Clifford algebra and discretizable distance geometry
Protein structure calculations using nuclear magnetic resonance (NMR) experiments are one of the most important applications of distance geometry. The chemistry of proteins and the NMR data allow us to define an atomic order, such that the distances related to the pairs of atoms {i−3,i},{i−2,i},{i−1...
Uloženo v:
| Vydáno v: | Mathematical methods in the applied sciences Ročník 41; číslo 11; s. 4063 - 4073 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Freiburg
Wiley Subscription Services, Inc
30.07.2018
|
| Témata: | |
| ISSN: | 0170-4214, 1099-1476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Protein structure calculations using nuclear magnetic resonance (NMR) experiments are one of the most important applications of distance geometry. The chemistry of proteins and the NMR data allow us to define an atomic order, such that the distances related to the pairs of atoms {i−3,i},{i−2,i},{i−1,i} are available, and solve the problem iteratively using a combinatorial method, called branch‐and‐prune. The main step of BP algorithm is to intersect three spheres centered at the positions for atoms i−3,i−2,i, with radius given by the atomic distances di−3,i,di−2,i,di−1,i, respectively, to obtain the position for atom i. Because of uncertainty in NMR data, some of the distances di−3,i may not be precise or even not be available. Using conformal Clifford algebra, in addition to take care of NMR uncertainties, which implies that we have to calculate sphere intersections considering that their centers and radius may not be fixed anymore, we consider a more flexible atomic order, where distances di−3,i are replaced by dj,i, where j⩽i−3. Copyright © 2017 John Wiley & Sons, Ltd. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0170-4214 1099-1476 |
| DOI: | 10.1002/mma.4422 |