Clifford algebra and discretizable distance geometry

Protein structure calculations using nuclear magnetic resonance (NMR) experiments are one of the most important applications of distance geometry. The chemistry of proteins and the NMR data allow us to define an atomic order, such that the distances related to the pairs of atoms {i−3,i},{i−2,i},{i−1...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical methods in the applied sciences Ročník 41; číslo 11; s. 4063 - 4073
Hlavní autoři: Alves, R., Lavor, C., Souza, C., Souza, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Freiburg Wiley Subscription Services, Inc 30.07.2018
Témata:
ISSN:0170-4214, 1099-1476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Protein structure calculations using nuclear magnetic resonance (NMR) experiments are one of the most important applications of distance geometry. The chemistry of proteins and the NMR data allow us to define an atomic order, such that the distances related to the pairs of atoms {i−3,i},{i−2,i},{i−1,i} are available, and solve the problem iteratively using a combinatorial method, called branch‐and‐prune. The main step of BP algorithm is to intersect three spheres centered at the positions for atoms i−3,i−2,i, with radius given by the atomic distances di−3,i,di−2,i,di−1,i, respectively, to obtain the position for atom i. Because of uncertainty in NMR data, some of the distances di−3,i may not be precise or even not be available. Using conformal Clifford algebra, in addition to take care of NMR uncertainties, which implies that we have to calculate sphere intersections considering that their centers and radius may not be fixed anymore, we consider a more flexible atomic order, where distances di−3,i are replaced by dj,i, where j⩽i−3. Copyright © 2017 John Wiley & Sons, Ltd.
AbstractList Protein structure calculations using nuclear magnetic resonance (NMR) experiments are one of the most important applications of distance geometry. The chemistry of proteins and the NMR data allow us to define an atomic order, such that the distances related to the pairs of atoms {i−3,i},{i−2,i},{i−1,i} are available, and solve the problem iteratively using a combinatorial method, called branch‐and‐prune. The main step of BP algorithm is to intersect three spheres centered at the positions for atoms i−3,i−2,i, with radius given by the atomic distances di−3,i,di−2,i,di−1,i, respectively, to obtain the position for atom i. Because of uncertainty in NMR data, some of the distances di−3,i may not be precise or even not be available. Using conformal Clifford algebra, in addition to take care of NMR uncertainties, which implies that we have to calculate sphere intersections considering that their centers and radius may not be fixed anymore, we consider a more flexible atomic order, where distances di−3,i are replaced by dj,i, where j⩽i−3. Copyright © 2017 John Wiley & Sons, Ltd.
Protein structure calculations using nuclear magnetic resonance (NMR) experiments are one of the most important applications of distance geometry. The chemistry of proteins and the NMR data allow us to define an atomic order, such that the distances related to the pairs of atoms { i −3, i },{ i −2, i },{ i −1, i } are available, and solve the problem iteratively using a combinatorial method, called branch‐and‐prune. The main step of BP algorithm is to intersect three spheres centered at the positions for atoms i −3, i −2, i , with radius given by the atomic distances d i −3, i , d i −2, i , d i −1, i , respectively, to obtain the position for atom i . Because of uncertainty in NMR data, some of the distances d i −3, i may not be precise or even not be available. Using conformal Clifford algebra, in addition to take care of NMR uncertainties, which implies that we have to calculate sphere intersections considering that their centers and radius may not be fixed anymore, we consider a more flexible atomic order, where distances d i −3, i are replaced by d j , i , where j ⩽ i −3. Copyright © 2017 John Wiley & Sons, Ltd.
Author Alves, R.
Souza, C.
Souza, M.
Lavor, C.
Author_xml – sequence: 1
  givenname: R.
  orcidid: 0000-0002-3171-9339
  surname: Alves
  fullname: Alves, R.
  email: rafaelsoalves@uol.com.br
  organization: University of Campinas (IMECC‐UNICAMP)
– sequence: 2
  givenname: C.
  surname: Lavor
  fullname: Lavor, C.
  organization: University of Campinas (IMECC‐UNICAMP)
– sequence: 3
  givenname: C.
  surname: Souza
  fullname: Souza, C.
  organization: IFRJ
– sequence: 4
  givenname: M.
  surname: Souza
  fullname: Souza, M.
  organization: Federal University of Ceará (UFC)
BookMark eNp1kM1LAzEQxYNUsK2Cf8KCFy9bJ9nspjmW4he0eNFzSLKTkrIfNUmR-te7tZ5ET8Mwv_fm8SZk1PUdEnJNYUYB2F3b6hnnjJ2RMQUpc8pFNSJjoAJyzii_IJMYtwAwp5SNCV823rk-1JluNmiCznRXZ7WPNmDyn9o0eNyS7ixmG-xbTOFwSc6dbiJe_cwpeXu4f10-5auXx-flYpVbJguW19yitLUugYvSwBBKcyNEIQtHUQxHnBvrOBYGqopT56TlUlhwyK2BUhdTcnPy3YX-fY8xqW2_D93wUjEoBRVFWVUDdXuibOhjDOjULvhWh4OioI6dqKETdexkQGe_UOuTTr7vUtC--UuQnwQfvsHDv8ZqvV58818cUHOA
CitedBy_id crossref_primary_10_1016_j_jcmds_2022_100032
crossref_primary_10_1007_s00006_019_0959_y
crossref_primary_10_1007_s11590_018_1301_7
crossref_primary_10_1007_s10898_021_01023_0
crossref_primary_10_1016_j_laa_2020_01_036
crossref_primary_10_1007_s10479_018_2989_6
crossref_primary_10_1007_s00006_020_01085_5
crossref_primary_10_1016_j_eswa_2021_115993
crossref_primary_10_1007_s00006_019_0995_7
crossref_primary_10_1007_s00006_018_0925_0
crossref_primary_10_1002_mma_8316
crossref_primary_10_1016_j_ins_2020_12_072
crossref_primary_10_1016_j_gmod_2021_101100
Cites_doi 10.29007/6fc5
10.1007/0-387-30927-6_9
10.1016/j.dam.2014.08.035
10.1007/978-1-4614-5128-0
10.1007/BF01448840
10.1007/s00006-016-0653-2
10.1007/s11590-011-0358-3
10.1016/j.ejor.2011.11.007
10.1016/j.orl.2011.07.007
10.1142/S0219720012420097
10.1007/s10288-016-0314-2
10.1007/s11590-014-0724-z
10.1186/s12859-015-0451-1
10.15439/2014F92
10.1111/j.1475-3995.2009.00757.x
10.1111/itor.12170
10.1103/PhysRevLett.79.325
10.1201/b18273
10.1063/1.4756054
10.1007/978-3-662-04621-0_2
10.1111/j.1475-3995.2007.00622.x
10.1007/s10898-011-9799-6
10.1109/MSP.2015.2398954
10.1007/s00006-010-0206-z
10.1016/j.dam.2013.01.020
10.1007/978-1-4612-0159-5_1
10.1007/s00006-015-0532-2
10.1186/1471-2105-14-S9-S7
10.1145/2949035.2949057
10.1137/120875909
10.1007/s10589-011-9402-6
10.1126/science.2911719
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.4422
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 4073
ExternalDocumentID 10_1002_mma_4422
MMA4422
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
O8X
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2932-d4ce9cda50475b0422a4b77393f1e74cee8bcf4e3b06641ff9c497c0fe4cb05a3
IEDL.DBID DRFUL
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435802000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0170-4214
IngestDate Fri Jul 25 12:20:29 EDT 2025
Sat Nov 29 07:49:39 EST 2025
Tue Nov 18 21:48:59 EST 2025
Wed Jan 22 16:47:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2932-d4ce9cda50475b0422a4b77393f1e74cee8bcf4e3b06641ff9c497c0fe4cb05a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3171-9339
PQID 2057173566
PQPubID 1016386
PageCount 11
ParticipantIDs proquest_journals_2057173566
crossref_primary_10_1002_mma_4422
crossref_citationtrail_10_1002_mma_4422
wiley_primary_10_1002_mma_4422_MMA4422
PublicationCentury 2000
PublicationDate 30 July 2018
PublicationDateYYYYMMDD 2018-07-30
PublicationDate_xml – month: 07
  year: 2018
  text: 30 July 2018
  day: 30
PublicationDecade 2010
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 16
2012
2010; 18
2017; Online First
2017; 27
1928; 100
2015; 32
2009
1953
2008; 15
2007
2006
2005
2011; 39
2016; 14
2012; 10
2012; 52
2010; 20
2015; 25
2013; 14
2001
2013; 56
1997; 79
2015; 197
1989; 243
2016
2015
2014
2013
2007; 20
2014; 165
2012; 6
2014; 8
2014; 56
2016; 23
2012; 219
1988
e_1_2_7_6_1
e_1_2_7_5_1
Perwass C (e_1_2_7_38_1) 2009
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
Gonçalves D. (e_1_2_7_18_1) 2017
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Dorst L (e_1_2_7_34_1) 2007
Lavor C. (e_1_2_7_13_1) 2007; 20
Blumenthal L (e_1_2_7_4_1) 1953
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
Crippen G (e_1_2_7_9_1) 1988
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_39_1
References_xml – start-page: 463
  year: 2014
  end-page: 469
– year: 2009
– volume: 20
  start-page: 801
  year: 2007
  end-page: 814
  article-title: Complexity of Groverś algorithm: an algebraic approach
  publication-title: International Journal of Applied Mathematics
– volume: 14
  start-page: 337
  year: 2016
  end-page: 376
  article-title: Assigned and unassigned distance geometry: applications to biological molecules and nanostructures
  publication-title: 4OR
– year: 2005
– year: 2007
– volume: 10
  year: 2012
  article-title: Exploiting symmetry properties of the discretizable molecular distance geometry problem
  publication-title: Journal of Bioinformatics and Computational Biology
– volume: 56
  start-page: 3
  year: 2014
  end-page: 69
  article-title: Euclidean distance geometry and applications
  publication-title: SIAM Review
– volume: 243
  start-page: 45
  year: 1989
  end-page: 50
  article-title: Protein structure determination in solution by nuclear magnetic resonance spectroscopy
  publication-title: Science
– volume: 6
  start-page: 1671
  year: 2012
  end-page: 1686
  article-title: The discretizable distance geometry problem
  publication-title: Optimization Letters
– volume: 18
  start-page: 33
  year: 2010
  end-page: 51
  article-title: Molecular distance geometry methods: from continuous to discrete
  publication-title: International Transactions in Operational Research
– start-page: 27
  year: 2001
  end-page: 59
– volume: 52
  start-page: 115
  year: 2012
  end-page: 146
  article-title: The discretizable molecular distance geometry problem
  publication-title: Computational Optimization and Applications
– volume: 14
  start-page: S71
  year: 2013
  end-page: S76
  article-title: Solving the molecular distance geometry problem with inaccurate distance data
  publication-title: BMC Bioinformatics
– start-page: 68
  year: 2016
  end-page: 80
– volume: 32
  start-page: 12
  year: 2015
  end-page: 30
  article-title: Euclidean distance matrices: essential theory, algorithms, and applications
  publication-title: IEEE Signal Processing Magazine
– year: 2012
– volume: 79
  start-page: 325
  year: 1997
  end-page: 328
  article-title: Quantum mechanics helps in searching for a needle in a haystack
  publication-title: Physical Review Letters
– volume: 8
  start-page: 2111
  year: 2014
  end-page: 2125
  article-title: Discretization orders and efficient computation of Cartesian coordinates for distance geometry
  publication-title: Optimization Letters
– volume: 25
  start-page: 925
  year: 2015
  end-page: 942
  article-title: Clifford algebra and the discretizable molecular distance geometry problem
  publication-title: Advances in Applied Clifford Algebra
– volume: 197
  start-page: 27
  year: 2015
  end-page: 41
  article-title: Discretization vertex orders in distance geometry
  publication-title: Discrete Applied Mathematics
– start-page: 85
  year: 2016
  end-page: 88
– volume: 23
  start-page: 897
  year: 2016
  end-page: 920
  article-title: Six mathematical gems from the history of distance geometry
  publication-title: International Transactions in Operational Research
– volume: Online First
  start-page: 1
  year: 2017
  end-page: 22
  article-title: Recent advances on the interval distance geometry problem
  publication-title: Journal of Global Optimization
– year: 1988
– volume: 165
  start-page: 213
  year: 2014
  end-page: 232
  article-title: On the number of realizations of certain Henneberg graphs arising in protein conformation
  publication-title: Discrete Applied Mathematics
– volume: 20
  start-page: 477
  year: 2010
  end-page: 488
  article-title: Clifford algebra applied to Grover's algorithm
  publication-title: Advances in Applied Clifford Algebra
– volume: 56
  start-page: 855
  year: 2013
  end-page: 871
  article-title: The interval BP algorithm for the discretizable molecular distance geometry problem with interval data
  publication-title: Journal of Global Optimization
– volume: 219
  start-page: 698
  year: 2012
  end-page: 706
  article-title: Recent advances on the discretizable molecular distance geometry problem
  publication-title: European Journal of Operational Research
– volume: 39
  start-page: 461
  year: 2011
  end-page: 465
  article-title: Hyperbolic smoothing and penalty techniques applied to molecular structure determination
  publication-title: Operations Research Letters
– start-page: 213
  year: 2006
  end-page: 225
– year: 1953
– start-page: 3
  year: 2001
  end-page: 17
– volume: 15
  start-page: 1
  year: 2008
  end-page: 17
  article-title: A branch‐and‐prune algorithm for the molecular distance geometry problem
  publication-title: International Transactions in Operational Research
– volume: 100
  start-page: 75
  year: 1928
  end-page: 163
  article-title: Untersuchungen uber allgemeine Metrik
  publication-title: Mathematische Annalen
– year: 2015
– volume: 16
  start-page: 16
  year: 2015
  end-page: 23
  article-title: An algorithm to enumerate all possible protein conformations verifying a set of distance constraints
  publication-title: BMC Bioinformatics
– year: 2013
– volume: 27
  start-page: 439
  year: 2017
  end-page: 452
  article-title: Geometric algebra to model uncertainties in the discretizable molecular distance geometry problem
  publication-title: Advances in Applied Clifford Algebra
– ident: e_1_2_7_40_1
  doi: 10.29007/6fc5
– ident: e_1_2_7_23_1
  doi: 10.1007/0-387-30927-6_9
– ident: e_1_2_7_15_1
  doi: 10.1016/j.dam.2014.08.035
– ident: e_1_2_7_8_1
  doi: 10.1007/978-1-4614-5128-0
– ident: e_1_2_7_3_1
  doi: 10.1007/BF01448840
– volume: 20
  start-page: 801
  year: 2007
  ident: e_1_2_7_13_1
  article-title: Complexity of Groverś algorithm: an algebraic approach
  publication-title: International Journal of Applied Mathematics
– ident: e_1_2_7_14_1
– start-page: 1
  year: 2017
  ident: e_1_2_7_18_1
  article-title: Recent advances on the interval distance geometry problem
  publication-title: Journal of Global Optimization
– ident: e_1_2_7_22_1
  doi: 10.1007/s00006-016-0653-2
– ident: e_1_2_7_27_1
  doi: 10.1007/s11590-011-0358-3
– ident: e_1_2_7_29_1
  doi: 10.1016/j.ejor.2011.11.007
– ident: e_1_2_7_32_1
  doi: 10.1016/j.orl.2011.07.007
– ident: e_1_2_7_28_1
  doi: 10.1142/S0219720012420097
– ident: e_1_2_7_6_1
  doi: 10.1007/s10288-016-0314-2
– ident: e_1_2_7_16_1
  doi: 10.1007/s11590-014-0724-z
– volume-title: Theory and Applications of Distance Geometry
  year: 1953
  ident: e_1_2_7_4_1
– ident: e_1_2_7_30_1
  doi: 10.1186/s12859-015-0451-1
– volume-title: Geometric Algebra with Applications in Engineering
  year: 2009
  ident: e_1_2_7_38_1
– ident: e_1_2_7_19_1
  doi: 10.15439/2014F92
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1475-3995.2009.00757.x
– ident: e_1_2_7_5_1
  doi: 10.1111/itor.12170
– ident: e_1_2_7_12_1
  doi: 10.1103/PhysRevLett.79.325
– ident: e_1_2_7_39_1
  doi: 10.1201/b18273
– ident: e_1_2_7_36_1
  doi: 10.1063/1.4756054
– ident: e_1_2_7_37_1
  doi: 10.1007/978-3-662-04621-0_2
– volume-title: Distance Geometry and Molecular Conformation
  year: 1988
  ident: e_1_2_7_9_1
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1475-3995.2007.00622.x
– ident: e_1_2_7_20_1
  doi: 10.1007/s10898-011-9799-6
– ident: e_1_2_7_7_1
  doi: 10.1109/MSP.2015.2398954
– ident: e_1_2_7_11_1
  doi: 10.1007/s00006-010-0206-z
– ident: e_1_2_7_26_1
  doi: 10.1016/j.dam.2013.01.020
– ident: e_1_2_7_35_1
  doi: 10.1007/978-1-4612-0159-5_1
– ident: e_1_2_7_21_1
  doi: 10.1007/s00006-015-0532-2
– ident: e_1_2_7_31_1
  doi: 10.1186/1471-2105-14-S9-S7
– ident: e_1_2_7_33_1
  doi: 10.1145/2949035.2949057
– ident: e_1_2_7_2_1
  doi: 10.1137/120875909
– volume-title: Geometric Algebra for Computer Science: An Object Oriented Approach to Geometry (The Morgan Kaufmann Series in Computer Graphics)
  year: 2007
  ident: e_1_2_7_34_1
– ident: e_1_2_7_25_1
  doi: 10.1007/s10589-011-9402-6
– ident: e_1_2_7_10_1
  doi: 10.1126/science.2911719
SSID ssj0008112
Score 2.2527611
Snippet Protein structure calculations using nuclear magnetic resonance (NMR) experiments are one of the most important applications of distance geometry. The...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4063
SubjectTerms 3D protein structure
Atomic radius
Atomic structure
branch‐and‐prune algorithm
Combinatorial analysis
conformal Clifford algebra
distance geometry
Intersections
Mathematical analysis
NMR
Nuclear magnetic resonance
Organic chemistry
Proteins
Uncertainty
Title Clifford algebra and discretizable distance geometry
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.4422
https://www.proquest.com/docview/2057173566
Volume 41
WOSCitedRecordID wos000435802000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6k9aAHtVWxWiWC-DjE5rHpJsdSLR5sEbHQW9jsbqTQptJEQX-9M0naKigInkLILAnz2m83O98AnLmR5UiuXJPoxUz0EGWKQHumpYSSCDF0IFnebIIPBv5oFDyUpyqpFqbgh1huuFFk5PmaAlxEaWtFGjqdimvGHEy_VQfd1qtA9eaxN7xf5mHfzv91EkGMyRybLahnLae1GPt9MlohzK84NZ9oetv_-cQd2CrhpdEp_KEGazqpw2Z_yc2a1qFWhnNqXJac01e7wLqTcUzn3A3q-4HvNESiDCrZpSrHD6qvoruMfMR41rOpzubvezDs3T5178yyoYIpcVZ3TMUk6l4Jz2Lci4j9S7CIEydebGuOD7UfyZhpNGC7zew4RkMFXFqxZjKyPOHuQyWZJfoADCvmkY9LpTigBZVAIyPu4p5ybRXZLvMacLHQbChLtnFqejEJC55kJ0TlhKScBpwuJV8Kho0fZJoL44RljKWhg1DT5i7i0Qac52b4dXzY73foevhXwSPYQGTk55u4VhMq2fxVH8O6fMvG6fyk9LRPhMnVSw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KK6gHtVWxWjWC-DjE5rHpJniSaqnYFpEWegvJ7kYKfUhTBf31zqRJq6AgeAohuyTM89vdzDcAp3ZoWIJLWyd6MR0tROqBpxzdkIEUCDGUJ1jSbIJ3Om6_7z3m4DqrhZnzQyw23MgzknhNDk4b0tUla-hoFFwxZmH8LTC0IjTvwu1To9daBGLXTA47iSFGZ5bJMu5Zw6pmc79noyXE_ApUk0zT2PzXN27BRgowtZu5RRQhp8YlWG8v2FnjEhRTh461i5R1-nIbWH04iOhPd406f-BLtWAsNSrapTrHD6qworsZWYn2rCYjNZu-70CvcdetN_W0pYIuMK9bumQCpS8Dx2DcCYn_K2AhJ1a8yFQcHyo3FBFTqMJajZlRhKryuDAixURoOIG9C_nxZKz2QDMiHrq4WIo8WlIFqGZEXtyRtilD02ZOGc4z0foi5RunthdDf86UbPkoHJ-EU4aTxciXOcfGD2MqmXb81Mti30KwaXIbEWkZzhI9_Drfb7dv6Lr_14HHsNrstlt-677zcABriJPcZEvXqEB-Nn1Vh7Ai3maDeHqUmt0nVe_ZOw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5KK6IPaqtitWoE8XiIzbHpJvhUWotiW4pY6FtI9pBCL5oq6K93J01SBQXBpxAyS8Jc--1u5huAczs0LEa5rSO9mK48hOuBJxzd4AFnCmIIj5G42QTtdt3BwOvl4DathVnyQ2QbbhgZcb7GABczLqsr1tDxOLghxFL5t0Cwh0weCs2nVr-dJWLXjA87kSFGJ5ZJUu5Zw6qmY7_PRiuI-RWoxjNNa_tf37gDWwnA1OpLjyhCTkxKsNnJ2FmjEhSTgI60q4R1-noXSGM0lPinu4adP9RLtWDCNSzaxTrHD6ywwrsFeon2IqZjsZi_70G_dffcuNeTlgo6U_O6pXPClPZ54BiEOiHyfwUkpMiKJ01B1UPhhkwSoUxYqxFTSmUqjzJDCsJCwwnsfchPphNxAJohaeiqxZL0cEkVKDMr5EUdbps8NG3ilOEyVa3PEr5xbHsx8pdMyZavlOOjcspwlknOlhwbP8hUUuv4SZRFvqXApklthUjLcBHb4dfxfqdTx-vhXwVPYb3XbPnth-7jEWwomOTGO7pGBfKL-as4hjX2thhG85PE6z4BGXfYtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clifford+algebra+and+discretizable+distance+geometry&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Alves%2C+R.&rft.au=Lavor%2C+C.&rft.au=Souza%2C+C.&rft.au=Souza%2C+M.&rft.date=2018-07-30&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=41&rft.issue=11&rft.spage=4063&rft.epage=4073&rft_id=info:doi/10.1002%2Fmma.4422&rft.externalDBID=10.1002%252Fmma.4422&rft.externalDocID=MMA4422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon