Likelihood ascent search‐aided low complexity improved performance massive MIMO detection in perfect and imperfect channel state information
Summary Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE) detectors can achieve optimal performance in massive MIMO detection but require large dimension matrix inversion, which is computationally intensiv...
Uloženo v:
| Vydáno v: | International journal of communication systems Ročník 35; číslo 8 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Chichester
Wiley Subscription Services, Inc
25.05.2022
|
| Témata: | |
| ISSN: | 1074-5351, 1099-1131 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE) detectors can achieve optimal performance in massive MIMO detection but require large dimension matrix inversion, which is computationally intensive. Therefore, low complexity iterative detection schemes are proposed in the literature as an alternative to the exact MMSE method. However, the performance of these schemes is greatly influenced by the choice of the initial solution. Therefore, to improve the detection performance in this paper, we proposed three hybrid detection schemes, which are Newton–Schultz–Richardson (NS‐RI), Newton–Schultz–Chebyshev (NS‐Cheby), and Newton–Schultz–Gauss–Seidel (NS‐GS). The proposed hybrid schemes show significant performance improvement and a higher convergence rate compared to their original counterpart. The performance of the proposed detectors is further improved by the likelihood ascent search (LAS) stage, which corrects the detected symbols obtained from iterative MMSE methods through a neighborhood search. However, the complexity of the LAS algorithm primarily depends on the initialization step. In this work, we introduce an efficient Gram matrix computation in the real domain. Additionally, we have applied a band approximation of the Gram matrix for the LAS initialization, which reduces the order of computational complexity of the Gram matrix from
O(NT2NR) to O(ωNTNR) where ω < <2NT.
This article first proposes three improved performance hybrid MMSE detection schemes. In addition, the performance is further improved by likelihood ascent search. We have introduced an efficient computation of Gram matrix in real domain which reduces the complexity significantly. A band matrix approximation of Gram matrix is used to further reduce the number of arithmetic operations. |
|---|---|
| AbstractList | Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE) detectors can achieve optimal performance in massive MIMO detection but require large dimension matrix inversion, which is computationally intensive. Therefore, low complexity iterative detection schemes are proposed in the literature as an alternative to the exact MMSE method. However, the performance of these schemes is greatly influenced by the choice of the initial solution. Therefore, to improve the detection performance in this paper, we proposed three hybrid detection schemes, which are Newton–Schultz–Richardson (NS‐RI), Newton–Schultz–Chebyshev (NS‐Cheby), and Newton–Schultz–Gauss–Seidel (NS‐GS). The proposed hybrid schemes show significant performance improvement and a higher convergence rate compared to their original counterpart. The performance of the proposed detectors is further improved by the likelihood ascent search (LAS) stage, which corrects the detected symbols obtained from iterative MMSE methods through a neighborhood search. However, the complexity of the LAS algorithm primarily depends on the initialization step. In this work, we introduce an efficient Gram matrix computation in the real domain. Additionally, we have applied a band approximation of the Gram matrix for the LAS initialization, which reduces the order of computational complexity of the Gram matrix from O(NT2NR) to O(ωNTNR) where ω < <2NT. Summary Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE) detectors can achieve optimal performance in massive MIMO detection but require large dimension matrix inversion, which is computationally intensive. Therefore, low complexity iterative detection schemes are proposed in the literature as an alternative to the exact MMSE method. However, the performance of these schemes is greatly influenced by the choice of the initial solution. Therefore, to improve the detection performance in this paper, we proposed three hybrid detection schemes, which are Newton–Schultz–Richardson (NS‐RI), Newton–Schultz–Chebyshev (NS‐Cheby), and Newton–Schultz–Gauss–Seidel (NS‐GS). The proposed hybrid schemes show significant performance improvement and a higher convergence rate compared to their original counterpart. The performance of the proposed detectors is further improved by the likelihood ascent search (LAS) stage, which corrects the detected symbols obtained from iterative MMSE methods through a neighborhood search. However, the complexity of the LAS algorithm primarily depends on the initialization step. In this work, we introduce an efficient Gram matrix computation in the real domain. Additionally, we have applied a band approximation of the Gram matrix for the LAS initialization, which reduces the order of computational complexity of the Gram matrix from O(NT2NR) to O(ωNTNR) where ω < <2NT. This article first proposes three improved performance hybrid MMSE detection schemes. In addition, the performance is further improved by likelihood ascent search. We have introduced an efficient computation of Gram matrix in real domain which reduces the complexity significantly. A band matrix approximation of Gram matrix is used to further reduce the number of arithmetic operations. Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE) detectors can achieve optimal performance in massive MIMO detection but require large dimension matrix inversion, which is computationally intensive. Therefore, low complexity iterative detection schemes are proposed in the literature as an alternative to the exact MMSE method. However, the performance of these schemes is greatly influenced by the choice of the initial solution. Therefore, to improve the detection performance in this paper, we proposed three hybrid detection schemes, which are Newton–Schultz–Richardson (NS‐RI), Newton–Schultz–Chebyshev (NS‐Cheby), and Newton–Schultz–Gauss–Seidel (NS‐GS). The proposed hybrid schemes show significant performance improvement and a higher convergence rate compared to their original counterpart. The performance of the proposed detectors is further improved by the likelihood ascent search (LAS) stage, which corrects the detected symbols obtained from iterative MMSE methods through a neighborhood search. However, the complexity of the LAS algorithm primarily depends on the initialization step. In this work, we introduce an efficient Gram matrix computation in the real domain. Additionally, we have applied a band approximation of the Gram matrix for the LAS initialization, which reduces the order of computational complexity of the Gram matrix from to O ( ω N T N R ) where ω < <2 N T . |
| Author | Mitra, Monojit Sinha, Nirmalendu Bikas Chakraborty, Sourav |
| Author_xml | – sequence: 1 givenname: Sourav orcidid: 0000-0001-6866-9374 surname: Chakraborty fullname: Chakraborty, Sourav email: sourav.chakraborty@cgec.org.in organization: Cooch Behar Government Engineering College – sequence: 2 givenname: Nirmalendu Bikas surname: Sinha fullname: Sinha, Nirmalendu Bikas organization: Maharaja Nandakumar Mahavidyalaya – sequence: 3 givenname: Monojit surname: Mitra fullname: Mitra, Monojit organization: Indian Institute of Engineering Science and Technology |
| BookMark | eNp1kMtOGzEUhq2KSgVaqY9giQ2bSe14rksUaIsUxIauRyfHx4rpjB1sc8muT1DxjDxJPQkrVFbnou8_l_-IHTjviLGvUsykEPNvGnBWSak-sEMpuq7IqTyY8qYsKlXJT-woxlshRDuvq0P2d2l_02DX3msOEcklHgkCrl_-PIPVpPngHzn6cTPQk01bbsdN8A-5v6FgfBjBIfERYrQPxK8ur665pkSYrHfcuh2VKw5OT9LXCtfgHA08JkiUsd2gSfKZfTQwRPryGo_Zr-8XN4ufxfL6x-XibFngvFOqWNWNwKozWmioNSJU7crotpOlKDW2oCuDqjJkqEVojFENihWuFEhoaupKdcxO9nPzM3f3FFN_6--Dyyv7eV12UtVC1pma7SkMPsZApkebdnemAHbopegnz_vseT95ngWnbwSbYEcI2_-hxR59tANt3-X687PFjv8Hn8CXaA |
| CitedBy_id | crossref_primary_10_1109_TVT_2024_3381559 crossref_primary_10_1109_ACCESS_2023_3279350 crossref_primary_10_1109_TVT_2024_3391614 crossref_primary_10_1002_ett_4826 crossref_primary_10_1016_j_phycom_2022_101982 crossref_primary_10_4218_etrij_2022_0052 |
| Cites_doi | 10.1109/TVT.2014.2370106 10.1109/JSAC.2002.801223 10.1109/GLOCOM.2014.7037314 10.1109/ISCAS.2016.7538940 10.1109/MWC.001.2000267 10.1109/LCOMM.2019.2897798 10.1109/ACCESS.2017.2760881 10.1109/TCOMM.2013.020413.110848 10.1109/TVLSI.2021.3056946 10.1109/GLOCOM.2007.807 10.4218/etrij.17.0116.0732 10.1109/TVT.2019.2924952 10.1109/MCOM.2014.6736761 10.1109/COMST.2019.2935810 10.1109/ISCAS.2016.7538942 10.1109/TCOMM.2017.2761383 10.1109/JSTSP.2014.2313021 10.1016/B978-0-12-820046-9.00005-8 10.1109/TSP.2018.2831622 10.1109/LCOMM.2015.2504506 10.1109/TCSI.2016.2611645 10.1109/JSTSP.2009.2035862 10.1109/MSP.2011.2178495 10.1109/ICSPCS.2008.4813732 10.1109/TSP.2005.863008 10.1109/TWC.2013.092013.130045 10.1186/s13638-019-1631-x 10.1109/ACCESS.2019.2907366 10.1109/GLOCOM.2014.7037382 10.1109/JSTSP.2014.2317671 10.1109/WCSP.2017.8171111 10.1109/PIMRC.2016.7794623 10.1109/TSP.2017.2698410 10.1109/TCOMM.2011.070511.110058 10.1109/TVT.2018.2874811 10.1109/ICC.2015.7248580 10.1109/VTCSpring.2015.7145618 10.1080/00207217.2021.1941292 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 8FD JQ2 L7M |
| DOI | 10.1002/dac.5113 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ProQuest Computer Science Collection |
| DatabaseTitleList | Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1131 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_dac_5113 DAC5113 |
| Genre | article |
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X 7SP 8FD JQ2 L7M |
| ID | FETCH-LOGICAL-c2933-b670c59fd0da6dcca58bfd891404dc8ad5fc35fefe8ca7ff37c0bcb3a1a76e943 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751987700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1074-5351 |
| IngestDate | Fri Jul 25 12:17:42 EDT 2025 Sat Nov 29 03:54:57 EST 2025 Tue Nov 18 22:12:35 EST 2025 Wed Jan 22 16:26:15 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2933-b670c59fd0da6dcca58bfd891404dc8ad5fc35fefe8ca7ff37c0bcb3a1a76e943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6866-9374 |
| PQID | 2649136016 |
| PQPubID | 996367 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2649136016 crossref_citationtrail_10_1002_dac_5113 crossref_primary_10_1002_dac_5113 wiley_primary_10_1002_dac_5113_DAC5113 |
| PublicationCentury | 2000 |
| PublicationDate | 25 May 2022 |
| PublicationDateYYYYMMDD | 2022-05-25 |
| PublicationDate_xml | – month: 05 year: 2022 text: 25 May 2022 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | International journal of communication systems |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 5 2019; 7 2006; 54 2021; 29 2021; 28 2013; 61 2017; 65 2009 2008 2007 2011; 59 2018; 67 2018; 66 2021; 0 2020; 2020 2002; 20 2017; 39 2019; 21 2013; 12 2020 2015; 64 2019; 68 2019; 23 2013; 30 2016; 20 2016; 63 2017 2016 2015 2014 2014; 52 2009; 3 2014; 8 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 |
| References_xml | – volume: 59 start-page: 2955 issue: 11 year: 2011 end-page: 2963 article-title: Layered tabu search algorithm for large‐MIMO detection and a lower bound on ML performance publication-title: IEEE Trans Commun – year: 2009 – volume: 0 start-page: 1 issue: 0 year: 2021 end-page: 17 article-title: Robust conjugate‐gradient based LAS detector for massive MIMO systems publication-title: Int J Electron – volume: 52 start-page: 186 issue: 2 year: 2014 end-page: 195 article-title: Massive MIMO for next generation wireless systems publication-title: IEEE Commun Mag – volume: 67 start-page: 11,759 issue: 12 year: 2018 end-page: 11,766 article-title: Low complexity zero forcing detector based on Newton‐Schultz iterative algorithm for massive MIMO systems publication-title: IEEE Trans Veh Technol – volume: 66 start-page: 3377 issue: 13 year: 2018 end-page: 3392 article-title: Symbol error rate performance of box‐relaxation decoders in massive MIMO publication-title: IEEE Trans Signal Process – start-page: 1 year: 2008 end-page: 9 – volume: 2020 start-page: 34 issue: 1 year: 2020 article-title: Fast matrix inversion methods based on Chebyshev and Newton iterations for zero forcing precoding in massive MIMO systems publication-title: EURASIP J Wirel Commun Netw – start-page: 133 year: 2020 end-page: 174 – volume: 20 start-page: 1211 issue: 6 year: 2002 end-page: 1226 article-title: A stochastic MIMO radio channel model with experimental validation publication-title: IEEE J Sel Areas Commun – volume: 68 start-page: 7260 issue: 8 year: 2019 end-page: 7272 article-title: A low‐complexity massive MIMO detection based on approximate expectation propagation publication-title: IEEE Trans Veh Technol – volume: 39 start-page: 326 issue: 3 year: 2017 end-page: 335 article-title: Low‐complexity massive MIMO detectors based on Richardson method publication-title: ETRI J – start-page: 1763 year: 2015 end-page: 1769 – volume: 5 start-page: 22,545 year: 2017 end-page: 22,551 article-title: A low‐complexity massive MIMO precoding algorithm based on Chebyshev iteration publication-title: IEEE Access – start-page: 1886 year: 2016 end-page: 1889 – start-page: 1 year: 2016 end-page: 5 – volume: 64 start-page: 4839 issue: 10 year: 2015 end-page: 4845 article-title: Low‐complexity soft‐output signal detection based on Gauss‐Seidel method for uplink multiuser large‐scale MIMO systems publication-title: IEEE Trans Veh Technol – volume: 12 start-page: 5172 issue: 10 year: 2013 end-page: 5184 article-title: Parametrization based limited feedback design for correlated MIMO channels using new statistical models publication-title: IEEE Trans Wirel Commun – start-page: 1894 year: 2016 end-page: 1897 – start-page: 1 year: 2017 end-page: 6 – start-page: 1 year: 2015 end-page: 5 – volume: 54 start-page: 884 issue: 3 year: 2006 end-page: 893 article-title: Training‐based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals publication-title: IEEE Trans Signal Process – volume: 20 start-page: 276 issue: 2 year: 2016 end-page: 279 article-title: A near‐optimal detection scheme based on joint steepest descent and Jacobi method for uplink massive MIMO systems publication-title: IEEE Commun Lett – volume: 3 start-page: 958 issue: 6 year: 2009 end-page: 974 article-title: High‐rate space‐time coded large‐MIMO systems: low‐complexity detection and channel estimation publication-title: IEEE J Sel Top Signal Process – start-page: 4242 year: 2007 end-page: 4246 – start-page: 3696 year: 2014 end-page: 3701 – volume: 8 start-page: 742 issue: 5 year: 2014 end-page: 758 article-title: An overview of massive MIMO: benefits and challenges publication-title: IEEE J Sel Top Signal Process – volume: 8 start-page: 916 issue: 5 year: 2014 end-page: 929 article-title: Large‐scale MIMO detection for 3GPP LTE: algorithms and FPGA implementations publication-title: IEEE J Sel Top Signal Process – start-page: 3291 year: 2014 end-page: 3295 – volume: 28 start-page: 106 issue: 2 year: 2021 end-page: 113 article-title: Dynamic metasurface antennas for 6G extreme massive MIMO communications publication-title: IEEE Wirel Commun – volume: 23 start-page: 748 issue: 4 year: 2019 end-page: 751 article-title: A low complexity signal detection scheme based on improved Newton iteration for massive MIMO systems publication-title: IEEE Commun Lett – volume: 21 start-page: 3109 issue: 4 year: 2019 end-page: 3132 article-title: Massive MIMO detection techniques: a survey publication-title: IEEE Commun Surv Tutor – volume: 65 start-page: 3775 issue: 14 year: 2017 end-page: 3788 article-title: Low‐computing‐load, high‐parallelism detection method based on Chebyshev iteration for massive MIMO systems with VLSI architecture publication-title: IEEE Trans Signal Process – volume: 29 start-page: 747 issue: 4 year: 2021 end-page: 759 article-title: ADMM‐based infinity‐norm detection for massive MIMO: algorithm and VLSI architecture publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst – volume: 66 start-page: 713 issue: 2 year: 2018 end-page: 725 article-title: Sequential and global likelihood ascent search‐based detection in large MIMO systems publication-title: IEEE Trans Commun – volume: 30 start-page: 40 issue: 1 year: 2013 end-page: 60 article-title: Scaling up MIMO: opportunities and challenges with very large arrays publication-title: IEEE Signal Proc Mag – volume: 61 start-page: 1436 issue: 4 year: 2013 end-page: 1449 article-title: Energy and spectral efficiency of very large multiuser MIMO systems publication-title: IEEE Trans Commun – volume: 7 start-page: 39,341 year: 2019 end-page: 39,351 article-title: A low‐complexity data detection algorithm for massive MIMO systems publication-title: IEEE Access – volume: 63 start-page: 2357 issue: 12 year: 2016 end-page: 2367 article-title: High‐throughput data detection for massive MU‐MIMO‐OFDM using coordinate descent publication-title: IEEE Trans Circ Syst I: Regular Pap – ident: e_1_2_11_15_1 doi: 10.1109/TVT.2014.2370106 – ident: e_1_2_11_37_1 doi: 10.1109/JSAC.2002.801223 – ident: e_1_2_11_16_1 doi: 10.1109/GLOCOM.2014.7037314 – ident: e_1_2_11_21_1 doi: 10.1109/ISCAS.2016.7538940 – ident: e_1_2_11_3_1 doi: 10.1109/MWC.001.2000267 – ident: e_1_2_11_22_1 doi: 10.1109/LCOMM.2019.2897798 – ident: e_1_2_11_11_1 doi: 10.1109/ACCESS.2017.2760881 – ident: e_1_2_11_6_1 doi: 10.1109/TCOMM.2013.020413.110848 – ident: e_1_2_11_34_1 doi: 10.1109/TVLSI.2021.3056946 – ident: e_1_2_11_30_1 doi: 10.1109/GLOCOM.2007.807 – ident: e_1_2_11_33_1 doi: 10.4218/etrij.17.0116.0732 – ident: e_1_2_11_35_1 doi: 10.1109/TVT.2019.2924952 – ident: e_1_2_11_4_1 doi: 10.1109/MCOM.2014.6736761 – ident: e_1_2_11_8_1 doi: 10.1109/COMST.2019.2935810 – ident: e_1_2_11_18_1 doi: 10.1109/ISCAS.2016.7538942 – ident: e_1_2_11_28_1 doi: 10.1109/TCOMM.2017.2761383 – ident: e_1_2_11_9_1 doi: 10.1109/JSTSP.2014.2313021 – ident: e_1_2_11_40_1 doi: 10.1016/B978-0-12-820046-9.00005-8 – ident: e_1_2_11_7_1 doi: 10.1109/TSP.2018.2831622 – ident: e_1_2_11_14_1 doi: 10.1109/LCOMM.2015.2504506 – ident: e_1_2_11_36_1 doi: 10.1109/TCSI.2016.2611645 – ident: e_1_2_11_27_1 doi: 10.1109/JSTSP.2009.2035862 – ident: e_1_2_11_2_1 doi: 10.1109/MSP.2011.2178495 – ident: e_1_2_11_31_1 doi: 10.1109/ICSPCS.2008.4813732 – ident: e_1_2_11_39_1 doi: 10.1109/TSP.2005.863008 – ident: e_1_2_11_38_1 doi: 10.1109/TWC.2013.092013.130045 – ident: e_1_2_11_23_1 doi: 10.1186/s13638-019-1631-x – ident: e_1_2_11_24_1 doi: 10.1109/ACCESS.2019.2907366 – ident: e_1_2_11_17_1 doi: 10.1109/GLOCOM.2014.7037382 – ident: e_1_2_11_5_1 doi: 10.1109/JSTSP.2014.2317671 – ident: e_1_2_11_19_1 doi: 10.1109/WCSP.2017.8171111 – ident: e_1_2_11_25_1 – ident: e_1_2_11_13_1 doi: 10.1109/PIMRC.2016.7794623 – ident: e_1_2_11_20_1 doi: 10.1109/TSP.2017.2698410 – ident: e_1_2_11_26_1 doi: 10.1109/TCOMM.2011.070511.110058 – ident: e_1_2_11_12_1 doi: 10.1109/TVT.2018.2874811 – ident: e_1_2_11_10_1 doi: 10.1109/ICC.2015.7248580 – ident: e_1_2_11_32_1 doi: 10.1109/VTCSpring.2015.7145618 – ident: e_1_2_11_29_1 doi: 10.1080/00207217.2021.1941292 |
| SSID | ssj0008265 |
| Score | 2.3180697 |
| Snippet | Summary
Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE)... Massive multiple‐input multiple‐output (MIMO) systems improve spectral efficiency and link reliability. Linear minimum mean‐squared error (MMSE) detectors can... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Ascent Chebyshev approximation Complexity Detectors Error detection Gram matrix hybrid MMSE detection Iterative methods LAS massive MIMO Searching |
| Title | Likelihood ascent search‐aided low complexity improved performance massive MIMO detection in perfect and imperfect channel state information |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.5113 https://www.proquest.com/docview/2649136016 |
| Volume | 35 |
| WOSCitedRecordID | wos000751987700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1131 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008265 issn: 1074-5351 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60etCDb7FaJYLoaXGbbLq7R1GLQqsiKt6WbB5QrNti6-PoLxB_o7_ESXa3VVAQPC1ZZvaRmUm-hJkvADsxFfWABw1P0sjgAkUaTzSU8LjRoe9jpEtHVn3TCs_Ootvb-KLIqrS1MDk_xGjDzUaGG69tgIt0sD8mDVX4PkQLbBKmKLptUIGpo8vmdWs0DiNw5mXGIWe8XlLP-nS_1P0-GY0R5lec6iaa5vx_PnEB5gp4SQ5yf1iECZ0twewX0sFleGt17vC5ls6YCMflRHJ3_3h9t3yRinR7z8SlmusXxOik4_Yd8H5_XGRA7hF040BJ2qftc6L00GV0ZaSTOSlsEZEpq1q0bIEx_g5xBUykoGu1Kitw3Ty-OjzxilMZ0JwxY17aCH3JY6N8hVZFB-BRalQUW54eJSOhuJEMTW10JEVoDAuln8qUiboIGzoO2CpUsl6m14AEwihc_nCeIpBTgWUkDSNNBdVGKeNHVdgrzZPIgrLcnpzRTXKyZZpgDye2h6uwPZLs5zQdP8jUSgsnRaAOEsSDcZ1ZTpoq7Dpb_qqfHB0c2uv6XwU3YIbaYgmfe5TXoDJ8eNSbMC2fhp3Bw1bhrp_3tvOu |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdSDb3F9RhA9FbtNs23xJOqi2F1FVLyVNA9Y1Cq76-PoLxB_o7_ESdruKigInkrKTB-ZmeTLkPkCsBl5vOYzv-4IL9S4QBHa4XXJHaZV4LoY6cKSVV_FQasVXl9HZ0OwW9bC5PwQ_YSbiQw7XpsANwnpnQFrqMQXIlygwzDioxexCowcnDcu4_5AjMiZlVsOGWW1knvW9XZK3e-z0QBifgWqdqZpTP3rG6dhsgCYZC_3iBkYUtksTHyhHZyDt7h9gw82hMaEWzYnkjv8x-u7YYyU5Pb-mdjN5uoFUTpp28wD3n8YlBmQO4TdOFSS5nHzlEjVs3u6MtLOrBS2CM-kUS1apsQY_4fYEiZSELYalXm4bBxe7B85xbkMaNCIUietB65gkZauRLuiC7Aw1TKMDFOPFCGXTAuKxtYqFDzQmgbCTUVKeY0HdRX5dAEq2X2mFoH4XEtcADGWIpSTvuEkDULlcU9pKbUbVmG7tE8iCtJyc3bGbZLTLXsJ9nBiergKG33Jh5yo4weZldLESRGq3QQRYVSjhpWmClvWmL_qJwd7--a69FfBdRg7umjGSXzcOlmGcc-UTrjM8dgKVHqdR7UKo-Kp1-521grf_QR9Dfee |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB50FdEHb3E9I4g-FbtN0wOfxHVRXFcRFd9KmgMWtS7uejz6C8Tf6C9xkra7CgqCTyVlpkdmJvkSZr4AbMYer_nMDxzhRRoXKEI7PJDcYVqFrouRLixZ9VUzbLWi6-v4bAh2y1qYnB-iv-FmIsOO1ybAVUfqnQFrqMQXIlygwzDiszjAqBypnzcum_2BGJEzK1MOGWW1knvW9XZK3e-z0QBifgWqdqZpTP3rG6dhsgCYZC_3iBkYUtksTHyhHZyDt2b7Bh9sCI0Jt2xOJHf4j9d3wxgpye39M7HJ5uoFUTpp250HvN8ZlBmQO4TdOFSSk6OTUyJVz-Z0ZaSdWSlsEZ5Jo1q0TIkx_g-xJUykIGw1KvNw2Ti42D90inMZ0KAxpU4ahK5gsZauRLuiC7Ao1TKKDVOPFBGXTAuKxtYqEjzUmobCTUVKeY2HgYp9ugCV7D5Ti0B8riUugBhLEcpJ33CShpHyuKe0lNqNqrBd2icRBWm5OTvjNsnplr0EezgxPVyFjb5kJyfq-EFmpTRxUoRqN0FEGNeoYaWpwpY15q_6SX1v31yX_iq4DmNn9UbSPGodL8O4ZyonXOZ4bAUqvYdHtQqj4qnX7j6sFa77CRci9xk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Likelihood+ascent+search%E2%80%90aided+low+complexity+improved+performance+massive+MIMO+detection+in+perfect+and+imperfect+channel+state+information&rft.jtitle=International+journal+of+communication+systems&rft.au=Chakraborty%2C+Sourav&rft.au=Sinha%2C+Nirmalendu+Bikas&rft.au=Mitra%2C+Monojit&rft.date=2022-05-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=35&rft.issue=8&rft_id=info:doi/10.1002%2Fdac.5113&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon |