Quantum‐behaved RS‐PSO‐LSSVM method for quality prediction in parts production processes

Summary Quality control in the production process is the core of the enterprise to ensure product quality, and quality prediction is the key link of quality control and quality management. Aiming at the quality prediction of parts in the production process, a product quality prediction model is esta...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Concurrency and computation Ročník 34; číslo 7
Hlavní autoři: Yingying, Su, Lianjuan, Han, Jianan, Wang, Huimin, Wang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 25.03.2022
Témata:
ISSN:1532-0626, 1532-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary Quality control in the production process is the core of the enterprise to ensure product quality, and quality prediction is the key link of quality control and quality management. Aiming at the quality prediction of parts in the production process, a product quality prediction model is established. In this model, Rough Set (RS), Particle Swarm Optimization (PSO), and Least Square Support Vector Machine (LSSVM) are applied to solve the problem of product quality prediction and a RS‐PSO‐LSSVM synthesis algorithm is established. First, the 5M1E analysis of production process for parts is carried out, and the index system of influencing factors is established. Based on this index system, the condition attributes and decision attributes of RS are determined, in which RS is used to the reduction to extract rules and the optimal condition attribute value is obtained, which is used as the pre‐processing of LSSVM input data. Second, in order to improve the learning and generalization ability of LSSVM, PSO is used to optimize the relevant parameters and find the optimal solution. Finally, an example is given to verify the feasibility and effectiveness of the product quality prediction model and the RS‐PSO‐LSSVM comprehensive algorithm established above, and the prediction accuracy is higher than that of the RS‐LSSVM algorithm.
AbstractList Quality control in the production process is the core of the enterprise to ensure product quality, and quality prediction is the key link of quality control and quality management. Aiming at the quality prediction of parts in the production process, a product quality prediction model is established. In this model, Rough Set (RS), Particle Swarm Optimization (PSO), and Least Square Support Vector Machine (LSSVM) are applied to solve the problem of product quality prediction and a RS‐PSO‐LSSVM synthesis algorithm is established. First, the 5M1E analysis of production process for parts is carried out, and the index system of influencing factors is established. Based on this index system, the condition attributes and decision attributes of RS are determined, in which RS is used to the reduction to extract rules and the optimal condition attribute value is obtained, which is used as the pre‐processing of LSSVM input data. Second, in order to improve the learning and generalization ability of LSSVM, PSO is used to optimize the relevant parameters and find the optimal solution. Finally, an example is given to verify the feasibility and effectiveness of the product quality prediction model and the RS‐PSO‐LSSVM comprehensive algorithm established above, and the prediction accuracy is higher than that of the RS‐LSSVM algorithm.
Summary Quality control in the production process is the core of the enterprise to ensure product quality, and quality prediction is the key link of quality control and quality management. Aiming at the quality prediction of parts in the production process, a product quality prediction model is established. In this model, Rough Set (RS), Particle Swarm Optimization (PSO), and Least Square Support Vector Machine (LSSVM) are applied to solve the problem of product quality prediction and a RS‐PSO‐LSSVM synthesis algorithm is established. First, the 5M1E analysis of production process for parts is carried out, and the index system of influencing factors is established. Based on this index system, the condition attributes and decision attributes of RS are determined, in which RS is used to the reduction to extract rules and the optimal condition attribute value is obtained, which is used as the pre‐processing of LSSVM input data. Second, in order to improve the learning and generalization ability of LSSVM, PSO is used to optimize the relevant parameters and find the optimal solution. Finally, an example is given to verify the feasibility and effectiveness of the product quality prediction model and the RS‐PSO‐LSSVM comprehensive algorithm established above, and the prediction accuracy is higher than that of the RS‐LSSVM algorithm.
Author Yingying, Su
Lianjuan, Han
Jianan, Wang
Huimin, Wang
Author_xml – sequence: 1
  givenname: Su
  orcidid: 0000-0001-9452-3678
  surname: Yingying
  fullname: Yingying, Su
  email: suyingying@syu.edu.cn
  organization: Shenyang University
– sequence: 2
  givenname: Han
  surname: Lianjuan
  fullname: Lianjuan, Han
  organization: Shenyang University
– sequence: 3
  givenname: Wang
  surname: Jianan
  fullname: Jianan, Wang
  organization: Shenyang University
– sequence: 4
  givenname: Wang
  surname: Huimin
  fullname: Huimin, Wang
  organization: Shenyang University
BookMark eNp1kEtOwzAQhi1UJEpB4giR2LBJseMmTpaoKg-pqIUASyzXGauu0iS1HVB3HIEzchJcglgg2Ngzv755_YeoV9UVIHRC8JBgHJ3LBoZxHEV7qE9iGoU4oaPeTxwlB-jQ2hXGhGBK-uj5rhWVa9cfb-8LWIoXKIL73CfzfObfaZ4_3QZrcMu6CFRtgk0rSu22QWOg0NLpugp0FTTCOOu1umg7zYcSrAV7hPaVKC0cf_8D9Hg5eRhfh9PZ1c34YhrKKPOLFSpmiZIgCAiWjKBIlQKWSkwlyVKQBFgMaRFTUHgh03iUCEazZOEVoRShdIBOu75-8qYF6_iqbk3lR_IooYRljLHEU2cdJU1trQHFG6PXwmw5wXznHvfu8Z17Hh3-QqV2YnecM0KXfxWEXcGrLmH7b2M-nk---E_m7YY7
CitedBy_id crossref_primary_10_3390_app121910179
crossref_primary_10_1007_s12652_020_02668_7
crossref_primary_10_1016_j_cie_2024_110656
crossref_primary_10_1088_1402_4896_acd305
crossref_primary_10_1080_00207543_2024_2329324
crossref_primary_10_1155_2022_8356321
crossref_primary_10_1080_00150193_2021_1903255
crossref_primary_10_1109_ACCESS_2020_3038394
crossref_primary_10_1093_ijlct_ctae060
crossref_primary_10_1016_j_chaos_2022_112660
crossref_primary_10_1080_00150193_2022_2078130
crossref_primary_10_1007_s12652_020_02335_x
crossref_primary_10_1109_ACCESS_2020_3021248
crossref_primary_10_1080_08982112_2022_2146511
crossref_primary_10_1155_2021_6633643
crossref_primary_10_3390_app13158776
crossref_primary_10_1109_TNNLS_2023_3335355
crossref_primary_10_1007_s40747_021_00595_4
crossref_primary_10_3389_fpsyg_2020_01562
crossref_primary_10_1109_ACCESS_2020_2995259
crossref_primary_10_1016_j_jii_2024_100666
crossref_primary_10_1155_2021_6657670
crossref_primary_10_1007_s12652_020_02436_7
Cites_doi 10.1016/j.aei.2018.05.006
10.1016/j.conengprac.2017.10.018
10.1016/j.jprocont.2018.04.004
10.1016/j.matpr.2018.02.190
10.1016/j.ijleo.2017.04.088
10.1016/j.chemolab.2017.12.006
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.5522
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_5522
CPE5522
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2932-df576fcea1ea764ed8ffe78c03c198ec1e75e8d53ef0bc8546a7396bd53aff133
IEDL.DBID DRFUL
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000485781000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sun Nov 30 04:57:16 EST 2025
Sat Nov 29 01:41:22 EST 2025
Tue Nov 18 22:35:31 EST 2025
Wed Jan 22 16:25:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2932-df576fcea1ea764ed8ffe78c03c198ec1e75e8d53ef0bc8546a7396bd53aff133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9452-3678
PQID 2631797776
PQPubID 2045170
PageCount 16
ParticipantIDs proquest_journals_2631797776
crossref_primary_10_1002_cpe_5522
crossref_citationtrail_10_1002_cpe_5522
wiley_primary_10_1002_cpe_5522_CPE5522
PublicationCentury 2000
PublicationDate 25 March 2022
PublicationDateYYYYMMDD 2022-03-25
PublicationDate_xml – month: 03
  year: 2022
  text: 25 March 2022
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 51
2018; 5
2018; 172
2001
2012
2017; 38
2017; 55
2017; 140
2018; 52
2018; 72
2018; 38
2018; 48
2018; 47
2018; 68
Qingke Z (e_1_2_6_13_1) 2018; 52
Qinghong HH (e_1_2_6_15_1) 2018; 48
Wenxiu Z (e_1_2_6_11_1) 2001
Wenxin F (e_1_2_6_6_1) 2017; 38
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
Yanru Z (e_1_2_6_7_1) 2017; 55
e_1_2_6_4_1
Zhixian Y (e_1_2_6_14_1) 2017; 51
Zhimin Y (e_1_2_6_12_1) 2012
e_1_2_6_3_1
Guoyin W (e_1_2_6_16_1) 2001
e_1_2_6_2_1
Jian M (e_1_2_6_10_1) 2018; 47
References_xml – volume: 38
  start-page: 2480
  issue: 10
  year: 2017
  end-page: 2483
  article-title: Application of RBF neural network in prediction of warm‐extrusion forming of connecting rod bushing
  publication-title: Foundry Technol
– volume: 55
  start-page: 80
  issue: 12
  year: 2017
  end-page: 83
  article-title: Research on quality control method of transmission assembly
  publication-title: Agric Equip Veh Eng
– year: 2001
– volume: 68
  start-page: 1
  year: 2018
  end-page: 13
  article-title: Big data quality prediction in the process industry: a distributed parallel modeling framework
  publication-title: J Process Control
– volume: 47
  start-page: 165
  issue: 23
  year: 2018
  end-page: 167
  article-title: Bending quality prediction of hot‐rolled steel strip based on weighted support vector machine
  publication-title: Hot Working Technol
– volume: 140
  start-page: 597
  year: 2017
  end-page: 600
  article-title: Prediction of laser welding quality by computational intelligence approaches
  publication-title: Optik
– volume: 38
  start-page: 41
  year: 2018
  end-page: 53
  article-title: Semantic weldability prediction with RSW quality dataset and knowledge construction
  publication-title: Adv Eng Inform
– volume: 52
  start-page: 367
  issue: 2
  year: 2018
  end-page: 378
  article-title: Particle swarm optimization based on random vector partition and learning
  publication-title: J Zhejiang Univ Eng Sci
– volume: 172
  start-page: 150
  issue: 15
  year: 2018
  end-page: 158
  article-title: Finding the optimal time resolution for batch‐end quality prediction: MRQP–A framework for multi‐resolution quality prediction
  publication-title: Chemom Intel Lab Syst
– volume: 72
  start-page: 19
  year: 2018
  end-page: 28
  article-title: Adaptive soft sensors for quality prediction under the framework of Bayesian network
  publication-title: Control Eng Pract
– volume: 5
  start-page: 12124
  issue: 5
  year: 2018
  end-page: 12132
  article-title: Quality prediction of friction stir weld joints on AA 5052 H32 aluminium alloy using fuzzy logic technique
  publication-title: Mater Today Proc
– volume: 51
  start-page: 36
  issue: 11
  year: 2017
  end-page: 40
  article-title: Study on prediction model of grinding surface roughness based on PSO‐BP neural network
  publication-title: Tool Technol
– volume: 48
  start-page: 122
  issue: 9
  year: 2018
  end-page: 128
  article-title: Fault diagnosis of centrifugal refrigerator based on particle swarm optimization‐least square support vector machine
  publication-title: Heat Vent Aircond
– year: 2012
– volume: 38
  start-page: 2480
  issue: 10
  year: 2017
  ident: e_1_2_6_6_1
  article-title: Application of RBF neural network in prediction of warm‐extrusion forming of connecting rod bushing
  publication-title: Foundry Technol
– volume: 47
  start-page: 165
  issue: 23
  year: 2018
  ident: e_1_2_6_10_1
  article-title: Bending quality prediction of hot‐rolled steel strip based on weighted support vector machine
  publication-title: Hot Working Technol
– volume: 51
  start-page: 36
  issue: 11
  year: 2017
  ident: e_1_2_6_14_1
  article-title: Study on prediction model of grinding surface roughness based on PSO‐BP neural network
  publication-title: Tool Technol
– ident: e_1_2_6_3_1
  doi: 10.1016/j.aei.2018.05.006
– volume: 48
  start-page: 122
  issue: 9
  year: 2018
  ident: e_1_2_6_15_1
  article-title: Fault diagnosis of centrifugal refrigerator based on particle swarm optimization‐least square support vector machine
  publication-title: Heat Vent Aircond
– ident: e_1_2_6_9_1
  doi: 10.1016/j.conengprac.2017.10.018
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jprocont.2018.04.004
– ident: e_1_2_6_5_1
  doi: 10.1016/j.matpr.2018.02.190
– ident: e_1_2_6_4_1
  doi: 10.1016/j.ijleo.2017.04.088
– volume-title: Rough Set Theory and Method
  year: 2001
  ident: e_1_2_6_11_1
– volume: 55
  start-page: 80
  issue: 12
  year: 2017
  ident: e_1_2_6_7_1
  article-title: Research on quality control method of transmission assembly
  publication-title: Agric Equip Veh Eng
– volume-title: Rought Set Theory and Knowledge Acquisition
  year: 2001
  ident: e_1_2_6_16_1
– volume-title: Uncertainty Support Vector Machine: Algorithms and Applications
  year: 2012
  ident: e_1_2_6_12_1
– volume: 52
  start-page: 367
  issue: 2
  year: 2018
  ident: e_1_2_6_13_1
  article-title: Particle swarm optimization based on random vector partition and learning
  publication-title: J Zhejiang Univ Eng Sci
– ident: e_1_2_6_2_1
  doi: 10.1016/j.chemolab.2017.12.006
SSID ssj0011031
Score 2.5067723
Snippet Summary Quality control in the production process is the core of the enterprise to ensure product quality, and quality prediction is the key link of quality...
Quality control in the production process is the core of the enterprise to ensure product quality, and quality prediction is the key link of quality control...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Microprocessors
Particle swarm optimization
Prediction models
Product quality
Quality control
Quality management
quality prediction
rough set theory
RS‐PSO‐LSSVM synthesis algorithm
Support vector machines
Title Quantum‐behaved RS‐PSO‐LSSVM method for quality prediction in parts production processes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.5522
https://www.proquest.com/docview/2631797776
Volume 34
WOSCitedRecordID wos000485781000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60evBifWK1ygqip2iem81R1OKham2t9GRI9gGC1tBYwZs_wd_oL3E2m7QKCoKXhCy7EGZnst9k9_sGYI8zTyVUH8UJMFf1McWwIu6HVsoiRLNCRGlaEIXb4eUlGwyiTnmqUnNhjD7E5Iebjozie60DPEnzo6loKM_kYYDoYRbmXHRbvwZzp91Wvz3ZQ9AFDIxaqmvZiNsr6VnbParGfl-MpgjzK04tFppW_T-vuASLJbwkx8YflmFGDlegXpVuIGUkr8Ld9RhNOn78eHsviPpSkG4PHzq9K7y2e73bC2KKSxNEtcRQL19JNtL7Onouyf2QZOh2OcmMZqxuywzrQOZr0G-d3ZycW2WpBYvjeu9aQmHeobhMHJmE1JeCKSVDxm2POxGT3JFhIJkIPKnslLPAp0noRTTFlkQpzHPXoTZ8GsoNIJGkkRCcB5pya8uUeU6aKMooTTA3dEQDDiqbx7zUIdflMB5io6Dsxmi2WJutAbuTnpnR3vihT7OatriMvjx2KaIiBLYhbcB-MUG_jo9POmf6vvnXjluw4GoGhO1ZbtCE2vNoLLdhnr883-ejndIHPwHbNuPj
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsQwEB10FfTFu7heI4g-VXtNU3wSdVGs6-qq-GRpcwFB17LrCr75CX6jX-KkaVcFBcGXloYEymSmOZP0nAHY4MxTKdW_4gSYq_qYYlgR90MrYxGiWSGiLCuIwnHYbLKbm6g1BLsVF8boQww23HRkFN9rHeB6Q3rnUzWU53I7QPgwDCM-elFQg5GDi8ZVPDhE0BUMjFyqa9kI3CvtWdvdqcZ-X40-IeZXoFqsNI3Jf73jFEyUAJPsGY-YhiHZmYHJqngDKWN5Fm7P-2jU_sP761tB1ZeCXLTxodU-w2vcbl-fElNemiCuJYZ8-ULyrj7Z0bNJ7jokR8frkdyoxuq23PAOZG8OrhqHl_tHVllsweK44ruWUJh5KC5TR6Yh9aVgSsmQcdvjTsQkd2QYSCYCTyo74yzwaRp6Ec2wJVUKM915qHUeO3IBSCRpJATngSbd2jJjnpOlijJKU8wOHVGHrcroCS-VyHVBjPvEaCi7CZot0Warw_qgZ27UN37os1zNW1LGXy9xKeIihLYhrcNmMUO_jk_2W4f6vvjXjmswdnR5GifxcfNkCcZdzYewPcsNlqH21O3LFRjlz093ve5q6ZAfdcbn0w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD54KeJLV1vFrbaOUNqndHOdzNCnoi6K67p1a_HJkMycAUG3YS8F3_oT-hv7S3omk6wVKgi-JGSYgXDOnMx3ZvJ9B-C9EpHJuf0VJ6FcNaYUw5MqTr1CSEKzWsuiqIjCvbTfF5eXcrAAnxsujNOHmG-42ciovtc2wLHUpnOvGqpK_JQQfFiE5TiRnKJy-eC8e9GbHyLYCgZOLjX0fALujfasH3aasQ9Xo3uI-S9QrVaabutZ77gGL2uAyb64GbEOCzh6Ba2meAOrY_k1XH2dkVFnt39-_a6o-qjZ-ZAeBsMzuvaGw--nzJWXZoRrmSNf3rFybE92rDfZ9YiVNPEmrHSqsbatdLwDnGzARffw2_6RVxdb8BSt-KGnDWUeRmEeYJ7yGLUwBlOh_EgFUqAKME1Q6CRC4xdKJDHP00jyglpyYyjT3YSl0Y8RbgGTyKXWSiWWdOtjIaKgyA0XnOeUHQa6DR8bo2eqViK3BTFuMqehHGZktsyarQ17856lU9_4T5-dxm9ZHX-TLOSEiwjaprwNHyoPPTo-2x8c2vubp3bchZXBQTfrHfdPtmE1tHQIP_LCZAeWpuMZvoUX6uf0ejJ-V8_HvyaH504
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum%E2%80%90behaved+RS%E2%80%90PSO%E2%80%90LSSVM+method+for+quality+prediction+in+parts+production+processes&rft.jtitle=Concurrency+and+computation&rft.au=Yingying%2C+Su&rft.au=Lianjuan%2C+Han&rft.au=Jianan%2C+Wang&rft.au=Huimin%2C+Wang&rft.date=2022-03-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=7&rft_id=info:doi/10.1002%2Fcpe.5522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_5522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon