Mesh sampling and weighting for the hyperreduction of nonlinear Petrov–Galerkin reduced‐order models with local reduced‐order bases

The energy‐conserving sampling and weighting (ECSW) method is a hyper‐reduction method originally developed for accelerating the performance of Galerkin projection‐based reduced‐order models (PROMs) associated with large‐scale finite element models, when the underlying projected operators need to be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in engineering Ročník 122; číslo 7; s. 1846 - 1874
Hlavní autoři: Grimberg, Sebastian, Farhat, Charbel, Tezaur, Radek, Bou‐Mosleh, Charbel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 15.04.2021
Wiley Subscription Services, Inc
Témata:
ISSN:0029-5981, 1097-0207
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The energy‐conserving sampling and weighting (ECSW) method is a hyper‐reduction method originally developed for accelerating the performance of Galerkin projection‐based reduced‐order models (PROMs) associated with large‐scale finite element models, when the underlying projected operators need to be frequently recomputed as in parametric and/or nonlinear problems. In this paper, this hyper‐reduction method is extended to Petrov–Galerkin PROMs where the underlying high‐dimensional models can be associated with arbitrary finite element, finite volume, and finite difference semi‐discretization methods. Its scope is also extended to cover local PROMs based on piecewise‐affine approximation subspaces, such as those designed for mitigating the Kolmogorov n‐width barrier issue associated with convection‐dominated flow problems. The resulting ECSW method is shown in this paper to be robust and accurate. In particular, its offline phase is shown to be fast and parallelizable, and the potential of its online phase for large‐scale applications of industrial relevance is demonstrated for turbulent flow problems with O(107) and O(108) degrees of freedom. For such problems, the online part of the ECSW method proposed in this paper for Petrov–Galerkin PROMs is shown to enable wall‐clock time and CPU time speedup factors of several orders of magnitude while delivering exceptional accuracy.
AbstractList The energy‐conserving sampling and weighting (ECSW) method is a hyper‐reduction method originally developed for accelerating the performance of Galerkin projection‐based reduced‐order models (PROMs) associated with large‐scale finite element models, when the underlying projected operators need to be frequently recomputed as in parametric and/or nonlinear problems. In this paper, this hyper‐reduction method is extended to Petrov–Galerkin PROMs where the underlying high‐dimensional models can be associated with arbitrary finite element, finite volume, and finite difference semi‐discretization methods. Its scope is also extended to cover local PROMs based on piecewise‐affine approximation subspaces, such as those designed for mitigating the Kolmogorov n‐width barrier issue associated with convection‐dominated flow problems. The resulting ECSW method is shown in this paper to be robust and accurate. In particular, its offline phase is shown to be fast and parallelizable, and the potential of its online phase for large‐scale applications of industrial relevance is demonstrated for turbulent flow problems with O(107) and O(108) degrees of freedom. For such problems, the online part of the ECSW method proposed in this paper for Petrov–Galerkin PROMs is shown to enable wall‐clock time and CPU time speedup factors of several orders of magnitude while delivering exceptional accuracy.
The energy‐conserving sampling and weighting (ECSW) method is a hyper‐reduction method originally developed for accelerating the performance of Galerkin projection‐based reduced‐order models (PROMs) associated with large‐scale finite element models, when the underlying projected operators need to be frequently recomputed as in parametric and/or nonlinear problems. In this paper, this hyper‐reduction method is extended to Petrov–Galerkin PROMs where the underlying high‐dimensional models can be associated with arbitrary finite element, finite volume, and finite difference semi‐discretization methods. Its scope is also extended to cover local PROMs based on piecewise‐affine approximation subspaces, such as those designed for mitigating the Kolmogorov n ‐width barrier issue associated with convection‐dominated flow problems. The resulting ECSW method is shown in this paper to be robust and accurate. In particular, its offline phase is shown to be fast and parallelizable, and the potential of its online phase for large‐scale applications of industrial relevance is demonstrated for turbulent flow problems with O (10 7 ) and O (10 8 ) degrees of freedom. For such problems, the online part of the ECSW method proposed in this paper for Petrov–Galerkin PROMs is shown to enable wall‐clock time and CPU time speedup factors of several orders of magnitude while delivering exceptional accuracy.
Author Grimberg, Sebastian
Bou‐Mosleh, Charbel
Farhat, Charbel
Tezaur, Radek
Author_xml – sequence: 1
  givenname: Sebastian
  orcidid: 0000-0002-9188-0562
  surname: Grimberg
  fullname: Grimberg, Sebastian
  email: sjg@stanford.edu
  organization: Stanford University
– sequence: 2
  givenname: Charbel
  orcidid: 0000-0003-2563-8820
  surname: Farhat
  fullname: Farhat, Charbel
  organization: Stanford University
– sequence: 3
  givenname: Radek
  surname: Tezaur
  fullname: Tezaur, Radek
  organization: Stanford University
– sequence: 4
  givenname: Charbel
  surname: Bou‐Mosleh
  fullname: Bou‐Mosleh, Charbel
  organization: Notre Dame University‐Louaize
BookMark eNp10L1OwzAQB3ALFYm2IPEIllhYUmwnzseIqlKQWmCAOXLtS-OSxMVOqbp1ZUPiDfskJC0TH5N18u_udP8e6lSmAoTOKRlQQthVVcIgDIl_hLqUJJFHGIk6qNt8JR5PYnqCes4tCKGUE7-L3qfgcuxEuSx0NceiUngNep7XbZUZi-sccL5ZgrWgVrLWpsImw83SxoOw-BFqa95228-xKMC-6ArvIajd9sNYBRaXRkHh8FrXOS6MFMUvMRMO3Ck6zkTh4Oz77aPnm9HT8NabPIzvhtcTT7LE972ME05DQgPJYlAqCHzBAj9mUoQ0ns1EyHnGqBRKJSqKJY1EFCnuR1xwHlIW-X10cZi7tOZ1Ba5OF2Zlq2ZlyjhJWNAExho1OChpjXMWslTqWrTn11boIqUkbeNOm7jTNu6m4fJHw9LqUtjNX9Q70LUuYPOvS--no73_Anh3lWE
CitedBy_id crossref_primary_10_1016_j_cma_2023_116298
crossref_primary_10_1016_j_jcp_2023_112420
crossref_primary_10_1016_j_cma_2025_117920
crossref_primary_10_1016_j_energy_2025_136019
crossref_primary_10_1007_s00466_025_02670_w
crossref_primary_10_1137_24M1695099
crossref_primary_10_1016_j_cma_2025_117863
crossref_primary_10_1016_j_compfluid_2025_106568
crossref_primary_10_1016_j_cpc_2025_109501
crossref_primary_10_1515_cmam_2021_0131
crossref_primary_10_3390_math10091495
crossref_primary_10_1002_nme_7240
crossref_primary_10_1016_j_ijnonlinmec_2025_105092
crossref_primary_10_2514_1_J063840
crossref_primary_10_5802_crmeca_191
crossref_primary_10_1007_s42967_023_00308_3
crossref_primary_10_1016_j_jcp_2023_112356
crossref_primary_10_1016_j_jcp_2022_111348
crossref_primary_10_1051_meca_2022001
crossref_primary_10_1063_5_0220705
crossref_primary_10_1016_j_compstruc_2025_107867
crossref_primary_10_1016_j_jcp_2021_110336
crossref_primary_10_1016_j_cma_2024_117638
crossref_primary_10_1016_j_ymssp_2024_112261
crossref_primary_10_1137_21M1435343
crossref_primary_10_1016_j_cma_2025_118325
crossref_primary_10_1016_j_finel_2025_104439
crossref_primary_10_1098_rsta_2021_0206
crossref_primary_10_1016_j_finel_2024_104237
crossref_primary_10_1016_j_cma_2022_115392
crossref_primary_10_1007_s00366_025_02172_6
crossref_primary_10_1002_nme_7590
crossref_primary_10_1038_s41598_024_56118_x
crossref_primary_10_1016_j_compfluid_2025_106783
crossref_primary_10_1016_j_ymssp_2025_112638
crossref_primary_10_2514_1_J063116
crossref_primary_10_1016_j_jcp_2025_113817
crossref_primary_10_1016_j_cma_2023_115988
crossref_primary_10_1002_nme_7179
crossref_primary_10_1016_j_jcp_2025_114067
crossref_primary_10_1016_j_cma_2022_115747
crossref_primary_10_2514_1_J062869
crossref_primary_10_1007_s11831_025_10299_4
crossref_primary_10_3390_axioms14050385
Cites_doi 10.1016/j.jcp.2020.109681
10.1016/0098-3004(84)90020-7
10.1016/j.jcp.2013.02.028
10.1145/1409060.1409118
10.1137/090766498
10.2514/6.2016-1814
10.1002/nme.4274
10.1002/nme.4668
10.2514/1.J057791
10.1002/nme.5332
10.1002/nme.6505
10.4271/840300
10.2514/6.2012-2686
10.2514/6.2001-879
10.1080/13873954.2011.547674
10.1137/130932715
10.1016/j.cma.2016.10.022
10.1137/1.9780898718713
10.1109/TAC.2008.2006102
10.1007/978-1-4614-6570-6_18
10.1002/nme.2086
10.1016/j.jcp.2004.07.015
10.1090/conm/218/03046
10.1002/nme.4820
10.1137/1.9781611971217
10.1137/130924408
10.1016/j.physd.2003.03.001
10.2514/3.9465
10.2514/1.J057797
10.1016/j.crma.2004.08.006
10.1016/0045-7825(93)90141-J
10.1007/978-3-642-20671-9_39
10.1002/nme.2406
10.1002/nme.3050
10.1016/j.cma.2018.02.028
10.1145/1073204.1073300
10.1002/nme.4371
10.1051/m2an:2007031
10.1007/978-0-387-84858-7
10.1063/1.868459
10.1364/JOSAA.12.001657
10.1137/070694855
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.6603
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 1874
ExternalDocumentID 10_1002_nme_6603
NME6603
Genre article
GrantInformation_xml – fundername: Boeing
  funderid: 45047
– fundername: Office of Naval Research
  funderid: N00014‐17‐1‐2749
– fundername: King Abdulaziz City for Science and Technology (KACST)
– fundername: Air Force Office of Scientific Research
  funderid: FA9550‐17‐1‐0182
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2933-f50516014c28edd443a24382ca618bba655f21cadd9d78c17a77d5375a5561273
IEDL.DBID DRFUL
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000606664200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 25 12:18:30 EDT 2025
Sat Nov 29 06:43:59 EST 2025
Tue Nov 18 22:14:58 EST 2025
Wed Jan 22 16:29:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2933-f50516014c28edd443a24382ca618bba655f21cadd9d78c17a77d5375a5561273
Notes Funding information
Air Force Office of Scientific Research, FA9550‐17‐1‐0182; Boeing, 45047; King Abdulaziz City for Science and Technology (KACST), Office of Naval Research, N00014‐17‐1‐2749
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9188-0562
0000-0003-2563-8820
PQID 2509242072
PQPubID 996376
PageCount 29
ParticipantIDs proquest_journals_2509242072
crossref_citationtrail_10_1002_nme_6603
crossref_primary_10_1002_nme_6603
wiley_primary_10_1002_nme_6603_NME6603
PublicationCentury 2000
PublicationDate 15 April 2021
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 15 April 2021
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 57
2004; 189
2010; 32
2012
2015; 102
1995; 15
2019; 57
1995; 12
1985; 7
2009
1998; 218
2019; 344
2006
2005
2016; 2016
2013; 242
2008; 30
2008; 53
2011; 4
2011; 17
2008; 73
1993; 102
2017; 313
2005; 24
1995; 7
2009; 77
2017; 109
2012; 92
2012; 91
2020; 2
2001
2020
2005; 202
1984; 10
1986; 24
2008; 27
2011; 86
2014; 36
2005; 6
1984
2016
2007; 41
2013
2004; 339
2014; 98
2020; 419
1922
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
Ohlberger M (e_1_2_9_44_1) 2016
Farhat C (e_1_2_9_8_1) 2020
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
Nguyen NC (e_1_2_9_6_1) 2005
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
Pinkus A (e_1_2_9_30_1) 1985
References_xml – volume: 30
  start-page: 3270
  issue: 6
  year: 2008
  end-page: 3288
  article-title: Model reduction for large‐scale systems with high‐dimensional parametric input space
  publication-title: SIAM J Sci Comput
– year: 2009
– volume: 53
  start-page: 2237
  issue: 10
  year: 2008
  end-page: 2251
  article-title: Missing point estimation in models described by proper orthogonal decomposition
  publication-title: IEEE Trans Autom Control
– volume: 92
  start-page: 891
  issue: 10
  year: 2012
  end-page: 916
  article-title: Nonlinear model order reduction based on local reduced‐order bases
  publication-title: Int J Numer Methods Eng
– volume: 218
  start-page: 479
  year: 1998
  end-page: 485
  article-title: A minimum overlap restricted additive Schwarz preconditioner and applications in 3D flow simulations
  publication-title: Contemp Math
– volume: 2
  year: 2020
– start-page: 203
  year: 2013
  end-page: 212
– volume: 57
  start-page: 2297
  issue: 6
  year: 2019
  end-page: 2307
  article-title: Nonlinear model order reduction via lifting transformations and proper orthogonal decomposition
  publication-title: AIAA J
– volume: 57
  start-page: 4978
  issue: 11
  year: 2019
  end-page: 4991
  article-title: Feasible probabilistic learning method for model‐form uncertainty quantification in vibration analysis
  publication-title: AIAA J
– volume: 4
  start-page: 369
  year: 2011
  end-page: 377
– year: 2001
– volume: 7
  start-page: 2102
  issue: 9
  year: 1995
  end-page: 2104
  article-title: Details of the drag curve near the onset of vortex shedding
  publication-title: Phys Fluids
– volume: 344
  start-page: 1104
  year: 2019
  end-page: 1123
  article-title: An LP empirical cubature procedure for reduced basis treatment of parametrized nonlinear PDEs
  publication-title: Comput Methods Appl Mech Eng
– volume: 15
  year: 1995
– volume: 41
  start-page: 575
  issue: 3
  year: 2007
  end-page: 605
  article-title: Efficient reduced‐basis treatment of nonaffine and nonlinear partial differential equations
  publication-title: ESIAM Math Model Numer Anal
– volume: 339
  start-page: 667
  issue: 9
  year: 2004
  end-page: 672
  article-title: An 'empirical interpolation' method: application to efficient reduced‐basis discretization of partial differential equations
  publication-title: Comptes Rendus Mathematique
– year: 2016
– volume: 24
  start-page: 1453
  issue: 9
  year: 1986
  end-page: 1460
  article-title: Comparison of finite volume flux vector splittings for the Euler equations
  publication-title: AIAA J
– volume: 77
  start-page: 75
  issue: 1
  year: 2009
  end-page: 89
  article-title: Hyper‐reduction of mechanical models involving internal variables
  publication-title: Int J Numer Methods Eng
– year: 2012
– volume: 202
  start-page: 346
  issue: 1
  year: 2005
  end-page: 366
  article-title: A priori hyperreduction method: an adaptive approach
  publication-title: J Comput Phys
– volume: 73
  start-page: 521
  issue: 4
  year: 2008
  end-page: 543
  article-title: A ‘best points’ interpolation method for efficient approximation of parametrized functions
  publication-title: Int J Numer Methods Eng
– volume: 24
  start-page: 982
  issue: 3
  year: 2005
  end-page: 990
  article-title: Real‐time subspace integration for St. Venant‐Kirchoff deformable models
  publication-title: ACM Trans Graph
– volume: 12
  start-page: 1657
  issue: 8
  year: 1995
  end-page: 1664
  article-title: Karhunen‐Loève procedure for gappy data
  publication-title: J Opt Soc Am A
– year: 1984
– volume: 6
  year: 2005
– start-page: 1529
  year: 2005
  end-page: 1564
– volume: 17
  start-page: 423
  issue: 4
  year: 2011
  end-page: 442
  article-title: A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space
  publication-title: Math Comput Model Dyn Syst
– volume: 32
  start-page: 2737
  issue: 5
  year: 2010
  end-page: 2764
  article-title: Nonlinear model reduction via discrete empirical interpolation
  publication-title: SIAM J Sci Comput
– volume: 189
  start-page: 115
  year: 2004
  end-page: 129
  article-title: Model reduction for compressible flows using POD and Galerkin projection
  publication-title: Phys D Nonlinear Phenomena
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 12
– year: 2006
– volume: 7
  year: 1985
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  end-page: 203
  article-title: FCM: the fuzzy ‐means clustering algorithm
  publication-title: Comput Geosci
– year: 2020
– volume: 98
  start-page: 625
  issue: 9
  year: 2014
  end-page: 662
  article-title: Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy‐based mesh sampling and weighting for computational efficiency
  publication-title: Int J Numer Methods Eng
– volume: 86
  start-page: 155
  issue: 2
  year: 2011
  end-page: 181
  article-title: Efficient non‐linear model reduction via a least‐squares Petrov‐Galerkin projection and compressive tensor approximations
  publication-title: Int J Numer Methods Eng
– volume: 419
  year: 2020
  article-title: On the stability of projection‐based model order reduction for convection‐dominated laminar and turbulent flows
  publication-title: J Comput Phys
– year: 1922
– volume: 102
  start-page: 1077
  issue: 5
  year: 2015
  end-page: 1110
  article-title: Structure‐preserving, stability, and accuracy properties of the energy‐conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models
  publication-title: Int J Numer Methods Eng
– volume: 313
  start-page: 687
  year: 2017
  end-page: 722
  article-title: Dimensional hyper‐reduction of nonlinear finite element models via empirical cubature
  publication-title: Comput Methods Appl Mech Eng
– volume: 102
  start-page: 61
  issue: 1
  year: 1993
  end-page: 88
  article-title: Two‐dimensional viscous flow computations on the connection machine: unstructured meshes, upwind schemes and massively parallel computations
  publication-title: Comput Methods Appl Mech Eng
– volume: 27
  start-page: 165.1
  issue: 5
  year: 2008
  end-page: 165.10
  article-title: Optimizing cubature for the efficient integration of subspace deformations
  publication-title: ACM Trans Graph
– volume: 36
  start-page: A168
  issue: 1
  year: 2014
  end-page: A192
  article-title: Localized discrete empirical interpolation method
  publication-title: SIAM J Sci Comput
– volume: 109
  start-page: 1623
  issue: 12
  year: 2017
  end-page: 1654
  article-title: Accelerated mesh sampling for the hyper reduction of nonlinear computational models
  publication-title: Int J Numer Methods Eng
– volume: 91
  start-page: 358
  issue: 4
  year: 2012
  end-page: 377
  article-title: Stabilization of projection‐based reduced‐order models
  publication-title: Int J Numer Methods Eng
– volume: 57
  start-page: 483
  issue: 4
  year: 2015
  end-page: 531
  article-title: A survey of projection‐based model reduction methods for parametric dynamical systems
  publication-title: SIAM Rev
– volume: 242
  start-page: 623
  year: 2013
  end-page: 647
  article-title: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows
  publication-title: J Comput Phys
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jcp.2020.109681
– ident: e_1_2_9_40_1
  doi: 10.1016/0098-3004(84)90020-7
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jcp.2013.02.028
– ident: e_1_2_9_19_1
  doi: 10.1145/1409060.1409118
– ident: e_1_2_9_16_1
  doi: 10.1137/090766498
– ident: e_1_2_9_27_1
  doi: 10.2514/6.2016-1814
– ident: e_1_2_9_31_1
  doi: 10.1002/nme.4274
– ident: e_1_2_9_20_1
  doi: 10.1002/nme.4668
– ident: e_1_2_9_7_1
  doi: 10.2514/1.J057791
– ident: e_1_2_9_42_1
  doi: 10.1002/nme.5332
– start-page: 1
  volume-title: Proceedings of ALGORITMY
  year: 2016
  ident: e_1_2_9_44_1
– ident: e_1_2_9_37_1
  doi: 10.1002/nme.6505
– ident: e_1_2_9_32_1
  doi: 10.4271/840300
– ident: e_1_2_9_38_1
  doi: 10.2514/6.2012-2686
– volume-title: Model Order Reduction: Snapshot‐Based Methods and Algorithms
  year: 2020
  ident: e_1_2_9_8_1
– ident: e_1_2_9_47_1
  doi: 10.2514/6.2001-879
– ident: e_1_2_9_49_1
– ident: e_1_2_9_36_1
  doi: 10.1080/13873954.2011.547674
– ident: e_1_2_9_3_1
  doi: 10.1137/130932715
– ident: e_1_2_9_21_1
  doi: 10.1016/j.cma.2016.10.022
– ident: e_1_2_9_2_1
  doi: 10.1137/1.9780898718713
– ident: e_1_2_9_13_1
  doi: 10.1109/TAC.2008.2006102
– ident: e_1_2_9_17_1
  doi: 10.1007/978-1-4614-6570-6_18
– ident: e_1_2_9_12_1
  doi: 10.1002/nme.2086
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jcp.2004.07.015
– ident: e_1_2_9_48_1
  doi: 10.1090/conm/218/03046
– ident: e_1_2_9_23_1
  doi: 10.1002/nme.4820
– ident: e_1_2_9_28_1
– ident: e_1_2_9_43_1
  doi: 10.1137/1.9781611971217
– ident: e_1_2_9_18_1
  doi: 10.1137/130924408
– ident: e_1_2_9_4_1
  doi: 10.1016/j.physd.2003.03.001
– ident: e_1_2_9_45_1
  doi: 10.2514/3.9465
– ident: e_1_2_9_41_1
  doi: 10.2514/1.J057797
– ident: e_1_2_9_10_1
  doi: 10.1016/j.crma.2004.08.006
– volume-title: A Series of Modern Surveys in Mathematics
  year: 1985
  ident: e_1_2_9_30_1
– ident: e_1_2_9_46_1
  doi: 10.1016/0045-7825(93)90141-J
– ident: e_1_2_9_35_1
  doi: 10.1007/978-3-642-20671-9_39
– ident: e_1_2_9_15_1
  doi: 10.1002/nme.2406
– ident: e_1_2_9_24_1
  doi: 10.1002/nme.3050
– ident: e_1_2_9_22_1
  doi: 10.1016/j.cma.2018.02.028
– ident: e_1_2_9_5_1
  doi: 10.1145/1073204.1073300
– start-page: 1529
  volume-title: Handbook of Materials Modeling
  year: 2005
  ident: e_1_2_9_6_1
– ident: e_1_2_9_33_1
  doi: 10.1002/nme.4371
– ident: e_1_2_9_11_1
  doi: 10.1051/m2an:2007031
– ident: e_1_2_9_26_1
– ident: e_1_2_9_39_1
  doi: 10.1007/978-0-387-84858-7
– ident: e_1_2_9_50_1
  doi: 10.1063/1.868459
– ident: e_1_2_9_9_1
  doi: 10.1364/JOSAA.12.001657
– ident: e_1_2_9_34_1
  doi: 10.1137/070694855
SSID ssj0011503
Score 2.5980406
Snippet The energy‐conserving sampling and weighting (ECSW) method is a hyper‐reduction method originally developed for accelerating the performance of Galerkin...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1846
SubjectTerms Computational fluid dynamics
Finite difference method
Finite element method
Galerkin method
hyper‐reduction
local basis
machine learning
Mathematical models
nonlinear model reduction
Petrov–Galerkin
reduced mesh
Reduction
Sampling
Subspaces
Turbulent flow
Weighting
Title Mesh sampling and weighting for the hyperreduction of nonlinear Petrov–Galerkin reduced‐order models with local reduced‐order bases
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6603
https://www.proquest.com/docview/2509242072
Volume 122
WOSCitedRecordID wos000606664200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hLQc4UChUXbogIyE4hW7sJHaOVduFA7tCiEq9RU7ssJXatIrLct1rb5X6D_eXdMb5YBEgVeKSKNKMZNkznufx5A3AW60wjJVcBFEu0wDx7RhdKuX40GOlZay1yH2zCTmbqZOT9EtbVUn_wjT8EH3CjTzD79fk4Dp3e2ukoef2Q5IQ0ecGR7ONB7Bx-HVy_Lm_Q0CoI7oCjzhVYUc9O-Z7ne7vwegXwlzHqT7QTDb_Z4hP4UkLL9l-Yw_P4IGttmCzhZqsdWS3BY_XeAjxa9qTt7rncD21bs6cplrz6jvTlWE_fQKVvhDjMpRlczy_1jXxvtLKsouSVc2Idc2oS9fFYrW8_YjRh3LxzAtas1reeKpP5vvvOEZJYOaj6R8SFF3dCzieHH07-BS0HRuCAmGDCErEUyEe8aKCK2tMFAnN6aax0Emo8lwncVzysMA9NTVSFaHUUppYoEn4Lp1SbMMAR2t3gOXCiEigjrQq4mWoDaqqyNg8iVJukyG875YuK1o6c-qqcZY1RMw8w9nPaPaH8KaXvGwoPP4iM-pWP2ud2GWIDvF0yseSD-GdX-d_6mez6RG9X95XcBcecaqOIdbIeASDq_qHfQUPi8XVqatft6Z8B5O6_BY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB5EhbYP_mqlV61dQexT6mV3k93gU2k9Fe-OUhR8C5vsRgV7lsTqq6--Ffof-pc4s0nOk1oo-JIQmIFlZ2bn29nNNwAbRmMaK7gIZKaSAPFtF0Mq4fgwXW1UZIzIfLMJNRzq4-Pk2xRst__C1PwQ44IbRYZfrynAqSC9NcEa-sN9imNi-pyR6EXo3jNfv_eO-uNDBMQ6or3hESU6bLlnu3yr1X2cjR4g5iRQ9ZmmN_-sMS7AXAMw2efaIxZhyo2WYL4Bm6wJ5WoJXk0wEeLXYEzfWr2G24GrTlll6Lb56ISZkWXXvoRKX4hyGcqyU9zBliUxv5Jt2UXBRvWQTcmoT9fF1d3Nn13MP1SNZ17Q2bub357sk_kOPBWjMjDz-fQvCcqv1Rs46u0cftkLmp4NQY7AQQQFIqoQN3ky59pZK6UwnM4acxOHOstMHEUFD3NcVROrdB4qo5SNBDqF79OpxDJM42jdW2CZsEIK1FFOS16ExqKqltZlsUy4izvwsbVdmjeE5tRX4zytqZh5irOf0ux3YH0s-bMm8XhCZrU1f9qEcZUiPsT9Ke8q3oFNb-h_6qfDwQ693_2v4Ad4sXc46Kf9_eHBCrzkdFeGOCSjVZi-LH-59zCbX12eVeVa49f3mMcAFQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB7kLKIP2vqDXrVtBNGnrbdJdpPFp1K9WvQOkQq-LdlNthbqKbtWX331rdD_0L_Emezu9UoVCr7sEpiBkMlkvkySbwA2jMYwVnARyEwlAeLbHrpUwvFjetqoyBiR-WITajjUp6fJ0RTstG9han6IccKNPMOv1-Tg7tIW2xOsoefuQxwT0-e0pBoyHZjePe6fHI4PERDriPaGR5TosOWe7fHtVvfvaPQHYk4CVR9p-gvP6uNLmG8AJvtYz4hXMOVGi7DQgE3WuHK1CHMTTITYGozpW6sluBu46oxVhm6bj74xM7LsxqdQqYUol6EsO8MdbFkS8yvZll0UbFR32ZSM6nRdXN_f_v6M8Yey8cwLOnt_-8uTfTJfgadilAZmPp7-I0HxtVqGk_7e10_7QVOzIcgROIigQEQV4iZP5lw7a6UUhtNZY27iUGeZiaOo4GGOq2pilc5DZZSykcBJ4et0KrECHeytew0sE1ZIgTrKacmL0FhU1dK6LJYJd3EXtlrbpXlDaE51NX6kNRUzT3H0Uxr9LqyPJS9rEo9HZNZa86eNG1cp4kPcn_Ke4l3Y9IZ-Uj8dDvbo_-Z_Bd_DzNFuPz38MjxYhVlOV2WIQjJag85V-dO9hRf59dX3qnzXTOsHJfX_gQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesh+sampling+and+weighting+for+the+hyperreduction+of+nonlinear+Petrov%E2%80%93Galerkin+reduced%E2%80%90order+models+with+local+reduced%E2%80%90order+bases&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Grimberg%2C+Sebastian&rft.au=Farhat%2C+Charbel&rft.au=Tezaur%2C+Radek&rft.au=Bou%E2%80%90Mosleh%2C+Charbel&rft.date=2021-04-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=122&rft.issue=7&rft.spage=1846&rft.epage=1874&rft_id=info:doi/10.1002%2Fnme.6603&rft.externalDBID=10.1002%252Fnme.6603&rft.externalDocID=NME6603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon