A model/solution‐adaptive explicit‐implicit time‐marching technique for wave propagation analysis
Summary In this work, an explicit‐implicit time‐marching procedure with model/ solution‐adaptive time integration parameters is proposed for the analysis of hyperbolic models. The two time integrators of the methodology are locally evaluated, enabling their different spatial and temporal distributio...
Gespeichert in:
| Veröffentlicht in: | International journal for numerical methods in engineering Jg. 119; H. 7; S. 590 - 617 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bognor Regis
Wiley Subscription Services, Inc
17.08.2019
|
| Schlagworte: | |
| ISSN: | 0029-5981, 1097-0207 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Summary
In this work, an explicit‐implicit time‐marching procedure with model/ solution‐adaptive time integration parameters is proposed for the analysis of hyperbolic models. The two time integrators of the methodology are locally evaluated, enabling their different spatial and temporal distributions. The first parameter defines the explicit/implicit subdomains of the model, and it is defined in a way that stability is always ensured, as well as period elongation errors are reduced; the second parameter controls the dissipative properties of the methodology, allowing spurious high‐frequency modes to be properly eliminated, rendering reduced amplitude decay errors. In addition, the proposed explicit‐implicit approach allows contracted systems of equations to be obtained, reducing the computational effort of the analysis. The main features of the novel methodology can be summarized as follows: (i) it is simple; (ii) it is locally defined; (iii) it has guaranteed stability; (iv) it is an efficient noniterative single‐step procedure; (v) it provides enhanced accuracy; (vi) it enables advanced controllable algorithmic dissipation in the higher modes; (vii) it considers a link between the temporal and the spatial discretization; (viii) it stands as a single‐solve framework based on reduced systems of equations; (ix) it is truly self‐starting; and (x) it is entirely automatic. |
|---|---|
| AbstractList | Summary
In this work, an explicit‐implicit time‐marching procedure with model/ solution‐adaptive time integration parameters is proposed for the analysis of hyperbolic models. The two time integrators of the methodology are locally evaluated, enabling their different spatial and temporal distributions. The first parameter defines the explicit/implicit subdomains of the model, and it is defined in a way that stability is always ensured, as well as period elongation errors are reduced; the second parameter controls the dissipative properties of the methodology, allowing spurious high‐frequency modes to be properly eliminated, rendering reduced amplitude decay errors. In addition, the proposed explicit‐implicit approach allows contracted systems of equations to be obtained, reducing the computational effort of the analysis. The main features of the novel methodology can be summarized as follows: (i) it is simple; (ii) it is locally defined; (iii) it has guaranteed stability; (iv) it is an efficient noniterative single‐step procedure; (v) it provides enhanced accuracy; (vi) it enables advanced controllable algorithmic dissipation in the higher modes; (vii) it considers a link between the temporal and the spatial discretization; (viii) it stands as a single‐solve framework based on reduced systems of equations; (ix) it is truly self‐starting; and (x) it is entirely automatic. In this work, an explicit‐implicit time‐marching procedure with model/ solution‐adaptive time integration parameters is proposed for the analysis of hyperbolic models. The two time integrators of the methodology are locally evaluated, enabling their different spatial and temporal distributions. The first parameter defines the explicit/implicit subdomains of the model, and it is defined in a way that stability is always ensured, as well as period elongation errors are reduced; the second parameter controls the dissipative properties of the methodology, allowing spurious high‐frequency modes to be properly eliminated, rendering reduced amplitude decay errors. In addition, the proposed explicit‐implicit approach allows contracted systems of equations to be obtained, reducing the computational effort of the analysis. The main features of the novel methodology can be summarized as follows: (i) it is simple; (ii) it is locally defined; (iii) it has guaranteed stability; (iv) it is an efficient noniterative single‐step procedure; (v) it provides enhanced accuracy; (vi) it enables advanced controllable algorithmic dissipation in the higher modes; (vii) it considers a link between the temporal and the spatial discretization; (viii) it stands as a single‐solve framework based on reduced systems of equations; (ix) it is truly self‐starting; and (x) it is entirely automatic. |
| Author | Soares, Delfim |
| Author_xml | – sequence: 1 givenname: Delfim orcidid: 0000-0002-5756-9359 surname: Soares fullname: Soares, Delfim email: delfim.soares@ufjf.edu.br organization: Federal University of Juiz de Fora |
| BookMark | eNp1UEtOwzAUtFCRaAsSR4jEhk3aZzs_L6uqfKQCG1hbjuO0rpI42CmlO47AGTkJbsMKwer5Pc-MZmaEBo1pFEKXGCYYgEybWk0SSKITNMTA0hAIpAM09F8sjFmGz9DIuQ0AxjHQIVrNgtoUqpo6U207bZqvj09RiLbTbypQ722lpe78Tdf9M-h0rfxeCyvXulkFnZLrRr9uVVAaG-yEp7XWtGIlDmqBaES1d9qdo9NSVE5d_MwxerlZPM_vwuXT7f18tgwlYTQKY1oQjPOC0DSXMo5UVKRJVOKSAjDmA-akZJnImExEVkKRkAInOUQ5qEJJHNExuup1vQlvynV8Y7bWm3CckDimFCcReNR1j5LWOGdVyVurfaQ9x8APNXJfIz_U6KGTX1DfwjFbZ4Wu_iKEPWGnK7X_V5g_PiyO-G_93Ym9 |
| CitedBy_id | crossref_primary_10_1002_nme_6859 crossref_primary_10_1007_s00366_024_02025_8 crossref_primary_10_1007_s11071_020_06101_8 crossref_primary_10_1016_j_cma_2021_114077 crossref_primary_10_1016_j_cma_2022_115188 crossref_primary_10_1007_s00366_020_01245_y crossref_primary_10_3390_acoustics6030036 crossref_primary_10_1016_j_soildyn_2021_106962 crossref_primary_10_1007_s00366_021_01290_1 crossref_primary_10_1016_j_cma_2020_113095 crossref_primary_10_1088_2399_6528_ad9f1f crossref_primary_10_1007_s11071_021_06720_9 crossref_primary_10_1007_s00366_020_01129_1 crossref_primary_10_1016_j_cma_2020_112882 crossref_primary_10_1016_j_cma_2020_113630 crossref_primary_10_1007_s00366_021_01565_7 crossref_primary_10_1007_s00366_023_01876_x crossref_primary_10_1016_j_ijsolstr_2023_112260 crossref_primary_10_1016_j_cma_2022_115324 crossref_primary_10_1007_s00366_020_01184_8 crossref_primary_10_1016_j_cma_2022_115711 crossref_primary_10_1016_j_cma_2021_114436 crossref_primary_10_1016_j_cma_2020_113647 crossref_primary_10_1016_j_compstruc_2022_106921 |
| Cites_doi | 10.1002/nme.1620320502 10.1002/nme.1620290205 10.1002/eqe.4290180505 10.1002/1097-0207(20010110)50:1<199::AID-NME132>3.0.CO;2-A 10.1002/nme.1620151011 10.1016/j.apnum.2009.12.005 10.2514/8.1722 10.1002/nme.4818 10.1002/nme.4608 10.1002/nme.4285 10.1002/nme.4495 10.1016/j.compstruc.2017.04.007 10.1007/s00466-017-1397-0 10.1006/jcph.1995.1159 10.1002/nme.1620330605 10.1002/nme.332 10.12989/sem.2004.17.6.735 10.1016/j.compstruc.2010.10.011 10.1002/nme.1620290705 10.1002/nme.1210 10.1115/1.3153814 10.1007/s00466-009-0413-4 10.1016/j.compstruc.2005.08.001 10.1002/nme.4869 10.1007/s00707-017-2104-0 10.1016/0045-7825(92)90115-Z 10.1002/(SICI)1097-0207(19971230)40:24<4501::AID-NME266>3.0.CO;2-U 10.1002/(SICI)1097-0207(19970815)40:15<2841::AID-NME193>3.0.CO;2-S 10.1002/nme.5276 10.1016/j.cma.2014.08.007 10.1061/JMCEA3.0000098 10.1002/nme.1620372303 10.1002/nme.1293 10.1007/BF00913408 10.1016/j.jcp.2007.08.024 10.1016/0045-7825(79)90086-0 10.1016/0045-7825(95)00791-X 10.1002/nme.1620121008 10.1016/S0045-7825(96)01036-5 10.1016/0045-7949(95)00256-1 10.1002/nme.637 10.1007/BF02736209 10.1016/j.compstruc.2010.03.002 10.1115/1.2900803 10.1115/1.3153671 10.1002/eqe.4290050306 10.1002/nme.5329 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/nme.6064 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics |
| EISSN | 1097-0207 |
| EndPage | 617 |
| ExternalDocumentID | 10_1002_nme_6064 NME6064 |
| Genre | article |
| GrantInformation_xml | – fundername: CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) – fundername: FAPEMIG (Fundação de Amparo à Pesquisa do mEstado de Minas Gerais) – fundername: CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) |
| GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2934-53d211bd237bcc54e4d764f1f30099100b2f98a89c6a8f0d62d16b04b0edec143 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475387900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5981 |
| IngestDate | Fri Jul 25 12:05:09 EDT 2025 Sat Nov 29 06:43:56 EST 2025 Tue Nov 18 22:21:11 EST 2025 Wed Jan 22 16:40:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2934-53d211bd237bcc54e4d764f1f30099100b2f98a89c6a8f0d62d16b04b0edec143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5756-9359 |
| PQID | 2255331640 |
| PQPubID | 996376 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_2255331640 crossref_primary_10_1002_nme_6064 crossref_citationtrail_10_1002_nme_6064 wiley_primary_10_1002_nme_6064_NME6064 |
| PublicationCentury | 2000 |
| PublicationDate | 17 August 2019 |
| PublicationDateYYYYMMDD | 2019-08-17 |
| PublicationDate_xml | – month: 08 year: 2019 text: 17 August 2019 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal for numerical methods in engineering |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2009; 44 2015; 283 1959; 85 1980; 47 2001; 50 1997; 40 2017; 60 2007; 227 1979; 17‐18 1978; 12 2002; 53 2015; 105 1991; 32 2015; 102 2018; 229 1992; 100 2000; 7 2005; 62 2005; 63 1993 2005; 83 1992; 33 1996; 59 2003; 56 2010; 60 2010; 88 2017; 109 1980; 15 1950; 17 2012; 91 2000 2004; 17 1990; 29 2013; 95 1993; 30 1995; 126 1994; 37 2011; 89 1996; 137 1995; 120 2017; 189 1992; 43 1977; 5 2014; 97 1989; 18 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 Hughes TJR (e_1_2_7_48_1) 2000 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 Soares D (e_1_2_7_20_1) 2015; 105 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_36_1 Clough RW (e_1_2_7_47_1) 1993 e_1_2_7_38_1 |
| References_xml | – volume: 227 start-page: 851 year: 2007 end-page: 870 article-title: Explicit time‐domain approaches based on numerical Green's functions computed by finite differences: the ExGA family publication-title: J Comput Phys – volume: 53 start-page: 1175 year: 2002 end-page: 1193 article-title: Higher‐order accurate time‐step‐integration algorithms by post‐integration techniques publication-title: Int J Numer Methods Eng – volume: 189 start-page: 1 year: 2017 end-page: 11 article-title: An effective adaptive time domain formulation to analyse acoustic‐elastodynamic coupled models publication-title: Comput Struct – volume: 15 start-page: 1562 year: 1980 end-page: 1566 article-title: An alpha modification of Newmark's method publication-title: Int J Numer Methods Eng – volume: 43 start-page: 757 year: 1992 end-page: 792 article-title: The discrete energy‐momentum method. Conserving algorithms for nonlinear elastodynamics publication-title: Zeitschrift angewandte Math Physik – volume: 59 start-page: 273 year: 1996 end-page: 281 article-title: Subcycling integration with non‐integer time steps for structural dynamics problems publication-title: Comput Struct – volume: 29 start-page: 1441 year: 1990 end-page: 1454 article-title: A robust self‐starting explicit computational methodology for structural dynamic applications: architecture and representations publication-title: Int J Numer Methods Eng – volume: 40 start-page: 2841 year: 1997 end-page: 2855 article-title: Analysis and implementation of a new constant acceleration subcycling algorithm publication-title: Int J Numer Methods Eng – volume: 62 start-page: 664 year: 2005 end-page: 681 article-title: A time domain FEM approach based on implicit Green's functions for non‐linear dynamic analysis publication-title: Int J Numer Methods Eng – volume: 5 start-page: 283 year: 1977 end-page: 292 article-title: Improved numerical dissipation for time integration algorithms in structural dynamics publication-title: Earthq Eng Struct Dyn – volume: 102 start-page: 1750 year: 2015 end-page: 1760 article-title: A stabilized central difference scheme for dynamic analysis publication-title: Int J Numer Methods Eng – volume: 40 start-page: 4501 year: 1997 end-page: 4527 article-title: A precise time‐step integration method by step‐response and impulsive‐response matrices for dynamic problems publication-title: Int J Numer Methods Eng – volume: 37 start-page: 3961 year: 1994 end-page: 3976 article-title: A new family of explicit time integration methods for linear and non‐linear structural dynamics publication-title: Int J Numer Methods Eng – volume: 17 start-page: 540 year: 1950 end-page: 550 article-title: A recurrence matrix solution for the dynamic response of elastic aircraft publication-title: J Aeronaut Sci – volume: 109 start-page: 1344 year: 2017 end-page: 1368 article-title: A simple and effective single‐step time marching technique based on adaptive time integrators publication-title: Int J Numer Methods Eng – volume: 7 start-page: 67 year: 2000 end-page: 286 article-title: The time dimension: a theory towards the evolution, classification, characterization and design of computational algorithms for transient/dynamic applications publication-title: Arch Comput Methods Eng – volume: 100 start-page: 63 year: 1992 end-page: 116 article-title: Exact energy‐momentum conserving algorithms and symplectic schemes for nonlinear dynamics publication-title: Comput Methods Appl Mech Eng – volume: 32 start-page: 943 year: 1991 end-page: 955 article-title: A modified Euler method for dynamic analysis publication-title: Int J Numer Methods Eng – volume: 47 start-page: 919 year: 1980 end-page: 926 article-title: Partitioned transient analysis procedures for coupled‐field problems: accuracy analysis publication-title: J Appl Mech – volume: 283 start-page: 1138 year: 2015 end-page: 1166 article-title: A simple and effective new family of time marching procedures for dynamics publication-title: Comput Methods Appl Mech Eng – volume: 137 start-page: 175 year: 1996 end-page: 188 article-title: Explicit time integration algorithms for structural dynamics with optimal numerical dissipation publication-title: Comput Methods Appl Mech Eng – volume: 44 start-page: 825 year: 2009 end-page: 843 article-title: Coupling subdomains with heterogeneous time integrators and incompatible time steps publication-title: Comput Mech – volume: 33 start-page: 1165 year: 1992 end-page: 1180 article-title: A new explicit variable time‐integration self‐starting methodology for computational structural dynamics publication-title: Int J Numer Methods Eng – volume: 102 start-page: 202 year: 2015 end-page: 232 article-title: Heterogeneous asynchronous time integrators for computational structural dynamics publication-title: Int J Numer Methods Eng – volume: 83 start-page: 2513 year: 2005 end-page: 2534 article-title: On a composite implicit time integration procedure for nonlinear dynamics publication-title: Comput Struct – volume: 47 start-page: 370 year: 1980 end-page: 376 article-title: Partitioned transient analysis procedures for coupled‐field problems: stability analysis publication-title: J Appl Mech – year: 1993 – volume: 89 start-page: 266 year: 2011 end-page: 276 article-title: A new family of time marching procedures based on Green's function matrices publication-title: Comput Struct – volume: 126 start-page: 155 year: 1995 end-page: 178 article-title: Automatic time step control algorithms for structural dynamics publication-title: Comput Methods Appl Mech Eng – volume: 85 start-page: 67 year: 1959 end-page: 94 article-title: A method of computation for structural dynamics publication-title: J Eng Mech Div – volume: 29 start-page: 275 year: 1990 end-page: 290 article-title: Higher derivative explicit one step methods for non‐linear dynamic problems. Part I: design and theory publication-title: Int J Numer Methods Eng – volume: 12 start-page: 1575 year: 1978 end-page: 1586 article-title: Stability of explicit‐implicit mesh partitions in time integration publication-title: Int J Numer Methods Eng – volume: 17‐18 start-page: 159 year: 1979 end-page: 182 article-title: Implicit‐explicit finite elements in nonlinear transient analysis publication-title: Comput Methods Appl Mech Eng – volume: 18 start-page: 643 year: 1989 end-page: 653 article-title: An improved implicit‐explicit time integration method for structural dynamics publication-title: Earthq Eng Struct Dyn – year: 2000 – volume: 109 start-page: 155 year: 2017 end-page: 173 article-title: A selective mass scaling method for shear wave propagation analyses in nearly incompressible materials publication-title: Int J Numer Methods Eng – volume: 120 start-page: 206 year: 1995 end-page: 230 article-title: High‐order Taylor‐Galerkin methods for linear hyperbolic systems publication-title: J Comput Phys – volume: 50 start-page: 199 year: 2001 end-page: 225 article-title: Multi‐time‐step explicit‐implicit method for non‐linear structural dynamics publication-title: Int J Numer Methods Eng – volume: 97 start-page: 799 year: 2014 end-page: 818 article-title: A multiscale mass scaling approach for explicit time integration using proper orthogonal decomposition publication-title: Int J Numer Methods Eng – volume: 95 start-page: 212 year: 2013 end-page: 237 article-title: A method for multidimensional wave propagation analysis via component‐wise partition of longitudinal and shear waves publication-title: Int J Numer Methods Eng – volume: 105 start-page: 341 year: 2015 end-page: 360 article-title: A second‐order time‐marching procedure with enhanced accuracy publication-title: Comput Model Eng Sci – volume: 60 start-page: 277 year: 2010 end-page: 292 article-title: Direct time integration algorithm with controllable numerical dissipation for structural dynamics: two‐step lambda method publication-title: Appl Numer Math – volume: 63 start-page: 1436 year: 2005 end-page: 1445 article-title: Selective mass scaling for explicit finite element analyses publication-title: Int J Numer Methods Eng – volume: 60 start-page: 1 year: 2017 end-page: 21 article-title: A new heterogeneous asynchronous explicit‐implicit time integrator for nonsmooth dynamics publication-title: Comput Mech – volume: 56 start-page: 1883 year: 2003 end-page: 1912 article-title: A methodology for the generation of low‐cost higher‐order methods for linear dynamics publication-title: Int J Numer Methods Eng – volume: 17 start-page: 735 year: 2004 end-page: 749 article-title: A fourth order finite difference method applied to elastodynamics: finite element and boundary element formulations publication-title: Struct Eng Mech – volume: 88 start-page: 755 year: 2010 end-page: 772 article-title: A new family of explicit methods for linear structural dynamics publication-title: Comput Struct – volume: 91 start-page: 622 year: 2012 end-page: 643 article-title: A method for computation of discontinuous wave propagation in heterogeneous solids: basic algorithm description and application to one‐dimensional problems publication-title: Int J Numer Methods Eng – volume: 30 start-page: 371 year: 1993 end-page: 375 article-title: A time integration method for structural dynamics with improved numerical dissipation: the generalized α method publication-title: J Appl Mech – volume: 229 start-page: 2097 year: 2018 end-page: 2116 article-title: Nonlinear dynamic analysis considering explicit and implicit time marching techniques with adaptive time integration parameters publication-title: Acta Mech – ident: e_1_2_7_5_1 doi: 10.1002/nme.1620320502 – ident: e_1_2_7_6_1 doi: 10.1002/nme.1620290205 – ident: e_1_2_7_40_1 doi: 10.1002/eqe.4290180505 – ident: e_1_2_7_41_1 doi: 10.1002/1097-0207(20010110)50:1<199::AID-NME132>3.0.CO;2-A – ident: e_1_2_7_10_1 doi: 10.1002/nme.1620151011 – ident: e_1_2_7_27_1 doi: 10.1016/j.apnum.2009.12.005 – ident: e_1_2_7_12_1 doi: 10.2514/8.1722 – ident: e_1_2_7_44_1 doi: 10.1002/nme.4818 – ident: e_1_2_7_30_1 doi: 10.1002/nme.4608 – ident: e_1_2_7_36_1 doi: 10.1002/nme.4285 – ident: e_1_2_7_37_1 doi: 10.1002/nme.4495 – ident: e_1_2_7_33_1 doi: 10.1016/j.compstruc.2017.04.007 – ident: e_1_2_7_42_1 doi: 10.1007/s00466-017-1397-0 – ident: e_1_2_7_19_1 doi: 10.1006/jcph.1995.1159 – ident: e_1_2_7_49_1 doi: 10.1002/nme.1620330605 – ident: e_1_2_7_18_1 doi: 10.1002/nme.332 – ident: e_1_2_7_3_1 doi: 10.12989/sem.2004.17.6.735 – ident: e_1_2_7_23_1 doi: 10.1016/j.compstruc.2010.10.011 – ident: e_1_2_7_7_1 doi: 10.1002/nme.1620290705 – ident: e_1_2_7_22_1 doi: 10.1002/nme.1210 – ident: e_1_2_7_35_1 doi: 10.1115/1.3153814 – ident: e_1_2_7_43_1 doi: 10.1007/s00466-009-0413-4 – ident: e_1_2_7_25_1 doi: 10.1016/j.compstruc.2005.08.001 – ident: e_1_2_7_28_1 doi: 10.1002/nme.4869 – volume: 105 start-page: 341 year: 2015 ident: e_1_2_7_20_1 article-title: A second‐order time‐marching procedure with enhanced accuracy publication-title: Comput Model Eng Sci – ident: e_1_2_7_32_1 doi: 10.1007/s00707-017-2104-0 – ident: e_1_2_7_50_1 doi: 10.1016/0045-7825(92)90115-Z – ident: e_1_2_7_14_1 doi: 10.1002/(SICI)1097-0207(19971230)40:24<4501::AID-NME266>3.0.CO;2-U – ident: e_1_2_7_15_1 doi: 10.1002/(SICI)1097-0207(19970815)40:15<2841::AID-NME193>3.0.CO;2-S – ident: e_1_2_7_31_1 doi: 10.1002/nme.5276 – ident: e_1_2_7_45_1 doi: 10.1016/j.cma.2014.08.007 – ident: e_1_2_7_11_1 doi: 10.1061/JMCEA3.0000098 – ident: e_1_2_7_4_1 doi: 10.1002/nme.1620372303 – ident: e_1_2_7_29_1 doi: 10.1002/nme.1293 – ident: e_1_2_7_51_1 doi: 10.1007/BF00913408 – ident: e_1_2_7_24_1 doi: 10.1016/j.jcp.2007.08.024 – ident: e_1_2_7_39_1 doi: 10.1016/0045-7825(79)90086-0 – ident: e_1_2_7_21_1 doi: 10.1016/0045-7825(95)00791-X – ident: e_1_2_7_38_1 doi: 10.1002/nme.1620121008 – ident: e_1_2_7_2_1 doi: 10.1016/S0045-7825(96)01036-5 – ident: e_1_2_7_16_1 doi: 10.1016/0045-7949(95)00256-1 – ident: e_1_2_7_17_1 doi: 10.1002/nme.637 – ident: e_1_2_7_13_1 doi: 10.1007/BF02736209 – volume-title: Dynamics of Structures year: 1993 ident: e_1_2_7_47_1 – ident: e_1_2_7_26_1 doi: 10.1016/j.compstruc.2010.03.002 – ident: e_1_2_7_8_1 doi: 10.1115/1.2900803 – ident: e_1_2_7_34_1 doi: 10.1115/1.3153671 – ident: e_1_2_7_9_1 doi: 10.1002/eqe.4290050306 – ident: e_1_2_7_46_1 doi: 10.1002/nme.5329 – volume-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis year: 2000 ident: e_1_2_7_48_1 |
| SSID | ssj0011503 |
| Score | 2.4194148 |
| Snippet | Summary
In this work, an explicit‐implicit time‐marching procedure with model/ solution‐adaptive time integration parameters is proposed for the analysis of... In this work, an explicit‐implicit time‐marching procedure with model/ solution‐adaptive time integration parameters is proposed for the analysis of hyperbolic... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 590 |
| SubjectTerms | accuracy adaptive parameters Elongation explicit/implicit analysis hyperbolic models Integrators Mathematical models Methodology Parameters Stability Time integration time integration methods Wave propagation |
| Title | A model/solution‐adaptive explicit‐implicit time‐marching technique for wave propagation analysis |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6064 https://www.proquest.com/docview/2255331640 |
| Volume | 119 |
| WOSCitedRecordID | wos000475387900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 issn: 0029-5981 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7U9aAH3-L6IoLoqW4fSR9H0V086CLigreSV5cFd13s-jj6E_yN_hInbVpXUBA8tSkJNMnM5JtM8g3AYaZ8qaMM3ZJESIdqjzk8Q58H0bIOPO2qQIoi2UTU7cZ3d8m1PVVp7sKU_BD1hpvRjMJeGwXnIm9NkYYO9QmibzoLDXOnCh2vxvlNp3dZxxAQ6gTVAQ-WxF5FPev6rart98XoC2FO49Rioeks_-cXV2DJwktyWsrDKszo0RosW6hJrCLna7A4xUOIpauavDVfh_4pKfLjtCqx_Hh754qPjWEk-tUEvAcT_DYYlq_E5KfH8rAISoz6pOaFJYiIyQvHZthptFyFFBBueVA2oNdp355dODYfgyMRFFCHBQrdRaH8IBJSMqqpikKaeVlgcCb2WfhZEvM4kSGPM1eFvvJC4VLhaqUlArNNmBs9jPQWEM2YYEop9LciKn30-rIEgZVHBQsRsLEmHFcTk0pLVm5yZtynJc2yn-LYpmZsm3BQ1xyXBB0_1Nmt5ja1KpqnaMgQ6qK36DbhqJjFX9un3au2eW7_teIOLCCwSszesxftwtzk8Unvwbx8ngzyx30rqJ_zq_DL |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPcwrqg_OK06kRRJ_qekl6waehG4rbEJngW2kuHQM3xc3Lox_Bz-gn8aQ3JygIPrUpCTTJSfI7Sfs_AAextIXyYnRLAi4MqixmRDH6PEjLyrGUKR3Bk2ATXrfr394GVyU4yf-FSfUhig03PTKS-VoPcL0hXZ9SDR2qY8RvOgOz1HU8vwyzZ9etm3ZxiICs4-RfeLDAt3LtWdOu52W_r0ZfiDkNqslK06r86x2XYSkDTNJILWIFSmq0CpUMNkk2lMersDilRIipTiHfOl6DfoMkEXLquWF-vL1HMnrQUyNRr_rIezDBZ4Nhekt0hHpMD5NjiVGfFMqwBJmYvERYDGuNc1diByTKlFDW4abV7J2eG1lEBkMgFlCDORIdRi5tx-NCMKqo9FwaW7GjSRPrzO048CM_EG7kx6Z0bWm53KTcVFIJRLMNKI_uR2oTiGKMMyklelweFTb6fXGAaGVRzlxENlaFo7xnQpHJleuoGXdhKrRsh9i2oW7bKuwXOR9SiY4f8tTyzg2zQToOcSpD2EV_0azCYdKNv5YPu52mvm79NeMezJ_3Ou2wfdG93IYFxKxA70RbXg3Kk8cntQNz4nkyGD_uZlb7CVBZ9Ls |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JSwMxFMcftYrowbpiXSOInsbOksyCJ9EWRS1FFLwNk00KthZbl6Mfwc_oJ_FlNisoCJ5mMiQwSV6S30tm_g9gV0tXqECjWxJxYVHlMCvR6PMgLSvPUbb0BE-DTQTtdnh7G3UqcFj8C5PpQ5QbbmZkpPO1GeBqIHVjTDW0pw4Qv-kETFIWMVqFyZOr1s1FeYiArOMVX3iwKHQK7VnbbRRlv69GX4g5DqrpStOq_esd52EuB0xylFnEAlRUfxFqOWySfCgPF2F2TIkQU5elfOtwCe6OSBohp1EY5sfbeyKTgZkaiXo1R97dET7r9rJbYiLUY7qXHkv070ipDEuQiclLgsWw1jh3pXZAklwJZRluWs3r41Mrj8hgCcQCajFPosPIpesFXAhGFZWBT7WjPUOaWGfu6ihMwkj4Saht6bvS8blNua2kEohmK1DtP_TVKhDFGGdSSvS4Aipc9Pt0hGjlUM58RDZWh_2iZ2KRy5WbqBn3cSa07MbYtrFp2zrslDkHmUTHD3k2is6N80E6jHEqQ9hFf9Guw17ajb-Wj9uXTXNd-2vGbZjunLTii7P2-TrMIGVFZiPaCTagOnp8UpswJZ5H3eHjVm60n-5C9DY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model%2Fsolution%E2%80%90adaptive+explicit%E2%80%90implicit+time%E2%80%90marching+technique+for+wave+propagation+analysis&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Soares%2C+Delfim&rft.date=2019-08-17&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=119&rft.issue=7&rft.spage=590&rft.epage=617&rft_id=info:doi/10.1002%2Fnme.6064&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |