Quantum‐behaved RS‐PSO‐LSSVM method for quality prediction in parts production processes
Summary Quality control in the production process is the core of the enterprise to ensure product quality, and quality prediction is the key link of quality control and quality management. Aiming at the quality prediction of parts in the production process, a product quality prediction model is esta...
Uloženo v:
| Vydáno v: | Concurrency and computation Ročník 34; číslo 7 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
25.03.2022
|
| Témata: | |
| ISSN: | 1532-0626, 1532-0634 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
Quality control in the production process is the core of the enterprise to ensure product quality, and quality prediction is the key link of quality control and quality management. Aiming at the quality prediction of parts in the production process, a product quality prediction model is established. In this model, Rough Set (RS), Particle Swarm Optimization (PSO), and Least Square Support Vector Machine (LSSVM) are applied to solve the problem of product quality prediction and a RS‐PSO‐LSSVM synthesis algorithm is established. First, the 5M1E analysis of production process for parts is carried out, and the index system of influencing factors is established. Based on this index system, the condition attributes and decision attributes of RS are determined, in which RS is used to the reduction to extract rules and the optimal condition attribute value is obtained, which is used as the pre‐processing of LSSVM input data. Second, in order to improve the learning and generalization ability of LSSVM, PSO is used to optimize the relevant parameters and find the optimal solution. Finally, an example is given to verify the feasibility and effectiveness of the product quality prediction model and the RS‐PSO‐LSSVM comprehensive algorithm established above, and the prediction accuracy is higher than that of the RS‐LSSVM algorithm. |
|---|---|
| AbstractList | Quality control in the production process is the core of the enterprise to ensure product quality, and quality prediction is the key link of quality control and quality management. Aiming at the quality prediction of parts in the production process, a product quality prediction model is established. In this model, Rough Set (RS), Particle Swarm Optimization (PSO), and Least Square Support Vector Machine (LSSVM) are applied to solve the problem of product quality prediction and a RS‐PSO‐LSSVM synthesis algorithm is established. First, the 5M1E analysis of production process for parts is carried out, and the index system of influencing factors is established. Based on this index system, the condition attributes and decision attributes of RS are determined, in which RS is used to the reduction to extract rules and the optimal condition attribute value is obtained, which is used as the pre‐processing of LSSVM input data. Second, in order to improve the learning and generalization ability of LSSVM, PSO is used to optimize the relevant parameters and find the optimal solution. Finally, an example is given to verify the feasibility and effectiveness of the product quality prediction model and the RS‐PSO‐LSSVM comprehensive algorithm established above, and the prediction accuracy is higher than that of the RS‐LSSVM algorithm. Summary Quality control in the production process is the core of the enterprise to ensure product quality, and quality prediction is the key link of quality control and quality management. Aiming at the quality prediction of parts in the production process, a product quality prediction model is established. In this model, Rough Set (RS), Particle Swarm Optimization (PSO), and Least Square Support Vector Machine (LSSVM) are applied to solve the problem of product quality prediction and a RS‐PSO‐LSSVM synthesis algorithm is established. First, the 5M1E analysis of production process for parts is carried out, and the index system of influencing factors is established. Based on this index system, the condition attributes and decision attributes of RS are determined, in which RS is used to the reduction to extract rules and the optimal condition attribute value is obtained, which is used as the pre‐processing of LSSVM input data. Second, in order to improve the learning and generalization ability of LSSVM, PSO is used to optimize the relevant parameters and find the optimal solution. Finally, an example is given to verify the feasibility and effectiveness of the product quality prediction model and the RS‐PSO‐LSSVM comprehensive algorithm established above, and the prediction accuracy is higher than that of the RS‐LSSVM algorithm. |
| Author | Yingying, Su Lianjuan, Han Jianan, Wang Huimin, Wang |
| Author_xml | – sequence: 1 givenname: Su orcidid: 0000-0001-9452-3678 surname: Yingying fullname: Yingying, Su email: suyingying@syu.edu.cn organization: Shenyang University – sequence: 2 givenname: Han surname: Lianjuan fullname: Lianjuan, Han organization: Shenyang University – sequence: 3 givenname: Wang surname: Jianan fullname: Jianan, Wang organization: Shenyang University – sequence: 4 givenname: Wang surname: Huimin fullname: Huimin, Wang organization: Shenyang University |
| BookMark | eNp1kEtOwzAQhi1UJEpB4giR2LBJseMmTpaoKg-pqIUASyzXGauu0iS1HVB3HIEzchJcglgg2Ngzv755_YeoV9UVIHRC8JBgHJ3LBoZxHEV7qE9iGoU4oaPeTxwlB-jQ2hXGhGBK-uj5rhWVa9cfb-8LWIoXKIL73CfzfObfaZ4_3QZrcMu6CFRtgk0rSu22QWOg0NLpugp0FTTCOOu1umg7zYcSrAV7hPaVKC0cf_8D9Hg5eRhfh9PZ1c34YhrKKPOLFSpmiZIgCAiWjKBIlQKWSkwlyVKQBFgMaRFTUHgh03iUCEazZOEVoRShdIBOu75-8qYF6_iqbk3lR_IooYRljLHEU2cdJU1trQHFG6PXwmw5wXznHvfu8Z17Hh3-QqV2YnecM0KXfxWEXcGrLmH7b2M-nk---E_m7YY7 |
| CitedBy_id | crossref_primary_10_3390_app121910179 crossref_primary_10_1007_s12652_020_02668_7 crossref_primary_10_1016_j_cie_2024_110656 crossref_primary_10_1088_1402_4896_acd305 crossref_primary_10_1080_00207543_2024_2329324 crossref_primary_10_1155_2022_8356321 crossref_primary_10_1080_00150193_2021_1903255 crossref_primary_10_1109_ACCESS_2020_3038394 crossref_primary_10_1093_ijlct_ctae060 crossref_primary_10_1016_j_chaos_2022_112660 crossref_primary_10_1080_00150193_2022_2078130 crossref_primary_10_1007_s12652_020_02335_x crossref_primary_10_1109_ACCESS_2020_3021248 crossref_primary_10_1080_08982112_2022_2146511 crossref_primary_10_1155_2021_6633643 crossref_primary_10_3390_app13158776 crossref_primary_10_1109_TNNLS_2023_3335355 crossref_primary_10_1007_s40747_021_00595_4 crossref_primary_10_3389_fpsyg_2020_01562 crossref_primary_10_1109_ACCESS_2020_2995259 crossref_primary_10_1016_j_jii_2024_100666 crossref_primary_10_1155_2021_6657670 crossref_primary_10_1007_s12652_020_02436_7 |
| Cites_doi | 10.1016/j.aei.2018.05.006 10.1016/j.conengprac.2017.10.018 10.1016/j.jprocont.2018.04.004 10.1016/j.matpr.2018.02.190 10.1016/j.ijleo.2017.04.088 10.1016/j.chemolab.2017.12.006 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons, Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.5522 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_5522 CPE5522 |
| Genre | article |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2932-df576fcea1ea764ed8ffe78c03c198ec1e75e8d53ef0bc8546a7396bd53aff133 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000485781000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0626 |
| IngestDate | Sun Nov 30 04:57:16 EST 2025 Sat Nov 29 01:41:22 EST 2025 Tue Nov 18 22:35:31 EST 2025 Wed Jan 22 16:25:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2932-df576fcea1ea764ed8ffe78c03c198ec1e75e8d53ef0bc8546a7396bd53aff133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9452-3678 |
| PQID | 2631797776 |
| PQPubID | 2045170 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2631797776 crossref_primary_10_1002_cpe_5522 crossref_citationtrail_10_1002_cpe_5522 wiley_primary_10_1002_cpe_5522_CPE5522 |
| PublicationCentury | 2000 |
| PublicationDate | 25 March 2022 |
| PublicationDateYYYYMMDD | 2022-03-25 |
| PublicationDate_xml | – month: 03 year: 2022 text: 25 March 2022 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 51 2018; 5 2018; 172 2001 2012 2017; 38 2017; 55 2017; 140 2018; 52 2018; 72 2018; 38 2018; 48 2018; 47 2018; 68 Qingke Z (e_1_2_6_13_1) 2018; 52 Qinghong HH (e_1_2_6_15_1) 2018; 48 Wenxiu Z (e_1_2_6_11_1) 2001 Wenxin F (e_1_2_6_6_1) 2017; 38 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 Yanru Z (e_1_2_6_7_1) 2017; 55 e_1_2_6_4_1 Zhixian Y (e_1_2_6_14_1) 2017; 51 Zhimin Y (e_1_2_6_12_1) 2012 e_1_2_6_3_1 Guoyin W (e_1_2_6_16_1) 2001 e_1_2_6_2_1 Jian M (e_1_2_6_10_1) 2018; 47 |
| References_xml | – volume: 38 start-page: 2480 issue: 10 year: 2017 end-page: 2483 article-title: Application of RBF neural network in prediction of warm‐extrusion forming of connecting rod bushing publication-title: Foundry Technol – volume: 55 start-page: 80 issue: 12 year: 2017 end-page: 83 article-title: Research on quality control method of transmission assembly publication-title: Agric Equip Veh Eng – year: 2001 – volume: 68 start-page: 1 year: 2018 end-page: 13 article-title: Big data quality prediction in the process industry: a distributed parallel modeling framework publication-title: J Process Control – volume: 47 start-page: 165 issue: 23 year: 2018 end-page: 167 article-title: Bending quality prediction of hot‐rolled steel strip based on weighted support vector machine publication-title: Hot Working Technol – volume: 140 start-page: 597 year: 2017 end-page: 600 article-title: Prediction of laser welding quality by computational intelligence approaches publication-title: Optik – volume: 38 start-page: 41 year: 2018 end-page: 53 article-title: Semantic weldability prediction with RSW quality dataset and knowledge construction publication-title: Adv Eng Inform – volume: 52 start-page: 367 issue: 2 year: 2018 end-page: 378 article-title: Particle swarm optimization based on random vector partition and learning publication-title: J Zhejiang Univ Eng Sci – volume: 172 start-page: 150 issue: 15 year: 2018 end-page: 158 article-title: Finding the optimal time resolution for batch‐end quality prediction: MRQP–A framework for multi‐resolution quality prediction publication-title: Chemom Intel Lab Syst – volume: 72 start-page: 19 year: 2018 end-page: 28 article-title: Adaptive soft sensors for quality prediction under the framework of Bayesian network publication-title: Control Eng Pract – volume: 5 start-page: 12124 issue: 5 year: 2018 end-page: 12132 article-title: Quality prediction of friction stir weld joints on AA 5052 H32 aluminium alloy using fuzzy logic technique publication-title: Mater Today Proc – volume: 51 start-page: 36 issue: 11 year: 2017 end-page: 40 article-title: Study on prediction model of grinding surface roughness based on PSO‐BP neural network publication-title: Tool Technol – volume: 48 start-page: 122 issue: 9 year: 2018 end-page: 128 article-title: Fault diagnosis of centrifugal refrigerator based on particle swarm optimization‐least square support vector machine publication-title: Heat Vent Aircond – year: 2012 – volume: 38 start-page: 2480 issue: 10 year: 2017 ident: e_1_2_6_6_1 article-title: Application of RBF neural network in prediction of warm‐extrusion forming of connecting rod bushing publication-title: Foundry Technol – volume: 47 start-page: 165 issue: 23 year: 2018 ident: e_1_2_6_10_1 article-title: Bending quality prediction of hot‐rolled steel strip based on weighted support vector machine publication-title: Hot Working Technol – volume: 51 start-page: 36 issue: 11 year: 2017 ident: e_1_2_6_14_1 article-title: Study on prediction model of grinding surface roughness based on PSO‐BP neural network publication-title: Tool Technol – ident: e_1_2_6_3_1 doi: 10.1016/j.aei.2018.05.006 – volume: 48 start-page: 122 issue: 9 year: 2018 ident: e_1_2_6_15_1 article-title: Fault diagnosis of centrifugal refrigerator based on particle swarm optimization‐least square support vector machine publication-title: Heat Vent Aircond – ident: e_1_2_6_9_1 doi: 10.1016/j.conengprac.2017.10.018 – ident: e_1_2_6_8_1 doi: 10.1016/j.jprocont.2018.04.004 – ident: e_1_2_6_5_1 doi: 10.1016/j.matpr.2018.02.190 – ident: e_1_2_6_4_1 doi: 10.1016/j.ijleo.2017.04.088 – volume-title: Rough Set Theory and Method year: 2001 ident: e_1_2_6_11_1 – volume: 55 start-page: 80 issue: 12 year: 2017 ident: e_1_2_6_7_1 article-title: Research on quality control method of transmission assembly publication-title: Agric Equip Veh Eng – volume-title: Rought Set Theory and Knowledge Acquisition year: 2001 ident: e_1_2_6_16_1 – volume-title: Uncertainty Support Vector Machine: Algorithms and Applications year: 2012 ident: e_1_2_6_12_1 – volume: 52 start-page: 367 issue: 2 year: 2018 ident: e_1_2_6_13_1 article-title: Particle swarm optimization based on random vector partition and learning publication-title: J Zhejiang Univ Eng Sci – ident: e_1_2_6_2_1 doi: 10.1016/j.chemolab.2017.12.006 |
| SSID | ssj0011031 |
| Score | 2.5067723 |
| Snippet | Summary
Quality control in the production process is the core of the enterprise to ensure product quality, and quality prediction is the key link of quality... Quality control in the production process is the core of the enterprise to ensure product quality, and quality prediction is the key link of quality control... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Microprocessors Particle swarm optimization Prediction models Product quality Quality control Quality management quality prediction rough set theory RS‐PSO‐LSSVM synthesis algorithm Support vector machines |
| Title | Quantum‐behaved RS‐PSO‐LSSVM method for quality prediction in parts production processes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.5522 https://www.proquest.com/docview/2631797776 |
| Volume | 34 |
| WOSCitedRecordID | wos000485781000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60evBifWK1ygqip2iem81R1OKham2t9GRI9gGC1tBYwZs_wd_oL3E2m7QKCoKXhCy7EGZnst9k9_sGYI8zTyVUH8UJMFf1McWwIu6HVsoiRLNCRGlaEIXb4eUlGwyiTnmqUnNhjD7E5Iebjozie60DPEnzo6loKM_kYYDoYRbmXHRbvwZzp91Wvz3ZQ9AFDIxaqmvZiNsr6VnbParGfl-MpgjzK04tFppW_T-vuASLJbwkx8YflmFGDlegXpVuIGUkr8Ld9RhNOn78eHsviPpSkG4PHzq9K7y2e73bC2KKSxNEtcRQL19JNtL7Onouyf2QZOh2OcmMZqxuywzrQOZr0G-d3ZycW2WpBYvjeu9aQmHeobhMHJmE1JeCKSVDxm2POxGT3JFhIJkIPKnslLPAp0noRTTFlkQpzHPXoTZ8GsoNIJGkkRCcB5pya8uUeU6aKMooTTA3dEQDDiqbx7zUIdflMB5io6Dsxmi2WJutAbuTnpnR3vihT7OatriMvjx2KaIiBLYhbcB-MUG_jo9POmf6vvnXjluw4GoGhO1ZbtCE2vNoLLdhnr883-ejndIHPwHbNuPj |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsQwEB10FfTFu7heI4g-VXtNU3wSdVGs6-qq-GRpcwFB17LrCr75CX6jX-KkaVcFBcGXloYEymSmOZP0nAHY4MxTKdW_4gSYq_qYYlgR90MrYxGiWSGiLCuIwnHYbLKbm6g1BLsVF8boQww23HRkFN9rHeB6Q3rnUzWU53I7QPgwDCM-elFQg5GDi8ZVPDhE0BUMjFyqa9kI3CvtWdvdqcZ-X40-IeZXoFqsNI3Jf73jFEyUAJPsGY-YhiHZmYHJqngDKWN5Fm7P-2jU_sP761tB1ZeCXLTxodU-w2vcbl-fElNemiCuJYZ8-ULyrj7Z0bNJ7jokR8frkdyoxuq23PAOZG8OrhqHl_tHVllsweK44ruWUJh5KC5TR6Yh9aVgSsmQcdvjTsQkd2QYSCYCTyo74yzwaRp6Ec2wJVUKM915qHUeO3IBSCRpJATngSbd2jJjnpOlijJKU8wOHVGHrcroCS-VyHVBjPvEaCi7CZot0Warw_qgZ27UN37os1zNW1LGXy9xKeIihLYhrcNmMUO_jk_2W4f6vvjXjmswdnR5GifxcfNkCcZdzYewPcsNlqH21O3LFRjlz093ve5q6ZAfdcbn0w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD54KeJLV1vFrbaOUNqndHOdzNCnoi6K67p1a_HJkMycAUG3YS8F3_oT-hv7S3omk6wVKgi-JGSYgXDOnMx3ZvJ9B-C9EpHJuf0VJ6FcNaYUw5MqTr1CSEKzWsuiqIjCvbTfF5eXcrAAnxsujNOHmG-42ciovtc2wLHUpnOvGqpK_JQQfFiE5TiRnKJy-eC8e9GbHyLYCgZOLjX0fALujfasH3aasQ9Xo3uI-S9QrVaabutZ77gGL2uAyb64GbEOCzh6Ba2meAOrY_k1XH2dkVFnt39-_a6o-qjZ-ZAeBsMzuvaGw--nzJWXZoRrmSNf3rFybE92rDfZ9YiVNPEmrHSqsbatdLwDnGzARffw2_6RVxdb8BSt-KGnDWUeRmEeYJ7yGLUwBlOh_EgFUqAKME1Q6CRC4xdKJDHP00jyglpyYyjT3YSl0Y8RbgGTyKXWSiWWdOtjIaKgyA0XnOeUHQa6DR8bo2eqViK3BTFuMqehHGZktsyarQ17856lU9_4T5-dxm9ZHX-TLOSEiwjaprwNHyoPPTo-2x8c2vubp3bchZXBQTfrHfdPtmE1tHQIP_LCZAeWpuMZvoUX6uf0ejJ-V8_HvyaH504 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum%E2%80%90behaved+RS%E2%80%90PSO%E2%80%90LSSVM+method+for+quality+prediction+in+parts+production+processes&rft.jtitle=Concurrency+and+computation&rft.au=Yingying%2C+Su&rft.au=Lianjuan%2C+Han&rft.au=Jianan%2C+Wang&rft.au=Huimin%2C+Wang&rft.date=2022-03-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=7&rft_id=info:doi/10.1002%2Fcpe.5522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_5522 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |