogenous disturbances
  publication-title: Int J Control
– year: 2008
– volume: 58
  start-page: 1080
  issue: 4
  year: 2013
  end-page: 1085
  article-title: Low‐frequency learning and fast adaptation in model reference adaptive control
  publication-title: IEEE Trans Automatic Control
– volume: 4
  start-page: 137
  year: 2006
  article-title: Some bounds for the logarithmic function
  publication-title: Inequality Theory Appl
– year: 1995
– volume: 18
  start-page: 867
  issue: 3
  year: 2013
  end-page: 877
  article-title: Electrohydraulic control using neural MRAC based on a modified state observer
  publication-title: IEEE/ASME Tran Mechatron
– volume: 37
  start-page: 857
  issue: 6
  year: 2001
  end-page: 869
  article-title: Input‐to‐state stability for discrete‐time nonlinear systems
  publication-title: Automatica
– volume: 51
  start-page: 130
  issue: 12
  year: 2018
  end-page: 135
  article-title: An adaptive architecture for control of uncertain dynamical systems with unknown actuator bandwidths
  publication-title: IFAC Workshop Networked Auton Air and Space Sys
– volume: 25
  start-page: 449
  issue: 3
  year: 1980
  end-page: 456
  article-title: Discrete‐time multivariable adaptive control
  publication-title: IEEE Trans Automatic Control
– volume: 10
  start-page: 993
  issue: 4
  year: 1995
  end-page: 1013
  article-title: Supermartingale analysis of minimum variance adaptive control
  publication-title: Control Theory Adv Technol
– volume: 88
  start-page: 2305
  issue: 11
  year: 2015
  end-page: 2315
  article-title: On transient performance improvement of adaptive control architectures
  publication-title: Int J Control
– year: 2013
– volume: 4
  start-page: 137
  year: 2006
  ident: e_1_2_8_32_1
  article-title: Some bounds for the logarithmic function
  publication-title: Inequality Theory Appl
– ident: e_1_2_8_37_1
  doi: 10.3390/machines5010009
– ident: e_1_2_8_10_1
  doi: 10.1109/TAC.1980.1102363
– ident: e_1_2_8_27_1
  doi: 10.1109/TMECH.2012.2193592
– volume: 10
  start-page: 993
  issue: 4
  year: 1995
  ident: e_1_2_8_16_1
  article-title: Supermartingale analysis of minimum variance adaptive control
  publication-title: Control Theory Adv Technol
– ident: e_1_2_8_11_1
  doi: 10.1109/ACC.1994.751866
– ident: e_1_2_8_20_1
  doi: 10.1137/1.9780898719376
– ident: e_1_2_8_2_1
  doi: 10.1002/acs.4480030206
– ident: e_1_2_8_8_1
  doi: 10.1002/047134608X.W1022.pub2
– volume-title: Linear Systems
  year: 2005
  ident: e_1_2_8_31_1
– ident: e_1_2_8_35_1
  doi: 10.1109/CDC.1999.832826
– ident: e_1_2_8_22_1
  doi: 10.1109/TAC.2012.2218667
– ident: e_1_2_8_18_1
  doi: 10.1109/TAC.2008.920234
– ident: e_1_2_8_17_1
  doi: 10.1109/ACC.2002.1023823
– volume-title: Robust Control of Uncertain Dynamic Systems
  year: 2016
  ident: e_1_2_8_7_1
– volume-title: Robust Adaptive Control
  year: 1996
  ident: e_1_2_8_3_1
– volume: 51
  start-page: 130
  issue: 12
  year: 2018
  ident: e_1_2_8_36_1
  article-title: An adaptive architecture for control of uncertain dynamical systems with unknown actuator bandwidths
  publication-title: IFAC Workshop Networked Auton Air and Space Sys
– ident: e_1_2_8_13_1
  doi: 10.1080/00207170310001649900
– volume-title: Essentials of Robust Control
  year: 1998
  ident: e_1_2_8_5_1
– ident: e_1_2_8_25_1
  doi: 10.2514/1.55756
– ident: e_1_2_8_21_1
  doi: 10.2514/6.2010-8017
– ident: e_1_2_8_29_1
  doi: 10.1002/acs.2376
– volume-title: Nonlinear and Adaptive Control Design
  year: 1995
  ident: e_1_2_8_33_1
– ident: e_1_2_8_4_1
  doi: 10.1007/978-1-4471-4396-3
– ident: e_1_2_8_15_1
  doi: 10.1080/00207178908953402
– ident: e_1_2_8_24_1
  doi: 10.2514/6.2012-4775
– volume-title: Robust Control of Nonlinear Uncertain Systems
  year: 1998
  ident: e_1_2_8_6_1
– ident: e_1_2_8_9_1
  doi: 10.2514/1.46741
– ident: e_1_2_8_34_1
  doi: 10.1016/S0005-1098(01)00028-0
– ident: e_1_2_8_12_1
  doi: 10.1002/acs.733
– ident: e_1_2_8_30_1
  doi: 10.1515/9781400841042
– ident: e_1_2_8_14_1
  doi: 10.1080/00207170410001699021
– ident: e_1_2_8_19_1
  doi: 10.2514/6.2008-7283
– ident: e_1_2_8_28_1
  doi: 10.1080/00207179.2015.1041001
– ident: e_1_2_8_23_1
  doi: 10.2514/6.2011-6200
– ident: e_1_2_8_26_1
  doi: 10.2514/1.55711
SSID ssj0009913
Score 2.3514771
Snippet Summary Discrete‐time adaptive control algorithms can be executed directly in embedded code unlike their continuous‐time counterparts, which require...
Discrete‐time adaptive control algorithms can be executed directly in embedded code unlike their continuous‐time counterparts, which require discretization....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 901
SubjectTerms Adaptive algorithms
Architecture
Control algorithms
Control stability
discrete‐time uncertain dynamical systems
Dynamical systems
Liapunov functions
Model reference adaptive control
stability analysis
Transient performance
transient performance improvement
Transient response
Title Improving transient performance of discrete‐time model reference adaptive control architectures
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.3114
https://www.proquest.com/docview/2419190848
Volume 34
WOSCitedRecordID wos000528661700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1099-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009913
  issn: 0890-6327
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFL1I60IXvsVqlQiiq6EzSWYyWZZqcSFF1EJ3Q14DgrSlU137CX6jX2IyzwoKgqtZzA2EvO65ubnnAFxEXHMlXU6dhNqjgmJPpib1BJNCWfhPjaC52AQbjeLJhN-XrypdLUzBD1FfuLmdkZ_XboMLmfUa0lChMhtwOg3rNrbLNmxB-_phOL5rKHd5IY4ccxsgEcwq6lkf96q2351RgzBXcWruaIbb_-niDmyV8BL1i_WwC2tmugebK6SD-yDqewS0dI7KFUSieVM_gGYpcrW6CwunP98_nPg8yvVyUC1JgoQWc3dOovKlO1rNR2QHMB7ePA1uvVJowVPW21OP-VRELAp0RBkROmQ8lMJGNpSmPlNaKj9SPlbaAYKAmICbWKqASIbtH20icgit6WxqjgBJRtKUy1QzLGhADY9DKSlxOXfCuKIduKpGPFElC7kTw3hJCv5knNhBS9ygdeC8tpwXzBs_2HSrSUvKvZclFpNwC3NiGnfgMp-eX9sn_cGj-x7_1fAENrALuPP3ul1oLRev5hTW1dvyOVuclSvwC0_v4YA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFL2UVlAXvsVq1Qiiq6Ezk8xkgqtSLRVrEW2huyGvAUHa0lbXfoLf6JeYzKOtoCC4msUkEJJ7c89Ncs8BOA-ZYlLYO3UcKIdw4jsi0YnDqeDSwH-iOUnFJmi3Gw0G7KEEV0UtTMYPMT9ws56R7tfWwe2BdH3BGsrl1GScVsS6QowVGfOuXD-2-p0F5y7L1JEjZjIk7NOCe9b160Xf79FoATGXgWoaaVqb_xrjFmzkABM1MovYhpIe7sD6Eu3gLvD5SQKa2VBlSyLReFFBgEYJstW6EwOoP98_rPw8ShVz0FyUBHHFx3anRPlbd7R8IzHdg37rptdsO7nUgiNNvCcOdQkPaeipkFDMVUBZILjJbQhJXCqVkG4oXV8qCwk8rD2mIyE9LKhv_igd4n0oD0dDfQBIUJwkTCSK-px4RLMoEIJge-uOKZOkCpfFlMcy5yG3chgvccag7Mdm0mI7aVU4m7ccZ9wbP7SpFasW5943jQ0qYQboRCSqwkW6Pr_2jxvNJ_s9_GvDU1ht9-47cee2e3cEa75Nv9PXuzUozyav-hhW5NvseTo5yc3xC8295XA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFL2UVkQXvsVq1Qiiq6Ezk3QywVWpFsVSilrobshrQJC2tNW1n-A3-iUm86ygILiaxSQQbnJzz01yzwE4D5hiUtg7ddxSDuHEd0SsY4dTwaWB_0RzkohN0H4_HI3YoAJXeS1Myg9RHLhZz0j2a-vgeqriZskayuXcZJxWxLpGrIZMFWrXD91hr-TcZak6cshMhoR9mnPPun4z7_s9GpUQcxmoJpGmu_mvMW7BRgYwUTtdEdtQ0eMdWF-iHdwFXpwkoIUNVbYkEk3LCgI0iZGt1p0ZQP35_mHl51GimIMKURLEFZ_anRJlb93R8o3EfA-G3Zunzq2TSS040sR74lCX8IAGngoIxVy1KGsJbnIbQmKXSiWkG0jXl8pCAg9rj-lQSA8L6ps_Sgd4H6rjyVgfABIUxzETsaI-Jx7RLGwJQbC9dceUSVKHy9zkkcx4yK0cxkuUMij7kTFaZI1Wh7Oi5TTl3vihTSOftSjzvnlkUAkzQCckYR0ukvn5tX_U7jza7-FfG57C6uC6G_Xu-vdHsObb7Dt5vNuA6mL2qo9hRb4tnuezk2w1fgGBL-Tr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+transient+performance+of+discrete%E2%80%90time+model+reference+adaptive+control+architectures&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Dogan%2C+K.+Merve&rft.au=Yucelen%2C+Tansel&rft.au=Haddad%2C+Wassim+M.&rft.au=Muse%2C+Jonathan+A.&rft.date=2020-07-01&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=34&rft.issue=7&rft.spage=901&rft.epage=918&rft_id=info:doi/10.1002%2Facs.3114&rft.externalDBID=10.1002%252Facs.3114&rft.externalDocID=ACS3114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon