Hermite‐Hadamard type inequalities for generalized Riemann‐Liouville fractional integrals of h‐convex functions
In this paper, we establish some Hermite‐Hadamard type inequalities for the Generalized Riemann‐Liouville fractional integrals Ia+,gαf and Ib−,gαf, where g is a strictly increasing function on a,b, having a continuous derivative on a,b and under the assumption that the composite function f∘g−1 is h...
Gespeichert in:
| Veröffentlicht in: | Mathematical methods in the applied sciences Jg. 44; H. 3; S. 2364 - 2380 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Freiburg
Wiley Subscription Services, Inc
01.02.2021
|
| Schlagworte: | |
| ISSN: | 0170-4214, 1099-1476 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we establish some Hermite‐Hadamard type inequalities for the Generalized Riemann‐Liouville fractional integrals
Ia+,gαf and
Ib−,gαf, where g is a strictly increasing function on
a,b, having a continuous derivative on
a,b and under the assumption that the composite function f∘g−1 is h ‐convex on
ga,gb. Some applications for Hadamard fractional integrals and s‐Godunova‐Levin type convex functions are also provided. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0170-4214 1099-1476 |
| DOI: | 10.1002/mma.5893 |