Hermite‐Hadamard type inequalities for generalized Riemann‐Liouville fractional integrals of h‐convex functions

In this paper, we establish some Hermite‐Hadamard type inequalities for the Generalized Riemann‐Liouville fractional integrals Ia+,gαf and Ib−,gαf, where g is a strictly increasing function on a,b, having a continuous derivative on a,b and under the assumption that the composite function f∘g−1 is h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences Jg. 44; H. 3; S. 2364 - 2380
1. Verfasser: Dragomir, Silvestru Sever
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Freiburg Wiley Subscription Services, Inc 01.02.2021
Schlagworte:
ISSN:0170-4214, 1099-1476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish some Hermite‐Hadamard type inequalities for the Generalized Riemann‐Liouville fractional integrals Ia+,gαf and Ib−,gαf, where g is a strictly increasing function on a,b, having a continuous derivative on a,b and under the assumption that the composite function f∘g−1 is h ‐convex on ga,gb. Some applications for Hadamard fractional integrals and s‐Godunova‐Levin type convex functions are also provided.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.5893