Likelihood ascent search‐aided low complexity improved performance massive MIMO detection in perfect and imperfect channel state information

Summary Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE) detectors can achieve optimal performance in massive MIMO detection but require large dimension matrix inversion, which is computationally intensiv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of communication systems Ročník 35; číslo 8
Hlavní autoři: Chakraborty, Sourav, Sinha, Nirmalendu Bikas, Mitra, Monojit
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester Wiley Subscription Services, Inc 25.05.2022
Témata:
ISSN:1074-5351, 1099-1131
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE) detectors can achieve optimal performance in massive MIMO detection but require large dimension matrix inversion, which is computationally intensive. Therefore, low complexity iterative detection schemes are proposed in the literature as an alternative to the exact MMSE method. However, the performance of these schemes is greatly influenced by the choice of the initial solution. Therefore, to improve the detection performance in this paper, we proposed three hybrid detection schemes, which are Newton–Schultz–Richardson (NS‐RI), Newton–Schultz–Chebyshev (NS‐Cheby), and Newton–Schultz–Gauss–Seidel (NS‐GS). The proposed hybrid schemes show significant performance improvement and a higher convergence rate compared to their original counterpart. The performance of the proposed detectors is further improved by the likelihood ascent search (LAS) stage, which corrects the detected symbols obtained from iterative MMSE methods through a neighborhood search. However, the complexity of the LAS algorithm primarily depends on the initialization step. In this work, we introduce an efficient Gram matrix computation in the real domain. Additionally, we have applied a band approximation of the Gram matrix for the LAS initialization, which reduces the order of computational complexity of the Gram matrix from O(NT2NR) to O(ωNTNR) where ω < <2NT. This article first proposes three improved performance hybrid MMSE detection schemes. In addition, the performance is further improved by likelihood ascent search. We have introduced an efficient computation of Gram matrix in real domain which reduces the complexity significantly. A band matrix approximation of Gram matrix is used to further reduce the number of arithmetic operations.
AbstractList Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE) detectors can achieve optimal performance in massive MIMO detection but require large dimension matrix inversion, which is computationally intensive. Therefore, low complexity iterative detection schemes are proposed in the literature as an alternative to the exact MMSE method. However, the performance of these schemes is greatly influenced by the choice of the initial solution. Therefore, to improve the detection performance in this paper, we proposed three hybrid detection schemes, which are Newton–Schultz–Richardson (NS‐RI), Newton–Schultz–Chebyshev (NS‐Cheby), and Newton–Schultz–Gauss–Seidel (NS‐GS). The proposed hybrid schemes show significant performance improvement and a higher convergence rate compared to their original counterpart. The performance of the proposed detectors is further improved by the likelihood ascent search (LAS) stage, which corrects the detected symbols obtained from iterative MMSE methods through a neighborhood search. However, the complexity of the LAS algorithm primarily depends on the initialization step. In this work, we introduce an efficient Gram matrix computation in the real domain. Additionally, we have applied a band approximation of the Gram matrix for the LAS initialization, which reduces the order of computational complexity of the Gram matrix from O(NT2NR) to O(ωNTNR) where ω < <2NT.
Summary Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE) detectors can achieve optimal performance in massive MIMO detection but require large dimension matrix inversion, which is computationally intensive. Therefore, low complexity iterative detection schemes are proposed in the literature as an alternative to the exact MMSE method. However, the performance of these schemes is greatly influenced by the choice of the initial solution. Therefore, to improve the detection performance in this paper, we proposed three hybrid detection schemes, which are Newton–Schultz–Richardson (NS‐RI), Newton–Schultz–Chebyshev (NS‐Cheby), and Newton–Schultz–Gauss–Seidel (NS‐GS). The proposed hybrid schemes show significant performance improvement and a higher convergence rate compared to their original counterpart. The performance of the proposed detectors is further improved by the likelihood ascent search (LAS) stage, which corrects the detected symbols obtained from iterative MMSE methods through a neighborhood search. However, the complexity of the LAS algorithm primarily depends on the initialization step. In this work, we introduce an efficient Gram matrix computation in the real domain. Additionally, we have applied a band approximation of the Gram matrix for the LAS initialization, which reduces the order of computational complexity of the Gram matrix from O(NT2NR) to O(ωNTNR) where ω < <2NT. This article first proposes three improved performance hybrid MMSE detection schemes. In addition, the performance is further improved by likelihood ascent search. We have introduced an efficient computation of Gram matrix in real domain which reduces the complexity significantly. A band matrix approximation of Gram matrix is used to further reduce the number of arithmetic operations.
Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE) detectors can achieve optimal performance in massive MIMO detection but require large dimension matrix inversion, which is computationally intensive. Therefore, low complexity iterative detection schemes are proposed in the literature as an alternative to the exact MMSE method. However, the performance of these schemes is greatly influenced by the choice of the initial solution. Therefore, to improve the detection performance in this paper, we proposed three hybrid detection schemes, which are Newton–Schultz–Richardson (NS‐RI), Newton–Schultz–Chebyshev (NS‐Cheby), and Newton–Schultz–Gauss–Seidel (NS‐GS). The proposed hybrid schemes show significant performance improvement and a higher convergence rate compared to their original counterpart. The performance of the proposed detectors is further improved by the likelihood ascent search (LAS) stage, which corrects the detected symbols obtained from iterative MMSE methods through a neighborhood search. However, the complexity of the LAS algorithm primarily depends on the initialization step. In this work, we introduce an efficient Gram matrix computation in the real domain. Additionally, we have applied a band approximation of the Gram matrix for the LAS initialization, which reduces the order of computational complexity of the Gram matrix from to O ( ω N T N R ) where ω  < <2 N T .
Author Mitra, Monojit
Sinha, Nirmalendu Bikas
Chakraborty, Sourav
Author_xml – sequence: 1
  givenname: Sourav
  orcidid: 0000-0001-6866-9374
  surname: Chakraborty
  fullname: Chakraborty, Sourav
  email: sourav.chakraborty@cgec.org.in
  organization: Cooch Behar Government Engineering College
– sequence: 2
  givenname: Nirmalendu Bikas
  surname: Sinha
  fullname: Sinha, Nirmalendu Bikas
  organization: Maharaja Nandakumar Mahavidyalaya
– sequence: 3
  givenname: Monojit
  surname: Mitra
  fullname: Mitra, Monojit
  organization: Indian Institute of Engineering Science and Technology
BookMark eNp1kMtOGzEUhq2KSgVaqY9giQ2bSe14rksUaIsUxIauRyfHx4rpjB1sc8muT1DxjDxJPQkrVFbnou8_l_-IHTjviLGvUsykEPNvGnBWSak-sEMpuq7IqTyY8qYsKlXJT-woxlshRDuvq0P2d2l_02DX3msOEcklHgkCrl_-PIPVpPngHzn6cTPQk01bbsdN8A-5v6FgfBjBIfERYrQPxK8ur665pkSYrHfcuh2VKw5OT9LXCtfgHA08JkiUsd2gSfKZfTQwRPryGo_Zr-8XN4ufxfL6x-XibFngvFOqWNWNwKozWmioNSJU7crotpOlKDW2oCuDqjJkqEVojFENihWuFEhoaupKdcxO9nPzM3f3FFN_6--Dyyv7eV12UtVC1pma7SkMPsZApkebdnemAHbopegnz_vseT95ngWnbwSbYEcI2_-hxR59tANt3-X687PFjv8Hn8CXaA
CitedBy_id crossref_primary_10_1109_TVT_2024_3381559
crossref_primary_10_1109_ACCESS_2023_3279350
crossref_primary_10_1109_TVT_2024_3391614
crossref_primary_10_1002_ett_4826
crossref_primary_10_1016_j_phycom_2022_101982
crossref_primary_10_4218_etrij_2022_0052
Cites_doi 10.1109/TVT.2014.2370106
10.1109/JSAC.2002.801223
10.1109/GLOCOM.2014.7037314
10.1109/ISCAS.2016.7538940
10.1109/MWC.001.2000267
10.1109/LCOMM.2019.2897798
10.1109/ACCESS.2017.2760881
10.1109/TCOMM.2013.020413.110848
10.1109/TVLSI.2021.3056946
10.1109/GLOCOM.2007.807
10.4218/etrij.17.0116.0732
10.1109/TVT.2019.2924952
10.1109/MCOM.2014.6736761
10.1109/COMST.2019.2935810
10.1109/ISCAS.2016.7538942
10.1109/TCOMM.2017.2761383
10.1109/JSTSP.2014.2313021
10.1016/B978-0-12-820046-9.00005-8
10.1109/TSP.2018.2831622
10.1109/LCOMM.2015.2504506
10.1109/TCSI.2016.2611645
10.1109/JSTSP.2009.2035862
10.1109/MSP.2011.2178495
10.1109/ICSPCS.2008.4813732
10.1109/TSP.2005.863008
10.1109/TWC.2013.092013.130045
10.1186/s13638-019-1631-x
10.1109/ACCESS.2019.2907366
10.1109/GLOCOM.2014.7037382
10.1109/JSTSP.2014.2317671
10.1109/WCSP.2017.8171111
10.1109/PIMRC.2016.7794623
10.1109/TSP.2017.2698410
10.1109/TCOMM.2011.070511.110058
10.1109/TVT.2018.2874811
10.1109/ICC.2015.7248580
10.1109/VTCSpring.2015.7145618
10.1080/00207217.2021.1941292
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
JQ2
L7M
DOI 10.1002/dac.5113
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1131
EndPage n/a
ExternalDocumentID 10_1002_dac_5113
DAC5113
Genre article
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SP
8FD
JQ2
L7M
ID FETCH-LOGICAL-c2933-b670c59fd0da6dcca58bfd891404dc8ad5fc35fefe8ca7ff37c0bcb3a1a76e943
IEDL.DBID DRFUL
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751987700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1074-5351
IngestDate Fri Jul 25 12:17:42 EDT 2025
Sat Nov 29 03:54:57 EST 2025
Tue Nov 18 22:12:35 EST 2025
Wed Jan 22 16:26:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2933-b670c59fd0da6dcca58bfd891404dc8ad5fc35fefe8ca7ff37c0bcb3a1a76e943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6866-9374
PQID 2649136016
PQPubID 996367
PageCount 23
ParticipantIDs proquest_journals_2649136016
crossref_citationtrail_10_1002_dac_5113
crossref_primary_10_1002_dac_5113
wiley_primary_10_1002_dac_5113_DAC5113
PublicationCentury 2000
PublicationDate 25 May 2022
PublicationDateYYYYMMDD 2022-05-25
PublicationDate_xml – month: 05
  year: 2022
  text: 25 May 2022
  day: 25
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle International journal of communication systems
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2006; 54
2021; 29
2021; 28
2013; 61
2017; 65
2009
2008
2007
2011; 59
2018; 67
2018; 66
2021; 0
2020; 2020
2002; 20
2017; 39
2019; 21
2013; 12
2020
2015; 64
2019; 68
2019; 23
2013; 30
2016; 20
2016; 63
2017
2016
2015
2014
2014; 52
2009; 3
2014; 8
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – volume: 59
  start-page: 2955
  issue: 11
  year: 2011
  end-page: 2963
  article-title: Layered tabu search algorithm for large‐MIMO detection and a lower bound on ML performance
  publication-title: IEEE Trans Commun
– year: 2009
– volume: 0
  start-page: 1
  issue: 0
  year: 2021
  end-page: 17
  article-title: Robust conjugate‐gradient based LAS detector for massive MIMO systems
  publication-title: Int J Electron
– volume: 52
  start-page: 186
  issue: 2
  year: 2014
  end-page: 195
  article-title: Massive MIMO for next generation wireless systems
  publication-title: IEEE Commun Mag
– volume: 67
  start-page: 11,759
  issue: 12
  year: 2018
  end-page: 11,766
  article-title: Low complexity zero forcing detector based on Newton‐Schultz iterative algorithm for massive MIMO systems
  publication-title: IEEE Trans Veh Technol
– volume: 66
  start-page: 3377
  issue: 13
  year: 2018
  end-page: 3392
  article-title: Symbol error rate performance of box‐relaxation decoders in massive MIMO
  publication-title: IEEE Trans Signal Process
– start-page: 1
  year: 2008
  end-page: 9
– volume: 2020
  start-page: 34
  issue: 1
  year: 2020
  article-title: Fast matrix inversion methods based on Chebyshev and Newton iterations for zero forcing precoding in massive MIMO systems
  publication-title: EURASIP J Wirel Commun Netw
– start-page: 133
  year: 2020
  end-page: 174
– volume: 20
  start-page: 1211
  issue: 6
  year: 2002
  end-page: 1226
  article-title: A stochastic MIMO radio channel model with experimental validation
  publication-title: IEEE J Sel Areas Commun
– volume: 68
  start-page: 7260
  issue: 8
  year: 2019
  end-page: 7272
  article-title: A low‐complexity massive MIMO detection based on approximate expectation propagation
  publication-title: IEEE Trans Veh Technol
– volume: 39
  start-page: 326
  issue: 3
  year: 2017
  end-page: 335
  article-title: Low‐complexity massive MIMO detectors based on Richardson method
  publication-title: ETRI J
– start-page: 1763
  year: 2015
  end-page: 1769
– volume: 5
  start-page: 22,545
  year: 2017
  end-page: 22,551
  article-title: A low‐complexity massive MIMO precoding algorithm based on Chebyshev iteration
  publication-title: IEEE Access
– start-page: 1886
  year: 2016
  end-page: 1889
– start-page: 1
  year: 2016
  end-page: 5
– volume: 64
  start-page: 4839
  issue: 10
  year: 2015
  end-page: 4845
  article-title: Low‐complexity soft‐output signal detection based on Gauss‐Seidel method for uplink multiuser large‐scale MIMO systems
  publication-title: IEEE Trans Veh Technol
– volume: 12
  start-page: 5172
  issue: 10
  year: 2013
  end-page: 5184
  article-title: Parametrization based limited feedback design for correlated MIMO channels using new statistical models
  publication-title: IEEE Trans Wirel Commun
– start-page: 1894
  year: 2016
  end-page: 1897
– start-page: 1
  year: 2017
  end-page: 6
– start-page: 1
  year: 2015
  end-page: 5
– volume: 54
  start-page: 884
  issue: 3
  year: 2006
  end-page: 893
  article-title: Training‐based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals
  publication-title: IEEE Trans Signal Process
– volume: 20
  start-page: 276
  issue: 2
  year: 2016
  end-page: 279
  article-title: A near‐optimal detection scheme based on joint steepest descent and Jacobi method for uplink massive MIMO systems
  publication-title: IEEE Commun Lett
– volume: 3
  start-page: 958
  issue: 6
  year: 2009
  end-page: 974
  article-title: High‐rate space‐time coded large‐MIMO systems: low‐complexity detection and channel estimation
  publication-title: IEEE J Sel Top Signal Process
– start-page: 4242
  year: 2007
  end-page: 4246
– start-page: 3696
  year: 2014
  end-page: 3701
– volume: 8
  start-page: 742
  issue: 5
  year: 2014
  end-page: 758
  article-title: An overview of massive MIMO: benefits and challenges
  publication-title: IEEE J Sel Top Signal Process
– volume: 8
  start-page: 916
  issue: 5
  year: 2014
  end-page: 929
  article-title: Large‐scale MIMO detection for 3GPP LTE: algorithms and FPGA implementations
  publication-title: IEEE J Sel Top Signal Process
– start-page: 3291
  year: 2014
  end-page: 3295
– volume: 28
  start-page: 106
  issue: 2
  year: 2021
  end-page: 113
  article-title: Dynamic metasurface antennas for 6G extreme massive MIMO communications
  publication-title: IEEE Wirel Commun
– volume: 23
  start-page: 748
  issue: 4
  year: 2019
  end-page: 751
  article-title: A low complexity signal detection scheme based on improved Newton iteration for massive MIMO systems
  publication-title: IEEE Commun Lett
– volume: 21
  start-page: 3109
  issue: 4
  year: 2019
  end-page: 3132
  article-title: Massive MIMO detection techniques: a survey
  publication-title: IEEE Commun Surv Tutor
– volume: 65
  start-page: 3775
  issue: 14
  year: 2017
  end-page: 3788
  article-title: Low‐computing‐load, high‐parallelism detection method based on Chebyshev iteration for massive MIMO systems with VLSI architecture
  publication-title: IEEE Trans Signal Process
– volume: 29
  start-page: 747
  issue: 4
  year: 2021
  end-page: 759
  article-title: ADMM‐based infinity‐norm detection for massive MIMO: algorithm and VLSI architecture
  publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst
– volume: 66
  start-page: 713
  issue: 2
  year: 2018
  end-page: 725
  article-title: Sequential and global likelihood ascent search‐based detection in large MIMO systems
  publication-title: IEEE Trans Commun
– volume: 30
  start-page: 40
  issue: 1
  year: 2013
  end-page: 60
  article-title: Scaling up MIMO: opportunities and challenges with very large arrays
  publication-title: IEEE Signal Proc Mag
– volume: 61
  start-page: 1436
  issue: 4
  year: 2013
  end-page: 1449
  article-title: Energy and spectral efficiency of very large multiuser MIMO systems
  publication-title: IEEE Trans Commun
– volume: 7
  start-page: 39,341
  year: 2019
  end-page: 39,351
  article-title: A low‐complexity data detection algorithm for massive MIMO systems
  publication-title: IEEE Access
– volume: 63
  start-page: 2357
  issue: 12
  year: 2016
  end-page: 2367
  article-title: High‐throughput data detection for massive MU‐MIMO‐OFDM using coordinate descent
  publication-title: IEEE Trans Circ Syst I: Regular Pap
– ident: e_1_2_11_15_1
  doi: 10.1109/TVT.2014.2370106
– ident: e_1_2_11_37_1
  doi: 10.1109/JSAC.2002.801223
– ident: e_1_2_11_16_1
  doi: 10.1109/GLOCOM.2014.7037314
– ident: e_1_2_11_21_1
  doi: 10.1109/ISCAS.2016.7538940
– ident: e_1_2_11_3_1
  doi: 10.1109/MWC.001.2000267
– ident: e_1_2_11_22_1
  doi: 10.1109/LCOMM.2019.2897798
– ident: e_1_2_11_11_1
  doi: 10.1109/ACCESS.2017.2760881
– ident: e_1_2_11_6_1
  doi: 10.1109/TCOMM.2013.020413.110848
– ident: e_1_2_11_34_1
  doi: 10.1109/TVLSI.2021.3056946
– ident: e_1_2_11_30_1
  doi: 10.1109/GLOCOM.2007.807
– ident: e_1_2_11_33_1
  doi: 10.4218/etrij.17.0116.0732
– ident: e_1_2_11_35_1
  doi: 10.1109/TVT.2019.2924952
– ident: e_1_2_11_4_1
  doi: 10.1109/MCOM.2014.6736761
– ident: e_1_2_11_8_1
  doi: 10.1109/COMST.2019.2935810
– ident: e_1_2_11_18_1
  doi: 10.1109/ISCAS.2016.7538942
– ident: e_1_2_11_28_1
  doi: 10.1109/TCOMM.2017.2761383
– ident: e_1_2_11_9_1
  doi: 10.1109/JSTSP.2014.2313021
– ident: e_1_2_11_40_1
  doi: 10.1016/B978-0-12-820046-9.00005-8
– ident: e_1_2_11_7_1
  doi: 10.1109/TSP.2018.2831622
– ident: e_1_2_11_14_1
  doi: 10.1109/LCOMM.2015.2504506
– ident: e_1_2_11_36_1
  doi: 10.1109/TCSI.2016.2611645
– ident: e_1_2_11_27_1
  doi: 10.1109/JSTSP.2009.2035862
– ident: e_1_2_11_2_1
  doi: 10.1109/MSP.2011.2178495
– ident: e_1_2_11_31_1
  doi: 10.1109/ICSPCS.2008.4813732
– ident: e_1_2_11_39_1
  doi: 10.1109/TSP.2005.863008
– ident: e_1_2_11_38_1
  doi: 10.1109/TWC.2013.092013.130045
– ident: e_1_2_11_23_1
  doi: 10.1186/s13638-019-1631-x
– ident: e_1_2_11_24_1
  doi: 10.1109/ACCESS.2019.2907366
– ident: e_1_2_11_17_1
  doi: 10.1109/GLOCOM.2014.7037382
– ident: e_1_2_11_5_1
  doi: 10.1109/JSTSP.2014.2317671
– ident: e_1_2_11_19_1
  doi: 10.1109/WCSP.2017.8171111
– ident: e_1_2_11_25_1
– ident: e_1_2_11_13_1
  doi: 10.1109/PIMRC.2016.7794623
– ident: e_1_2_11_20_1
  doi: 10.1109/TSP.2017.2698410
– ident: e_1_2_11_26_1
  doi: 10.1109/TCOMM.2011.070511.110058
– ident: e_1_2_11_12_1
  doi: 10.1109/TVT.2018.2874811
– ident: e_1_2_11_10_1
  doi: 10.1109/ICC.2015.7248580
– ident: e_1_2_11_32_1
  doi: 10.1109/VTCSpring.2015.7145618
– ident: e_1_2_11_29_1
  doi: 10.1080/00207217.2021.1941292
SSID ssj0008265
Score 2.3180697
Snippet Summary Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE)...
Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE) detectors can...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Ascent
Chebyshev approximation
Complexity
Detectors
Error detection
Gram matrix
hybrid MMSE detection
Iterative methods
LAS
massive MIMO
Searching
Title Likelihood ascent search‐aided low complexity improved performance massive MIMO detection in perfect and imperfect channel state information
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.5113
https://www.proquest.com/docview/2649136016
Volume 35
WOSCitedRecordID wos000751987700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1131
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008265
  issn: 1074-5351
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60etCDb7FaJYLoaXGbbLq7R1GLQqsiKt6WbB5QrNti6-PoLxB_o7_ESXa3VVAQPC1ZZvaRmUm-hJkvADsxFfWABw1P0sjgAkUaTzSU8LjRoe9jpEtHVn3TCs_Ootvb-KLIqrS1MDk_xGjDzUaGG69tgIt0sD8mDVX4PkQLbBKmKLptUIGpo8vmdWs0DiNw5mXGIWe8XlLP-nS_1P0-GY0R5lec6iaa5vx_PnEB5gp4SQ5yf1iECZ0twewX0sFleGt17vC5ls6YCMflRHJ3_3h9t3yRinR7z8SlmusXxOik4_Yd8H5_XGRA7hF040BJ2qftc6L00GV0ZaSTOSlsEZEpq1q0bIEx_g5xBUykoGu1Kitw3Ty-OjzxilMZ0JwxY17aCH3JY6N8hVZFB-BRalQUW54eJSOhuJEMTW10JEVoDAuln8qUiboIGzoO2CpUsl6m14AEwihc_nCeIpBTgWUkDSNNBdVGKeNHVdgrzZPIgrLcnpzRTXKyZZpgDye2h6uwPZLs5zQdP8jUSgsnRaAOEsSDcZ1ZTpoq7Dpb_qqfHB0c2uv6XwU3YIbaYgmfe5TXoDJ8eNSbMC2fhp3Bw1bhrp_3tvOu
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdSDb3F9RhA9FbtNs23xJOqi2F1FVLyVNA9Y1Cq76-PoLxB_o7_ESdruKigInkrKTB-ZmeTLkPkCsBl5vOYzv-4IL9S4QBHa4XXJHaZV4LoY6cKSVV_FQasVXl9HZ0OwW9bC5PwQ_YSbiQw7XpsANwnpnQFrqMQXIlygwzDioxexCowcnDcu4_5AjMiZlVsOGWW1knvW9XZK3e-z0QBifgWqdqZpTP3rG6dhsgCYZC_3iBkYUtksTHyhHZyDt7h9gw82hMaEWzYnkjv8x-u7YYyU5Pb-mdjN5uoFUTpp28wD3n8YlBmQO4TdOFSS5nHzlEjVs3u6MtLOrBS2CM-kUS1apsQY_4fYEiZSELYalXm4bBxe7B85xbkMaNCIUietB65gkZauRLuiC7Aw1TKMDFOPFCGXTAuKxtYqFDzQmgbCTUVKeY0HdRX5dAEq2X2mFoH4XEtcADGWIpSTvuEkDULlcU9pKbUbVmG7tE8iCtJyc3bGbZLTLXsJ9nBiergKG33Jh5yo4weZldLESRGq3QQRYVSjhpWmClvWmL_qJwd7--a69FfBdRg7umjGSXzcOlmGcc-UTrjM8dgKVHqdR7UKo-Kp1-521grf_QR9Dfee
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB50FdEHb3E9I4g-FbtN0wOfxHVRXFcRFd9KmgMWtS7uejz6C8Tf6C9xkra7CgqCTyVlpkdmJvkSZr4AbMYer_nMDxzhRRoXKEI7PJDcYVqFrouRLixZ9VUzbLWi6-v4bAh2y1qYnB-iv-FmIsOO1ybAVUfqnQFrqMQXIlygwzDiszjAqBypnzcum_2BGJEzK1MOGWW1knvW9XZK3e-z0QBifgWqdqZpTP3rG6dhsgCYZC_3iBkYUtksTHyhHZyDt2b7Bh9sCI0Jt2xOJHf4j9d3wxgpye39M7HJ5uoFUTpp250HvN8ZlBmQO4TdOFSSk6OTUyJVz-Z0ZaSdWSlsEZ5Jo1q0TIkx_g-xJUykIGw1KvNw2Ti42D90inMZ0KAxpU4ahK5gsZauRLuiC7Ao1TKKDVOPFBGXTAuKxtYqEjzUmobCTUVKeY2HgYp9ugCV7D5Ti0B8riUugBhLEcpJ33CShpHyuKe0lNqNqrBd2icRBWm5OTvjNsnplr0EezgxPVyFjb5kJyfq-EFmpTRxUoRqN0FEGNeoYaWpwpY15q_6SX1v31yX_iq4DmNn9UbSPGodL8O4ZyonXOZ4bAUqvYdHtQqj4qnX7j6sFa77CRci9xk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Likelihood+ascent+search%E2%80%90aided+low+complexity+improved+performance+massive+MIMO+detection+in+perfect+and+imperfect+channel+state+information&rft.jtitle=International+journal+of+communication+systems&rft.au=Chakraborty%2C+Sourav&rft.au=Sinha%2C+Nirmalendu+Bikas&rft.au=Mitra%2C+Monojit&rft.date=2022-05-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=35&rft.issue=8&rft_id=info:doi/10.1002%2Fdac.5113&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon