Data‐driven physics‐based digital twins via a library of component‐based reduced‐order models

Summary This work proposes an approach that combines a library of component‐based reduced‐order models with Bayesian state estimation in order to create data‐driven physics‐based digital twins. Reduced‐order modeling produces physics‐based computational models that are reliable enough for predictive...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in engineering Ročník 123; číslo 13; s. 2986 - 3003
Hlavní autoři: Kapteyn, M.G., Knezevic, D.J., Huynh, D.B.P., Tran, M., Willcox, K.E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 15.07.2022
Wiley Subscription Services, Inc
Témata:
ISSN:0029-5981, 1097-0207
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary This work proposes an approach that combines a library of component‐based reduced‐order models with Bayesian state estimation in order to create data‐driven physics‐based digital twins. Reduced‐order modeling produces physics‐based computational models that are reliable enough for predictive digital twins, while still being fast to evaluate. In contrast with traditional monolithic techniques for model reduction, the component‐based approach scales efficiently to large complex systems, and provides a flexible and expressive framework for rapid model adaptation—both critical features in the digital twin context. Data‐driven model adaptation and uncertainty quantification are formulated as a Bayesian state estimation problem, in which sensor data are used to infer which models in the model library are the best candidates for the digital twin. This approach is demonstrated through the development of a digital twin for a 12‐ft wingspan unmanned aerial vehicle. Offline, we construct a library of pristine and damaged aircraft components. Online, we use structural sensor data to rapidly adapt a physics‐based digital twin of the aircraft structure. The data‐driven digital twin enables the aircraft to dynamically replan a safe mission in response to structural damage or degradation.
AbstractList Summary This work proposes an approach that combines a library of component‐based reduced‐order models with Bayesian state estimation in order to create data‐driven physics‐based digital twins. Reduced‐order modeling produces physics‐based computational models that are reliable enough for predictive digital twins, while still being fast to evaluate. In contrast with traditional monolithic techniques for model reduction, the component‐based approach scales efficiently to large complex systems, and provides a flexible and expressive framework for rapid model adaptation—both critical features in the digital twin context. Data‐driven model adaptation and uncertainty quantification are formulated as a Bayesian state estimation problem, in which sensor data are used to infer which models in the model library are the best candidates for the digital twin. This approach is demonstrated through the development of a digital twin for a 12‐ft wingspan unmanned aerial vehicle. Offline, we construct a library of pristine and damaged aircraft components. Online, we use structural sensor data to rapidly adapt a physics‐based digital twin of the aircraft structure. The data‐driven digital twin enables the aircraft to dynamically replan a safe mission in response to structural damage or degradation.
This work proposes an approach that combines a library of component‐based reduced‐order models with Bayesian state estimation in order to create data‐driven physics‐based digital twins. Reduced‐order modeling produces physics‐based computational models that are reliable enough for predictive digital twins, while still being fast to evaluate. In contrast with traditional monolithic techniques for model reduction, the component‐based approach scales efficiently to large complex systems, and provides a flexible and expressive framework for rapid model adaptation—both critical features in the digital twin context. Data‐driven model adaptation and uncertainty quantification are formulated as a Bayesian state estimation problem, in which sensor data are used to infer which models in the model library are the best candidates for the digital twin. This approach is demonstrated through the development of a digital twin for a 12‐ft wingspan unmanned aerial vehicle. Offline, we construct a library of pristine and damaged aircraft components. Online, we use structural sensor data to rapidly adapt a physics‐based digital twin of the aircraft structure. The data‐driven digital twin enables the aircraft to dynamically replan a safe mission in response to structural damage or degradation.
Author Tran, M.
Willcox, K.E.
Kapteyn, M.G.
Huynh, D.B.P.
Knezevic, D.J.
Author_xml – sequence: 1
  givenname: M.G.
  orcidid: 0000-0002-3594-682X
  surname: Kapteyn
  fullname: Kapteyn, M.G.
  email: mkapteyn@mit.edu
  organization: Massachusetts Institute of Technology
– sequence: 2
  givenname: D.J.
  surname: Knezevic
  fullname: Knezevic, D.J.
  organization: Akselos Inc
– sequence: 3
  givenname: D.B.P.
  surname: Huynh
  fullname: Huynh, D.B.P.
  organization: Akselos S.A
– sequence: 4
  givenname: M.
  surname: Tran
  fullname: Tran, M.
  organization: Akselos S.A
– sequence: 5
  givenname: K.E.
  surname: Willcox
  fullname: Willcox, K.E.
  organization: University of Texas at Austin
BookMark eNp1kMtOAyEUhompibWa-AgkbtxMhWEYhqWp9ZJU3eiaMMAozQxUmLbpzkfwGX0SqTUujK7O7fvPyfkPwcB5ZwA4wWiMEcrPXWfGZZGTPTDEiLMM5YgNwDCNeEZ5hQ_AYYxzhDCmiAyBuZS9_Hh718GujIOLl020KqZGLaPRUNtn28sW9mvrIlxZCSVsbR1k2EDfQOW7RTrv-h9BMHqpjE61D9oE2Hlt2ngE9hvZRnP8HUfg6Wr6OLnJZg_Xt5OLWaZyTkhGcE2NLChDRBFUIJxXumZUIqYwZSXDFTcN0bpBpSkLxllZNVVe8rqssU45GYHT3d5F8K9LE3sx98vg0kmRl4wizimmiRrvKBV8jME0QqUne-tdH6RtBUZia6VIVoqtlUlw9kuwCLZLHvyFZjt0bVuz-ZcT93fTL_4THUqIPA
CitedBy_id crossref_primary_10_1016_j_engstruct_2024_118582
crossref_primary_10_1155_2022_6099409
crossref_primary_10_1016_j_jmsy_2024_09_024
crossref_primary_10_1038_s43588_021_00069_0
crossref_primary_10_1016_j_displa_2023_102534
crossref_primary_10_1002_gamm_202100007
crossref_primary_10_1177_13694332241260866
crossref_primary_10_32604_cmes_2021_015747
crossref_primary_10_1016_j_dte_2024_100025
crossref_primary_10_1109_ACCESS_2023_3264543
crossref_primary_10_1137_22M148402X
crossref_primary_10_1016_j_enrev_2023_100039
crossref_primary_10_1038_s43588_021_00072_5
crossref_primary_10_1016_j_aei_2024_102405
crossref_primary_10_1016_j_aei_2024_102800
crossref_primary_10_1093_nsr_nwae079
crossref_primary_10_1038_s41598_023_38104_x
crossref_primary_10_1016_j_aei_2024_102363
crossref_primary_10_1109_TMTT_2022_3208917
crossref_primary_10_3390_app13116589
crossref_primary_10_1016_j_ress_2024_110538
crossref_primary_10_1088_1755_1315_1376_1_012036
crossref_primary_10_1007_s10462_024_10781_8
crossref_primary_10_3390_s23229203
crossref_primary_10_1016_j_oceaneng_2023_115323
crossref_primary_10_1016_j_rcim_2024_102860
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_1016_j_epsr_2023_109958
crossref_primary_10_1088_1361_6501_ad0257
crossref_primary_10_3390_drones7070478
crossref_primary_10_1016_j_paerosci_2025_101132
crossref_primary_10_1016_j_energy_2023_127385
crossref_primary_10_1109_JSEN_2023_3342025
crossref_primary_10_1016_j_compind_2023_103920
crossref_primary_10_1016_j_autcon_2025_106212
crossref_primary_10_3390_app15031181
crossref_primary_10_1016_j_tws_2025_113912
crossref_primary_10_1109_TII_2023_3248110
crossref_primary_10_3390_app15168883
crossref_primary_10_3390_app15169213
crossref_primary_10_1016_j_renene_2023_02_067
crossref_primary_10_1016_j_compchemeng_2024_108917
crossref_primary_10_1016_j_rineng_2025_106570
crossref_primary_10_1016_j_cirp_2023_05_007
crossref_primary_10_1016_j_iswa_2025_200535
crossref_primary_10_1080_01616846_2024_2428512
crossref_primary_10_1016_j_ast_2023_108412
crossref_primary_10_1016_j_engstruct_2025_120196
crossref_primary_10_1002_nme_6712
crossref_primary_10_1016_j_jmapro_2023_07_061
crossref_primary_10_1016_j_aei_2025_103685
crossref_primary_10_1007_s10915_024_02711_1
crossref_primary_10_1016_j_future_2023_11_034
crossref_primary_10_1016_j_cma_2023_116712
crossref_primary_10_1016_j_advengsoft_2025_103935
crossref_primary_10_3390_aerospace10090791
crossref_primary_10_1007_s42405_025_00968_w
crossref_primary_10_1115_1_4068712
crossref_primary_10_1016_j_jcp_2024_113452
crossref_primary_10_1088_1361_6501_ad2050
crossref_primary_10_1109_ACCESS_2024_3371902
crossref_primary_10_3390_drones9060394
crossref_primary_10_1016_j_applthermaleng_2023_121728
crossref_primary_10_1007_s11465_022_0708_0
crossref_primary_10_1177_14759217221108676
crossref_primary_10_1016_j_cma_2023_116584
crossref_primary_10_1016_j_ymssp_2024_112261
crossref_primary_10_1002_nme_7305
crossref_primary_10_1063_5_0254956
crossref_primary_10_1080_15732479_2025_2520341
crossref_primary_10_3390_machines11070733
crossref_primary_10_1080_17445302_2025_2502868
crossref_primary_10_1109_JIOT_2022_3232845
crossref_primary_10_1103_PhysRevE_104_015206
crossref_primary_10_1371_journal_pone_0246092
crossref_primary_10_1109_ACCESS_2021_3136458
crossref_primary_10_3390_systems11010041
crossref_primary_10_1016_j_ress_2023_109338
crossref_primary_10_1016_j_asoc_2023_110921
crossref_primary_10_1002_nme_7159
crossref_primary_10_1016_j_cma_2024_117649
crossref_primary_10_1007_s00366_023_01862_3
crossref_primary_10_1109_ACCESS_2021_3060863
crossref_primary_10_1016_j_cma_2023_116595
crossref_primary_10_1038_s41598_024_64778_y
crossref_primary_10_1016_j_ress_2024_110385
crossref_primary_10_1080_00423114_2023_2188228
crossref_primary_10_1016_j_renene_2024_120580
crossref_primary_10_3390_s24185878
crossref_primary_10_1016_j_flowmeasinst_2024_102682
crossref_primary_10_1016_j_aei_2024_102773
crossref_primary_10_1021_acs_jctc_4c01747
crossref_primary_10_1139_dsa_2024_0005
crossref_primary_10_1007_s00170_022_09717_9
crossref_primary_10_1007_s00158_023_03689_4
crossref_primary_10_1177_16878132241278459
crossref_primary_10_1016_j_engstruct_2025_119688
crossref_primary_10_1109_TITS_2023_3296268
crossref_primary_10_1007_s11071_023_08354_5
crossref_primary_10_1038_s41598_024_56118_x
crossref_primary_10_1109_TIM_2025_3555673
crossref_primary_10_1016_j_compstruc_2025_107655
crossref_primary_10_3389_fphy_2022_900064
Cites_doi 10.2514/1.J053893
10.2514/6.2003-3847
10.2514/8.3664
10.1137/100795772
10.2514/3.2874
10.2514/3.50778
10.2514/6.2012-1812
10.1007/s11831-011-9064-7
10.3182/20120215-3-AT-3016.00123
10.1007/978-3-319-02090-7
10.2514/1.J055201
10.1137/15M1009603
10.1016/j.crma.2004.08.006
10.2514/6.2013-1578
10.1002/nme.4669
10.1186/2213‐7467‐1‐3
10.1016/j.jcp.2012.07.022
10.1016/j.cma.2014.09.020
10.1016/j.procs.2012.04.130
10.1137/1.9780898718713
10.1115/GT2017-63336
10.2514/1.J057255
10.1007/BF03024948
10.1109/TCNS.2016.2607420
10.1137/130932715
10.2514/6.2012-1818
10.1007/s11831‐018‐9301‐4
10.1016/j.crme.2019.11.004
10.1051/m2an/2012022
10.2514/6.1999-1394
10.1137/140995817
10.1090/S0025-5718-1985-0804937-0
10.1002/nme.4543
10.1007/11564096_59
10.1111/1467-9868.00294
10.2514/3.7539
10.1109/TCNS.2016.2606880
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.6423
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 3003
ExternalDocumentID 10_1002_nme_6423
NME6423
Genre article
GrantInformation_xml – fundername: SUTD‐MIT International Design Center
– fundername: Air Force Office of Scientific Research
  funderid: FA9550‐16‐1‐0108
– fundername: Boeing
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2933-31b5ea45703c3040128db75a07c15767189ef3ddf06e6479768f8269b6b1d68f3
IEDL.DBID DRFUL
ISICitedReferencesCount 150
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541962100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 25 12:19:36 EDT 2025
Tue Nov 18 22:37:41 EST 2025
Sat Nov 29 06:43:58 EST 2025
Wed Jan 22 16:24:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2933-31b5ea45703c3040128db75a07c15767189ef3ddf06e6479768f8269b6b1d68f3
Notes Funding information
Air Force Office of Scientific Research, FA9550‐16‐1‐0108; Boeing, SUTD‐MIT International Design Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3594-682X
PQID 2675099515
PQPubID 996376
PageCount 18
ParticipantIDs proquest_journals_2675099515
crossref_citationtrail_10_1002_nme_6423
crossref_primary_10_1002_nme_6423
wiley_primary_10_1002_nme_6423_NME6423
PublicationCentury 2000
PublicationDate 15 July 2022
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 15 July 2022
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 57
2015; 283
2013a; 96
2013; 47
2012
2011
2015; 102
2015; 53
2019; 347
2008
1978; 16
2005
2018; 329
2003
1985; 45
2016; 38
2011; 18
2018; 27
2001; 63
2007; 15
1999
2016; 4
1965; 3
2017; 53
2012; 231
1980; 18
2017; 55
1956; 23
2017
2005; 6
2011; 43
2016
2013b; 1
2013
2016a; 38
2014; 9
2018; 56
2004; 339
2012; 45
2012; 9
e_1_2_8_28_1
Ross S (e_1_2_8_40_1) 2008
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
Tuegel EJ (e_1_2_8_4_1) 2011
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
Russell SJ (e_1_2_8_35_1) 2016
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Ballani J (e_1_2_8_29_1) 2018; 329
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – year: 2011
– volume: 96
  start-page: 269
  issue: 5
  year: 2013a
  end-page: 302
  article-title: Port reduction in parametrized component static condensation: Approximation and a posteriori error estimation
  publication-title: Int J Numer Methods Eng
– volume: 23
  start-page: 805
  year: 1956
  end-page: 823
  article-title: Stiffness and deflection analysis of complex structures
  publication-title: J Aeronaut Sci
– volume: 47
  start-page: 213
  issue: 1
  year: 2013
  end-page: 251
  article-title: A static condensation reduced basis element method: approximation and a posteriori error estimation
  publication-title: ESAIM Math Modell Numer Anal
– volume: 9
  start-page: 1206
  year: 2012
  end-page: 1210
  article-title: Dynamic data driven methods for self‐aware aerospace vehicles
  publication-title: Proc Comput Sci
– volume: 4
  start-page: 49
  issue: 1
  year: 2016
  end-page: 59
  article-title: Secure state estimation against sensor attacks in the presence of noise
  publication-title: IEEE Trans Control Netw Syst
– year: 2005
– volume: 56
  start-page: 4515
  issue: 11
  year: 2018
  end-page: 4528
  article-title: Engineering design with digital thread
  publication-title: AIAA J
– volume: 339
  start-page: 667
  issue: 9
  year: 2004
  end-page: 672
  article-title: An 'imempirical interpolation' method: application to efficient reduced‐basis discretization of partial differential equations
  publication-title: Comptes Rendus Mathematique
– volume: 4
  start-page: 380
  issue: 1
  year: 2016
  end-page: 412
  article-title: Accurate solution of Bayesian inverse uncertainty quantification problems combining reduced basis methods and reduction error models
  publication-title: SIAM/ASA J Uncert Quantif
– year: 2008
  article-title: Bayes‐adaptive POMDPs
  publication-title: In Advances in Neural Information Processing Systems
– year: 2003
– volume: 329
  start-page: 498
  year: 2018
  end-page: 531
  article-title: A component‐based hybrid reduced basis/finite element method for solid mechanics with local nonlinearities
  publication-title: SIAM J Sci Comput
– volume: 53
  start-page: 3073
  issue: 10
  year: 2015
  end-page: 3087
  article-title: Methodology for dynamic data‐driven online flight capability estimation
  publication-title: AIAA J
– volume: 15
  start-page: 1
  issue: 3
  year: 2007
  article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations
  publication-title: Arch Comput Methods Eng
– volume: 102
  start-page: 379
  issue: 3‐4
  year: 2015
  end-page: 403
  article-title: A computational framework for dynamic data‐driven material damage control, based on Bayesian inference and model selection
  publication-title: Int J Numer Methods Eng
– volume: 347
  start-page: 762
  issue: 11
  year: 2019
  end-page: 779
  article-title: Real‐time Bayesian data assimilation with data selection, correction of model bias, and on‐the‐fly uncertainty propagation
  publication-title: Comptes Rendus Mécanique
– year: 2016
– volume: 38
  start-page: A3318
  issue: 5
  year: 2016
  end-page: A3356
  article-title: Optimal local approximation spaces for component‐based static condensation procedures
  publication-title: SIAM Journal on Scientific Computing
– year: 2012
– volume: 55
  start-page: 930
  issue: 3
  year: 2017
  end-page: 941
  article-title: Dynamic Bayesian network for aircraft wing health monitoring digital twin
  publication-title: AIAA J
– volume: 6
  year: 2005
– volume: 3
  start-page: 380
  year: 1965
  end-page: 380
  article-title: Reduction of stiffness and mass matrices
  publication-title: AIAA J
– volume: 9
  year: 2014
– volume: 53
  start-page: 3073
  issue: 10
  year: 2017
  end-page: 3087
  article-title: Methodology for path planning with dynamic data‐driven flight capability estimation
  publication-title: AIAA Journal
– volume: 18
  start-page: 455
  issue: 4
  year: 1980
  end-page: 462
  article-title: Reduced basis technique for nonlinear analysis of structures
  publication-title: AIAA J
– volume: 63
  start-page: 425
  issue: 3
  year: 2001
  end-page: 464
  article-title: Bayesian calibration of computer models
  publication-title: J Royal Stat Soc Ser B (Stat Methodol)
– volume: 231
  start-page: 7815
  issue: 23
  year: 2012
  end-page: 7850
  article-title: Bayesian inference with optimal maps
  publication-title: J Comput Phys
– volume: 43
  start-page: 1457
  issue: 3
  year: 2011
  end-page: 1472
  article-title: Convergence rates for greedy algorithms in reduced basis methods
  publication-title: SIAM J Math Anal
– volume: 4
  start-page: 82
  issue: 1
  year: 2016
  end-page: 92
  article-title: Attack‐resilient state estimation for noisy dynamical systems
  publication-title: IEEE Trans Control Netw Syst
– volume: 45
  start-page: 695
  issue: 2
  year: 2012
  end-page: 699
  article-title: Adaptive port reduction in static condensation
  publication-title: IFAC Proc Vol
– volume: 1
  start-page: 1
  issue: 3
  year: 2013b
  end-page: 49
  article-title: A port‐reduced static condensation reduced basis element method for large component‐synthesized structures: approximation and a posteriori error estimation
  publication-title: Advanced Modeling and Simulation in Engineering Sciences
– volume: 16
  start-page: 525
  issue: 5
  year: 1978
  end-page: 528
  article-title: Automatic choice of global shape functions in structural analysis
  publication-title: AIAAl J
– volume: 18
  start-page: 395
  year: 2011
  end-page: 404
  article-title: A short review on model order reduction based on proper generalized decomposition
  publication-title: Arch Comput Methods Eng
– year: 2017
– volume: 45
  start-page: 487
  issue: 172
  year: 1985
  end-page: 496
  article-title: Estimation of the error in the reduced basis method solution of nonlinear equations
  publication-title: Math Comput
– volume: 27
  start-page: 105
  issue: 1
  year: 2018
  end-page: 134
  article-title: Virtual, digital and hybrid twins: a new paradigm in data‐based engineering and engineered data
  publication-title: Archives of Computational Methods in Engineering
– volume: 283
  start-page: 352
  year: 2015
  end-page: 383
  article-title: A new certification framework for the port reduced static condensation reduced basis element method
  publication-title: Comput Methods Appl Mech Eng
– year: 2013
– volume: 57
  start-page: 483
  issue: 4
  year: 2015
  end-page: 531
  article-title: A survey of projection‐based model reduction methods for parametric dynamical systems
  publication-title: SIAM Rev
– volume: 38
  start-page: A3318
  issue: 5
  year: 2016a
  end-page: A3356
  article-title: Optimal local approximation spaces for component‐based static condensation procedures
  publication-title: SIAM J Sci Comput
– year: 1999
– ident: e_1_2_8_18_1
  doi: 10.2514/1.J053893
– ident: e_1_2_8_27_1
  doi: 10.2514/6.2003-3847
– ident: e_1_2_8_30_1
  doi: 10.2514/8.3664
– ident: e_1_2_8_28_1
  doi: 10.1137/100795772
– ident: e_1_2_8_31_1
  doi: 10.2514/3.2874
– ident: e_1_2_8_23_1
  doi: 10.2514/3.50778
– ident: e_1_2_8_7_1
  doi: 10.2514/6.2012-1812
– ident: e_1_2_8_11_1
  doi: 10.1007/s11831-011-9064-7
– volume-title: International Journal of Aerospace Engineering
  year: 2011
  ident: e_1_2_8_4_1
– ident: e_1_2_8_20_1
  doi: 10.3182/20120215-3-AT-3016.00123
– ident: e_1_2_8_10_1
  doi: 10.1007/978-3-319-02090-7
– ident: e_1_2_8_3_1
  doi: 10.2514/1.J055201
– ident: e_1_2_8_22_1
  doi: 10.1137/15M1009603
– ident: e_1_2_8_19_1
  doi: 10.2514/1.J053893
– ident: e_1_2_8_42_1
  doi: 10.1016/j.crma.2004.08.006
– ident: e_1_2_8_6_1
  doi: 10.2514/6.2013-1578
– ident: e_1_2_8_37_1
  doi: 10.1002/nme.4669
– ident: e_1_2_8_32_1
  doi: 10.1186/2213‐7467‐1‐3
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jcp.2012.07.022
– volume-title: Artificial Intelligence: A Modern Approach
  year: 2016
  ident: e_1_2_8_35_1
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cma.2014.09.020
– ident: e_1_2_8_17_1
  doi: 10.1016/j.procs.2012.04.130
– year: 2008
  ident: e_1_2_8_40_1
  article-title: Bayes‐adaptive POMDPs
  publication-title: In Advances in Neural Information Processing Systems
– ident: e_1_2_8_12_1
  doi: 10.1137/1.9780898718713
– ident: e_1_2_8_34_1
  doi: 10.1137/15M1009603
– ident: e_1_2_8_41_1
– ident: e_1_2_8_5_1
  doi: 10.1115/GT2017-63336
– ident: e_1_2_8_36_1
  doi: 10.2514/1.J057255
– ident: e_1_2_8_26_1
  doi: 10.1007/BF03024948
– ident: e_1_2_8_45_1
  doi: 10.1109/TCNS.2016.2607420
– ident: e_1_2_8_9_1
  doi: 10.1137/130932715
– ident: e_1_2_8_2_1
  doi: 10.2514/6.2012-1818
– ident: e_1_2_8_8_1
  doi: 10.1007/s11831‐018‐9301‐4
– ident: e_1_2_8_15_1
  doi: 10.1016/j.crme.2019.11.004
– ident: e_1_2_8_13_1
  doi: 10.1051/m2an/2012022
– ident: e_1_2_8_43_1
  doi: 10.2514/6.1999-1394
– ident: e_1_2_8_16_1
  doi: 10.1137/140995817
– ident: e_1_2_8_25_1
  doi: 10.1090/S0025-5718-1985-0804937-0
– ident: e_1_2_8_21_1
  doi: 10.1002/nme.4543
– ident: e_1_2_8_39_1
  doi: 10.1007/11564096_59
– ident: e_1_2_8_14_1
  doi: 10.1111/1467-9868.00294
– ident: e_1_2_8_24_1
  doi: 10.2514/3.7539
– volume: 329
  start-page: 498
  year: 2018
  ident: e_1_2_8_29_1
  article-title: A component‐based hybrid reduced basis/finite element method for solid mechanics with local nonlinearities
  publication-title: SIAM J Sci Comput
– ident: e_1_2_8_44_1
  doi: 10.1109/TCNS.2016.2606880
SSID ssj0011503
Score 2.6830568
Snippet Summary This work proposes an approach that combines a library of component‐based reduced‐order models with Bayesian state estimation in order to create...
This work proposes an approach that combines a library of component‐based reduced‐order models with Bayesian state estimation in order to create data‐driven...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2986
SubjectTerms Adaptation
Aircraft
Aircraft components
Aircraft structures
Bayesian analysis
Complex systems
data‐model fusion
digital twin
Digital twins
Libraries
Model reduction
model updating
Physics
reduced‐order model
State estimation
Structural damage
unmanned aerial vehicle
Unmanned aerial vehicles
Wing span
Title Data‐driven physics‐based digital twins via a library of component‐based reduced‐order models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6423
https://www.proquest.com/docview/2675099515
Volume 123
WOSCitedRecordID wos000541962100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOn3QBy9Tcd6IIPpUXS9J2kdxDh90iDjYW8mtMtAp69RXP4Kf0U_iSZvWCQqCT72Q0JDk5PyTJr8DcMBkIH2qtKciFXqRUNSTDGcpGTWsIJQpoYtgE7zXiweD5NrtqrRnYUo-RL3gZi2jGK-tgQuZn0xBQx_MMYrncBbmAuy2tAFznZtu_7L-h4BSJ6w2eNAk9iv0bDs4qfJ-d0ZfCnNapxaOprv8nyKuwJKTl-S07A-rMGNGTVh2UpM4Q86bsDjFIcSnqxremq-B6YiJ-Hh712M7EpJy7SPHF9bjaaKHdzbQCJm8Dkc5eRkKIogrJnnMiN2j_jhCV1ZnGFs6rNH4XHA-SRF8J1-Hfvf89uzCc9EYPIWSwB7Ck9SIyBK7VIimj45NS05FmysfJy3o4xKThVpnbWZYxFHmxBnOXRLJpK_xPtyAxgi_vwkk4iGLGY8Ej3UkBUPRSnVCOfe1MSLLWnBUNUuqHKrcRsy4T0vIcpBizaa2ZluwX6d8KvEcP6TZqVo2dQaapwGzUgnlJW3BYdGGv-ZPe1fn9rr114TbsBDYQxIWv0l3oDEZP5tdmFcvk2E-3nPd9BNQLO94
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB7UCurB-sRq1Qiip9XuI8kunkRbFNsi0oK3JZtkpaBVulWv_gR_o7_Eyb6soCB42s0yYUNmJvPl9Q3APoucyKZSWdKTruUJSa2I4SwlppqlDGVSqDTZBO92_dvb4HoKToq7MBk_RLngZjwjHa-Ng5sF6eMJ1tAHfYTo2Z2GiodWhOZdOb9p9dvlJgJiHbc44UED3y64ZxvOcVH3ezT6gpiTQDWNNK3qv9q4BIs5wCSnmUUsw5QerkA1B5skd-VkBRYmmAix1CnpW5NV0OdiLD7e3tXIjIUkW_1I8IOJeYqowZ1JNULGr4NhQl4GggiSt5M8xsScUn8cYjArK4wMP6xWWE6ZPkmafidZg36r2Tu7sPJ8DJZEUGCu4UVUC89wdkkXnR9Dm4o4FQ0ubZy2YJQLdOwqFTeYZh5HoOPHOHsJIhbZCt_ddZgZ4v83gHjcZT7jnuC-8iLBELZSFVDObaW1iOMaHBZ6CWVOVm5yZtyHGc2yE2LPhqZna7BXSj5lBB0_yNQL1Ya5iyahwwxYQoBJa3CQKvHX-mG30zTPzb8K7sLcRa_TDtuX3astmHfMlQlDxknrMDMePettmJUv40Ey2slt9hOatvNo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwED_mJqIP_henUyOIPlXXtUlafBK3oTjHEAXfSpqkMtA51jlf_Qh-Rj-Jl_5zgoLgU5tyoSHJ5X6XXH4HcMDCRmhTqSzpSsdyhaRWyNBLiahmCUOZFCpJNsG7Xe_-3u-V4DS_C5PyQxQbbkYzkvXaKLgequhkijX0SR8jenZmoOKaHDJlqDRv2ned4hABsY6TR3hQ37Nz7tl64ySv-90afUHMaaCaWJr20r_auAyLGcAkZ-mMWIGSHqzCUgY2SabK8SosTDERYum6oG-N10A3xVh8vL2rkVkLSbr7EeMHY_MUUf0Hk2qEjF_7g5hM-oIIkrWTPEfERKk_D9CYFRVGhh9WKywnTJ8kSb8Tr8Ndu3V7fmFl-RgsiaDAXMMLqRau4eySDio_mjYVcirqXNrotqCV83XkKBXVmWYuR6DjRei9-CELbYXvzgaUB_j_TSAud5jHuCu4p9xQMIStVPmUc1tpLaKoCkf5uAQyIys3OTMeg5RmuRFgzwamZ6uwX0gOU4KOH2Rq-dAGmYrGQYMZsIQAk1bhMBnEX-sH3euWeW79VXAP5nrNdtC57F5twzxiLJrGDNagPB696B2YlZNxPx7tZlP2Ezol8uE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90driven+physics%E2%80%90based+digital+twins+via+a+library+of+component%E2%80%90based+reduced%E2%80%90order+models&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Kapteyn%2C+M.G.&rft.au=Knezevic%2C+D.J.&rft.au=Huynh%2C+D.B.P.&rft.au=Tran%2C+M.&rft.date=2022-07-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=123&rft.issue=13&rft.spage=2986&rft.epage=3003&rft_id=info:doi/10.1002%2Fnme.6423&rft.externalDBID=10.1002%252Fnme.6423&rft.externalDocID=NME6423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon