Accurate and efficient constrained molecular dynamics of polymers using Newton's method and special purpose code

In molecular dynamics simulations we can often increase the time step by imposing constraints on bond lengths and bond angles. This allows us to extend the length of the time interval and therefore the range of physical phenomena that we can afford to simulate. We examine the existing algorithms and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer physics communications Ročník 288; s. 108742
Hlavní autoři: López-Villellas, Lorién, Kjelgaard Mikkelsen, Carl Christian, Galano-Frutos, Juan José, Marco-Sola, Santiago, Alastruey-Benedé, Jesús, Ibáñez, Pablo, Moretó, Miquel, Sancho, Javier, García-Risueño, Pablo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2023
Témata:
ISSN:0010-4655, 1879-2944, 1879-2944
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In molecular dynamics simulations we can often increase the time step by imposing constraints on bond lengths and bond angles. This allows us to extend the length of the time interval and therefore the range of physical phenomena that we can afford to simulate. We examine the existing algorithms and software for solving nonlinear constraint equations in parallel and we explain why it is necessary to advance the state-of-the-art. We present ILVES-PC, a new algorithm for imposing bond constraints on proteins accurately and efficiently. It solves the same system of differential algebraic equations as the celebrated SHAKE algorithm, but ILVES-PC solves the nonlinear constraint equations using Newton's method rather than the nonlinear Gauss-Seidel method. Moreover, ILVES-PC solves the necessary linear systems using a specialized linear solver that exploits the structure of the protein. ILVES-PC can rapidly solve constraint equations as accurately as the hardware will allow. The run-time of ILVES-PC is proportional to the number of constraints. We have integrated ILVES-PC into GROMACS and simulated proteins of different sizes. Compared with SHAKE, we have achieved speedups of up to 4.9× in single-threaded executions and up to 76× in shared-memory multi-threaded executions. Moreover, ILVES-PC is more accurate than P-LINCS algorithm. Our work is a proof-of-concept of the utility of software designed specifically for the simulation of polymers. •Default configurations of MD packages may lead to non-converged, unphysical results.•ILVES-PC solves the constraint equations of SHAKE but using the fast Newton's method.•ILVES-PC is faster and more accurate than the state-of-the-art (SHAKE, P-LINCS).•Chemical structure of polymers allows efficient parallel simulations.
AbstractList In molecular dynamics simulations we can often increase the time step by imposing constraints on bond lengths and bond angles. This allows us to extend the length of the time interval and therefore the range of physical phenomena that we can afford to simulate. We examine the existing algorithms and software for solving nonlinear constraint equations in parallel and we explain why it is necessary to advance the state-of-the-art. We present ILVES-PC, a new algorithm for imposing bond constraints on proteins accurately and efficiently. It solves the same system of differential algebraic equations as the celebrated SHAKE algorithm, but ILVES-PC solves the nonlinear constraint equations using Newton's method rather than the nonlinear Gauss-Seidel method. Moreover, ILVES-PC solves the necessary linear systems using a specialized linear solver that exploits the structure of the protein. ILVES-PC can rapidly solve constraint equations as accurately as the hardware will allow. The run-time of ILVES-PC is proportional to the number of constraints. We have integrated ILVES-PC into GROMACS and simulated proteins of different sizes. Compared with SHAKE, we have achieved speedups of up to 4.9× in single-threaded executions and up to 76× in shared-memory multi-threaded executions. Moreover, ILVES-PC is more accurate than P-LINCS algorithm. Our work is a proof-of-concept of the utility of software designed specifically for the simulation of polymers. •Default configurations of MD packages may lead to non-converged, unphysical results.•ILVES-PC solves the constraint equations of SHAKE but using the fast Newton's method.•ILVES-PC is faster and more accurate than the state-of-the-art (SHAKE, P-LINCS).•Chemical structure of polymers allows efficient parallel simulations.
In molecular dynamics simulations we can often increase the time step by imposing constraints on bond lengths and bond angles. This allows us to extend the length of the time interval and therefore the range of physical phenomena that we can afford to simulate. We examine the existing algorithms and software for solving nonlinear constraint equations in parallel and we explain why it is necessary to advance the state-of-the-art. We present ILVES-PC, a new algorithm for imposing bond constraints on proteins accurately and efficiently. It solves the same system of differential algebraic equations as the celebrated SHAKE algorithm, but ILVES-PC solves the nonlinear constraint equations using Newton’s method rather than the nonlinear Gauss-Seidel method. Moreover, ILVES-PC solves the necessary linear systems using a specialized linear solver that exploits the structure of the protein. ILVES-PC can rapidly solve constraint equations as accurately as the hardware will allow. The run-time of ILVES-PC is proportional to the number of constraints. We have integrated ILVES-PC into GROMACS and simulated proteins of different sizes. Compared with SHAKE, we have achieved speedups of up to 4.9× in single-threaded executions and up to 76× in shared-memory multi-threaded executions. Moreover, ILVES-PC is more accurate than P-LINCS algorithm. Our work is a proof-of-concept of the utility of software designed specifically for the simulation of polymers.
ArticleNumber 108742
Author Alastruey-Benedé, Jesús
Sancho, Javier
López-Villellas, Lorién
García-Risueño, Pablo
Marco-Sola, Santiago
Ibáñez, Pablo
Galano-Frutos, Juan José
Kjelgaard Mikkelsen, Carl Christian
Moretó, Miquel
Author_xml – sequence: 1
  givenname: Lorién
  surname: López-Villellas
  fullname: López-Villellas, Lorién
  organization: Barcelona Supercomputing Center, Barcelona, Spain
– sequence: 2
  givenname: Carl Christian
  surname: Kjelgaard Mikkelsen
  fullname: Kjelgaard Mikkelsen, Carl Christian
  organization: Department of Computing Science and HPC2N, Umeå, Sweden
– sequence: 3
  givenname: Juan José
  surname: Galano-Frutos
  fullname: Galano-Frutos, Juan José
  organization: Department of Biochemistry, Molecular and Cellular Biology / Biocomputation and Complex Systems Physics Institute (BIFI), Universidad de Zaragoza, Zaragoza, Spain
– sequence: 4
  givenname: Santiago
  surname: Marco-Sola
  fullname: Marco-Sola, Santiago
  organization: Barcelona Supercomputing Center, Barcelona, Spain
– sequence: 5
  givenname: Jesús
  orcidid: 0000-0003-4164-5078
  surname: Alastruey-Benedé
  fullname: Alastruey-Benedé, Jesús
  email: jalastru@unizar.es
  organization: Departamento de Informática e Ingeniería de Sistemas / Aragón Institute for Engineering Research (I3A), Universidad de Zaragoza, Zaragoza, Spain
– sequence: 6
  givenname: Pablo
  surname: Ibáñez
  fullname: Ibáñez, Pablo
  organization: Departamento de Informática e Ingeniería de Sistemas / Aragón Institute for Engineering Research (I3A), Universidad de Zaragoza, Zaragoza, Spain
– sequence: 7
  givenname: Miquel
  surname: Moretó
  fullname: Moretó, Miquel
  organization: Barcelona Supercomputing Center, Barcelona, Spain
– sequence: 8
  givenname: Javier
  surname: Sancho
  fullname: Sancho, Javier
  organization: Department of Biochemistry, Molecular and Cellular Biology / Biocomputation and Complex Systems Physics Institute (BIFI), Universidad de Zaragoza, Zaragoza, Spain
– sequence: 9
  givenname: Pablo
  surname: García-Risueño
  fullname: García-Risueño, Pablo
  email: risueno@unizar.es
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-208209$$DView record from Swedish Publication Index (Umeå universitet)
BookMark eNp9kD1v2zAQhonAAWI7_QHduGWSQ1KfRCfD-WiBoF2SrAR1PKY0JFIgpRj-95XjdumQ6XCH93kPeFZk4YNHQr5ytuGMV7f7DQywEUzk897UhbggS97UMhOyKBZkyRhnWVGV5RVZpbRnjNW1zJdk2AJMUY9ItTcUrXXg0I8Ugk9j1M6joX3oEKZOR2qOXvcOEg2WDqE79hgTnZLzb_QnHsbgbxLtcfwdzEddGhCc7ugwxSEknEsNXpNLq7uEX_7ONXl5uH_efc-efj3-2G2fMhAyF5m0RYOizaEEYTUrdKOrtjQF1FC1WEvBbc4Qc1nxshaa2_mIhZFc2JwLaPM1yc696YDD1Kohul7HowraqTv3ulUhvqmpn5RgjWByztfnPMSQUkSrwI16dMGfNHSKM3USrfZqFq1OotVZ9Ezy_8h_vz5jvp0ZnBW8O4wqnbwDGhcRRmWC-4T-AyXDmrw
CitedBy_id crossref_primary_10_1080_21691401_2025_2531748
crossref_primary_10_1002_cpe_7853
crossref_primary_10_1002_slct_202405189
crossref_primary_10_1021_acs_jctc_5c01376
crossref_primary_10_3390_mi14081512
Cites_doi 10.1016/j.jcp.2005.03.015
10.1140/epjst/e2011-01525-9
10.1063/1.470117
10.1021/acs.jpcc.7b02842
10.1002/jcc.23354
10.1016/j.cpc.2008.10.020
10.1063/1.328693
10.1002/jcc.21885
10.1021/ja0108786
10.1021/ct200360f
10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
10.1016/0022-2836(87)90679-6
10.1063/1.3073889
10.1093/bib/bbz146
10.1002/jcc.540130805
10.1101/083055
10.1038/s41586-021-03819-2
10.1021/jp972381h
10.1073/pnas.2103154118
10.1063/1.3553378
10.1063/1.4922166
10.1002/(SICI)1096-987X(19980115)19:1<102::AID-JCC9>3.0.CO;2-T
10.1137/06065146X
10.1126/science.1159455
10.1021/acs.jpcb.1c03665
10.1039/C5CP00678C
10.1002/jcc.20291
10.1063/1.445869
10.1002/jcc.21237
10.1142/S0129183112300011
10.1016/0010-4655(95)00041-D
10.1021/ct0502864
10.1002/jcc.23881
10.1126/science.abj5338
10.1080/07391102.2020.1766572
10.1016/0021-9991(77)90098-5
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.1016/j.jcp.2008.07.002
10.1080/00268976.2014.905719
10.1088/1751-8113/45/6/065204
10.1016/0021-9991(83)90014-1
10.1021/acs.jctc.6b00186
10.1021/jp510365c
10.1103/PhysRev.159.98
10.1021/ct700200b
10.1107/S0907444998010865
10.1126/science.aaz3041
10.1007/s00894-016-2921-4
10.1038/s41467-020-18709-w
10.1016/j.cpc.2013.06.003
10.1002/(SICI)1096-987X(20000130)21:2<121::AID-JCC4>3.0.CO;2-W
10.1007/BF00941484
10.1080/07391102.1999.10508297
10.1093/nar/gkt357
10.1063/1.448118
10.2533/000942905777676795
10.1063/1.450613
10.1137/0709035
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
DOI 10.1016/j.cpc.2023.108742
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
ExternalDocumentID oai_DiVA_org_umu_208209
10_1016_j_cpc_2023_108742
S0010465523000875
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
ID FETCH-LOGICAL-c2932-9f48e2b3c5c2fa04a8a6b5d4c7c6be7921f30ee3961572a1fbe7e4d912f312cb3
ISSN 0010-4655
1879-2944
IngestDate Tue Nov 04 16:48:13 EST 2025
Sat Nov 29 07:30:15 EST 2025
Tue Nov 18 21:58:09 EST 2025
Fri Feb 23 02:40:11 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords LINCS
Molecular dynamics
Newton's method
Non-linear equations
Constraint algorithms
SHAKE
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2932-9f48e2b3c5c2fa04a8a6b5d4c7c6be7921f30ee3961572a1fbe7e4d912f312cb3
ORCID 0000-0003-4164-5078
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-208209
ParticipantIDs swepub_primary_oai_DiVA_org_umu_208209
crossref_citationtrail_10_1016_j_cpc_2023_108742
crossref_primary_10_1016_j_cpc_2023_108742
elsevier_sciencedirect_doi_10_1016_j_cpc_2023_108742
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer physics communications
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Panteva, Giambasu, York (br0430) 2015; 15
Hancock, Ghane, Cascio, Rohs, Di Felice, Johnson (br0530) 2013; 41
Bailey, Lowe (br0290) 2009; 30
Chen, Kerr, Forsyth (br0440) 2018; 148
Bhardwaj, Singh, Sharma, Rajendran, Purohit, Kumar (br0040) 2021; 39
Chodera, Swope, Pitera, Seok, Dill (br0410) 2007; 3
Roest, Ballone, Bedeaux, Kjelstrup (br0460) 2017; 121
Edberg, Evans, Morris (br0200) 1986; 84
Essmann, Perera, Berkowitz, Darden, Lee, Pedersen (br0700) 1995; 103
Andreano, Piccini, Licastro, Casalino, Johnson, Paciello, Dal Monego, Pantano, Manganaro, Manenti, Manna, Casa, Hyseni, Benincasa, Montomoli, Amaro, McLellan, Rappuoli (br0030) 2021; 118
Mikkelsen, Alastruey-Benedé, Ibáñez Marín, García-Risueño (br0550) 2016
García-Risueño, Echenique (br0560) 2012; 45
P. Eastman, V.S. Pande, Energy conservation as a measure of simulation accuracy, bioRxiv, 2016.
Forester, Smith (br0250) 1997; 19
C., Cieplak, Kollman (br0500) 1999; 16
Ryckaert, Ciccotti, Berendsen (br0300) 1977; 23
Jorgensen, Chandrasekhar, Madura, Impey, Klein (br0630) 1983; 79
(br0130) 2020
Verlet (br0680) 1967; 159
van der Spoel, Lindahl, Hess, Groenhof, Mark, Berendsen (br0350) 2005; 26
Leimkuhler, Reich, Skeel (br0340) 1996
Elber, Ruymgaart, Hess (br0330) 2011; 200
Jumper, Evans, Pritzel, Green (br0100) 2021; 596
Berendsen, van Postma, van Gunsteren, DiNola, Haak (br0660) 1984; 81
García-Risueño, Echenique, Alonso (br0540) 2011; 32
Gonnet (br0280) 2006; 220
Páll, Hess (br0690) 2013; 184
Chodera, Swope, Pitera, Dill (br0420) 2006; 5
Vo, Hawkins, Dang, Nilsson, Nguyen (br0370) 2015; 119
Hu, Wanga (br0480) 2015; 142
Huang, MacKerell (br0620) 2013; 34
Andersen (br0210) 1983; 52
Martin, Richard, Salem, Hartley, Mauguen (br0590) 1999; 55
Mazur (br0190) 1998; 102
Douangamath, Fearon, Gehrtz, Krojer, Lukacik, Owen, Resnick, Strain-Damerell, Aimon (br0600) 2020; 11
Turner, Mutter, Deeth, Platts (br0490) 2018; 13
Galindo-Murillo, Robertson, Zgarbová, Šponer, Otyepka, Jurečka, Cheatham (br0520) 2016; 12
Shaw, Adams, Azaria, Bank, Batson, Bell, Bergdorf, Bhatt, Butts, Correia (br0090) 2021
Bailey, Lowe, Sutton (br0230) 2008; 227
Martinez, Elmroth, Kloo (br0510) 2001; 123
Chiu, Clark, Subramaniam, Jakobsson (br0380) 2000; 21
Gossens, Tavernelli, Rothlisberger (br0020) 2005; 59
Parrinello, Rahman (br0670) 1981; 52
Miyamoto, Kollman (br0240) 1992; 13
Moré (br0310) 1972; 9
Vijay-Kumar, Bugg, Cook (br0580) 1987; 194
García-Risueño, Ibáñez (br0070) 2012; 23
Gonnet, Walther, Koumoutsakos (br0220) 2009; 180
Das, Baghel, Roy, Kumar (br0450) 2015; 17
Hess, Bekker, Berendsen, Fraaije (br0140) 1997; 18
Ruymgaart, Cardenas, Elber (br0400) 2011; 7
Ottochian, Ricca, Labat, Adamo (br0470) 2016; 22
Singh, Vanden Broeck, Miller, Chaker-Margot, Klinge (br0610) 2021; 373
Riniker, van Gunsteren (br0390) 2011; 134
Hairer, Wanner, Lubich (br0180) 2006
Thallmair, Javanainen, Fábián, Martinez-Seara, Marrink (br0170) 2021; 125
Karplus (br0060) 1978; 175
Leimkuhler, Reich (br0050) 2004
Hess (br0150) 2008; 4
Galano-Frutos, García-Cebollada, Sancho (br0110) 2019; 22
Pearlman, Case, Caldwell, Ross, Cheatham, DeBolt, Ferguson, Seibel, Kollman (br0360) 1995; 91
Bussi, Zykova-Timan, Parrinello (br0650) 2009; 130
(br0120) 2022
Hlawacek, Puschnig, Frank, Winkler, Ambrosch-Draxl, Teichert (br0010) 2008; 321
Weinbach, Elber (br0270) 2005; 209
(br0570) 1993
Haug, Arora, Matsui (br0640) 1976; 19
Krautler, Van Gunsteren, Hunenberger (br0260) 2001; 22
Broadbent, Spencer, Mostofi, Sutton (br0320) 2014; 112
Brini, Simmerling, Dill (br0080) 2020; 370
Chen (10.1016/j.cpc.2023.108742_br0440) 2018; 148
Hess (10.1016/j.cpc.2023.108742_br0150) 2008; 4
Weinbach (10.1016/j.cpc.2023.108742_br0270) 2005; 209
Vijay-Kumar (10.1016/j.cpc.2023.108742_br0580) 1987; 194
Leimkuhler (10.1016/j.cpc.2023.108742_br0050) 2004
Mazur (10.1016/j.cpc.2023.108742_br0190) 1998; 102
Gonnet (10.1016/j.cpc.2023.108742_br0280) 2006; 220
Roest (10.1016/j.cpc.2023.108742_br0460) 2017; 121
Martinez (10.1016/j.cpc.2023.108742_br0510) 2001; 123
Bussi (10.1016/j.cpc.2023.108742_br0650) 2009; 130
Das (10.1016/j.cpc.2023.108742_br0450) 2015; 17
Andersen (10.1016/j.cpc.2023.108742_br0210) 1983; 52
Hess (10.1016/j.cpc.2023.108742_br0140) 1997; 18
Krautler (10.1016/j.cpc.2023.108742_br0260) 2001; 22
Chodera (10.1016/j.cpc.2023.108742_br0420) 2006; 5
C. (10.1016/j.cpc.2023.108742_br0500) 1999; 16
Galano-Frutos (10.1016/j.cpc.2023.108742_br0110) 2019; 22
Thallmair (10.1016/j.cpc.2023.108742_br0170) 2021; 125
Moré (10.1016/j.cpc.2023.108742_br0310) 1972; 9
Hlawacek (10.1016/j.cpc.2023.108742_br0010) 2008; 321
Elber (10.1016/j.cpc.2023.108742_br0330) 2011; 200
Andreano (10.1016/j.cpc.2023.108742_br0030) 2021; 118
Edberg (10.1016/j.cpc.2023.108742_br0200) 1986; 84
Bhardwaj (10.1016/j.cpc.2023.108742_br0040) 2021; 39
Forester (10.1016/j.cpc.2023.108742_br0250) 1997; 19
Berendsen (10.1016/j.cpc.2023.108742_br0660) 1984; 81
Vo (10.1016/j.cpc.2023.108742_br0370) 2015; 119
García-Risueño (10.1016/j.cpc.2023.108742_br0560) 2012; 45
Broadbent (10.1016/j.cpc.2023.108742_br0320) 2014; 112
Bailey (10.1016/j.cpc.2023.108742_br0290) 2009; 30
Jorgensen (10.1016/j.cpc.2023.108742_br0630) 1983; 79
Miyamoto (10.1016/j.cpc.2023.108742_br0240) 1992; 13
Turner (10.1016/j.cpc.2023.108742_br0490) 2018; 13
Bailey (10.1016/j.cpc.2023.108742_br0230) 2008; 227
Essmann (10.1016/j.cpc.2023.108742_br0700) 1995; 103
Huang (10.1016/j.cpc.2023.108742_br0620) 2013; 34
Martin (10.1016/j.cpc.2023.108742_br0590) 1999; 55
Singh (10.1016/j.cpc.2023.108742_br0610) 2021; 373
(10.1016/j.cpc.2023.108742_br0570) 1993
Hairer (10.1016/j.cpc.2023.108742_br0180) 2006
Hu (10.1016/j.cpc.2023.108742_br0480) 2015; 142
Riniker (10.1016/j.cpc.2023.108742_br0390) 2011; 134
Shaw (10.1016/j.cpc.2023.108742_br0090) 2021
10.1016/j.cpc.2023.108742_br0160
Haug (10.1016/j.cpc.2023.108742_br0640) 1976; 19
Ruymgaart (10.1016/j.cpc.2023.108742_br0400) 2011; 7
Douangamath (10.1016/j.cpc.2023.108742_br0600) 2020; 11
Gossens (10.1016/j.cpc.2023.108742_br0020) 2005; 59
García-Risueño (10.1016/j.cpc.2023.108742_br0070) 2012; 23
Panteva (10.1016/j.cpc.2023.108742_br0430) 2015; 15
Jumper (10.1016/j.cpc.2023.108742_br0100) 2021; 596
Galindo-Murillo (10.1016/j.cpc.2023.108742_br0520) 2016; 12
Pearlman (10.1016/j.cpc.2023.108742_br0360) 1995; 91
Chodera (10.1016/j.cpc.2023.108742_br0410) 2007; 3
Páll (10.1016/j.cpc.2023.108742_br0690) 2013; 184
Hancock (10.1016/j.cpc.2023.108742_br0530) 2013; 41
van der Spoel (10.1016/j.cpc.2023.108742_br0350) 2005; 26
Mikkelsen (10.1016/j.cpc.2023.108742_br0550) 2016
Leimkuhler (10.1016/j.cpc.2023.108742_br0340) 1996
Chiu (10.1016/j.cpc.2023.108742_br0380) 2000; 21
Gonnet (10.1016/j.cpc.2023.108742_br0220) 2009; 180
Verlet (10.1016/j.cpc.2023.108742_br0680) 1967; 159
Ottochian (10.1016/j.cpc.2023.108742_br0470) 2016; 22
Parrinello (10.1016/j.cpc.2023.108742_br0670) 1981; 52
García-Risueño (10.1016/j.cpc.2023.108742_br0540) 2011; 32
Brini (10.1016/j.cpc.2023.108742_br0080) 2020; 370
Karplus (10.1016/j.cpc.2023.108742_br0060) 1978; 175
Ryckaert (10.1016/j.cpc.2023.108742_br0300) 1977; 23
References_xml – volume: 45
  year: 2012
  ident: br0560
  publication-title: J. Phys. A, Math. Theor.
– volume: 184
  start-page: 2641
  year: 2013
  end-page: 2650
  ident: br0690
  publication-title: Comput. Phys. Commun.
– volume: 373
  year: 2021
  ident: br0610
  publication-title: Science
– year: 2022
  ident: br0120
  article-title: LAMMPS user manual
– volume: 4
  start-page: 116
  year: 2008
  end-page: 122
  ident: br0150
  publication-title: J. Chem. Theory Comput.
– volume: 34
  start-page: 2135
  year: 2013
  end-page: 2145
  ident: br0620
  publication-title: J. Comput. Chem.
– volume: 84
  start-page: 6933
  year: 1986
  end-page: 6939
  ident: br0200
  publication-title: J. Chem. Phys.
– year: 2004
  ident: br0050
  article-title: Simulating Hamiltonian Dynamics
  publication-title: Cambridge Monographs on Applied and Computational Mathematics
– volume: 321
  start-page: 108
  year: 2008
  end-page: 111
  ident: br0010
  publication-title: Science
– volume: 125
  start-page: 9537
  year: 2021
  end-page: 9546
  ident: br0170
  publication-title: J. Phys. Chem. B
– volume: 112
  start-page: 2672
  year: 2014
  end-page: 2680
  ident: br0320
  publication-title: Mol. Phys.
– volume: 370
  year: 2020
  ident: br0080
  publication-title: Science
– year: 2020
  ident: br0130
  article-title: NAMD user manual
– volume: 52
  start-page: 7182
  year: 1981
  end-page: 7190
  ident: br0670
  publication-title: J. Appl. Phys.
– start-page: 160
  year: 2016
  end-page: 171
  ident: br0550
  publication-title: Proceedings of the 11
– volume: 52
  start-page: 24
  year: 1983
  end-page: 34
  ident: br0210
  publication-title: J. Comput. Phys.
– year: 2006
  ident: br0180
  article-title: Geometric Numerical Integration
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: br0100
  publication-title: Nature
– year: 1996
  ident: br0340
  publication-title: Mathematical Approaches to Biomolecular Structure and Dynamics
– volume: 22
  start-page: 501
  year: 2001
  end-page: 508
  ident: br0260
  publication-title: J. Comput. Chem.
– volume: 59
  start-page: 81
  year: 2005
  end-page: 84
  ident: br0020
  publication-title: CHIMIA Int. J. Chem.
– volume: 3
  start-page: 26
  year: 2007
  end-page: 41
  ident: br0410
  publication-title: J. Chem. Theory Comput.
– volume: 19
  start-page: 102
  year: 1997
  end-page: 111
  ident: br0250
  publication-title: J. Comput. Chem.
– volume: 39
  start-page: 3449
  year: 2021
  end-page: 3458
  ident: br0040
  publication-title: J. Biomol. Struct. Dyn.
– volume: 15
  start-page: 970
  year: 2015
  end-page: 982
  ident: br0430
  publication-title: J. Comput. Chem.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 11
  ident: br0600
  publication-title: Nat. Commun.
– volume: 180
  start-page: 360
  year: 2009
  end-page: 364
  ident: br0220
  publication-title: Comput. Phys. Commun.
– volume: 123
  start-page: 12279
  year: 2001
  end-page: 12289
  ident: br0510
  publication-title: J. Am. Chem. Soc.
– volume: 134
  year: 2011
  ident: br0390
  publication-title: J. Chem. Phys.
– volume: 130
  year: 2009
  ident: br0650
  publication-title: J. Chem. Phys.
– volume: 26
  start-page: 1701
  year: 2005
  end-page: 1719
  ident: br0350
  publication-title: J. Comput. Chem.
– volume: 23
  start-page: 327
  year: 1977
  end-page: 341
  ident: br0300
  publication-title: J. Comput. Phys.
– volume: 91
  start-page: 1
  year: 1995
  end-page: 41
  ident: br0360
  publication-title: Comput. Phys. Commun.
– volume: 102
  start-page: 473
  year: 1998
  ident: br0190
  publication-title: J. Phys. Chem. B
– volume: 194
  start-page: 531
  year: 1987
  end-page: 544
  ident: br0580
  publication-title: J. Mol. Biol.
– volume: 55
  start-page: 386
  year: 1999
  end-page: 398
  ident: br0590
  publication-title: Acta Crystallogr., D Biol. Crystallogr.
– volume: 23
  year: 2012
  ident: br0070
  publication-title: Int. J. Mod. Phys. C
– volume: 13
  start-page: 952
  year: 1992
  end-page: 962
  ident: br0240
  publication-title: J. Comput. Chem.
– volume: 121
  start-page: 17827
  year: 2017
  end-page: 17847
  ident: br0460
  publication-title: J. Phys. Chem. C
– volume: 16
  start-page: 845
  year: 1999
  end-page: 862
  ident: br0500
  publication-title: J. Biomol. Struct. Dyn.
– volume: 32
  start-page: 3039
  year: 2011
  end-page: 3046
  ident: br0540
  publication-title: J. Comput. Chem.
– volume: 5
  start-page: 1214
  year: 2006
  end-page: 1226
  ident: br0420
  publication-title: Multiscale Model. Simul.
– volume: 227
  start-page: 8949
  year: 2008
  end-page: 8959
  ident: br0230
  publication-title: J. Comput. Phys.
– volume: 175
  start-page: 70
  year: 1978
  ident: br0060
  publication-title: Abstr. Pap.—Am. Chem. Soc.
– volume: 209
  start-page: 193
  year: 2005
  end-page: 206
  ident: br0270
  publication-title: J. Comput. Phys.
– volume: 21
  start-page: 121
  year: 2000
  end-page: 131
  ident: br0380
  publication-title: J. Comput. Chem.
– year: 1993
  ident: br0570
  publication-title: Matrix Computations
– volume: 9
  start-page: 357
  year: 1972
  end-page: 378
  ident: br0310
  publication-title: SIAM J. Numer. Anal.
– volume: 200
  start-page: 211
  year: 2011
  end-page: 223
  ident: br0330
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 18
  start-page: 1463
  year: 1997
  end-page: 1472
  ident: br0140
  publication-title: J. Comput. Chem.
– volume: 13
  year: 2018
  ident: br0490
  publication-title: PLoS ONE
– volume: 12
  start-page: 4114
  year: 2016
  end-page: 4127
  ident: br0520
  publication-title: J. Chem. Theory Comput.
– volume: 159
  start-page: 98
  year: 1967
  end-page: 103
  ident: br0680
  publication-title: Phys. Rev.
– volume: 142
  year: 2015
  ident: br0480
  publication-title: J. Chem. Phys.
– volume: 79
  start-page: 926
  year: 1983
  end-page: 935
  ident: br0630
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 3072
  year: 2011
  end-page: 3082
  ident: br0400
  publication-title: J. Chem. Theory Comput.
– volume: 148
  year: 2018
  ident: br0440
  publication-title: J. Chem. Phys.
– volume: 22
  start-page: 3
  year: 2019
  end-page: 19
  ident: br0110
  publication-title: Brief. Bioinform.
– volume: 19
  start-page: 401
  year: 1976
  end-page: 424
  ident: br0640
  publication-title: J. Optim. Theory Appl.
– volume: 103
  start-page: 8577
  year: 1995
  end-page: 8593
  ident: br0700
  publication-title: J. Chem. Phys.
– volume: 22
  start-page: 1
  year: 2016
  end-page: 8
  ident: br0470
  publication-title: J. Mol. Model.
– start-page: 1
  year: 2021
  end-page: 11
  ident: br0090
  publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
– volume: 17
  start-page: 9509
  year: 2015
  end-page: 9518
  ident: br0450
  publication-title: Phys. Chem. Chem. Phys.
– volume: 41
  start-page: 6750
  year: 2013
  end-page: 6760
  ident: br0530
  publication-title: Nucleic Acids Res.
– volume: 119
  start-page: 1588
  year: 2015
  end-page: 1597
  ident: br0370
  publication-title: J. Phys. Chem. B
– volume: 118
  year: 2021
  ident: br0030
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 81
  start-page: 3684
  year: 1984
  end-page: 3690
  ident: br0660
  publication-title: J. Chem. Phys.
– reference: P. Eastman, V.S. Pande, Energy conservation as a measure of simulation accuracy, bioRxiv, 2016.
– volume: 220
  year: 2006
  ident: br0280
  publication-title: J. Chem. Phys.
– volume: 30
  start-page: 2485
  year: 2009
  end-page: 2493
  ident: br0290
  publication-title: J. Comput. Chem.
– volume: 209
  start-page: 193
  year: 2005
  ident: 10.1016/j.cpc.2023.108742_br0270
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.03.015
– year: 2004
  ident: 10.1016/j.cpc.2023.108742_br0050
  article-title: Simulating Hamiltonian Dynamics
– volume: 200
  start-page: 211
  year: 2011
  ident: 10.1016/j.cpc.2023.108742_br0330
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2011-01525-9
– volume: 103
  start-page: 8577
  year: 1995
  ident: 10.1016/j.cpc.2023.108742_br0700
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– year: 2006
  ident: 10.1016/j.cpc.2023.108742_br0180
– volume: 121
  start-page: 17827
  year: 2017
  ident: 10.1016/j.cpc.2023.108742_br0460
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b02842
– volume: 34
  start-page: 2135
  year: 2013
  ident: 10.1016/j.cpc.2023.108742_br0620
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23354
– volume: 180
  start-page: 360
  year: 2009
  ident: 10.1016/j.cpc.2023.108742_br0220
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.10.020
– volume: 52
  start-page: 7182
  year: 1981
  ident: 10.1016/j.cpc.2023.108742_br0670
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
– volume: 32
  start-page: 3039
  year: 2011
  ident: 10.1016/j.cpc.2023.108742_br0540
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21885
– volume: 123
  start-page: 12279
  year: 2001
  ident: 10.1016/j.cpc.2023.108742_br0510
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0108786
– volume: 7
  start-page: 3072
  year: 2011
  ident: 10.1016/j.cpc.2023.108742_br0400
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200360f
– start-page: 1
  year: 2021
  ident: 10.1016/j.cpc.2023.108742_br0090
– volume: 22
  start-page: 501
  year: 2001
  ident: 10.1016/j.cpc.2023.108742_br0260
  publication-title: J. Comput. Chem.
  doi: 10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
– volume: 194
  start-page: 531
  year: 1987
  ident: 10.1016/j.cpc.2023.108742_br0580
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(87)90679-6
– volume: 130
  year: 2009
  ident: 10.1016/j.cpc.2023.108742_br0650
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3073889
– volume: 22
  start-page: 3
  year: 2019
  ident: 10.1016/j.cpc.2023.108742_br0110
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz146
– volume: 13
  start-page: 952
  year: 1992
  ident: 10.1016/j.cpc.2023.108742_br0240
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540130805
– ident: 10.1016/j.cpc.2023.108742_br0160
  doi: 10.1101/083055
– volume: 596
  start-page: 583
  year: 2021
  ident: 10.1016/j.cpc.2023.108742_br0100
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 220
  year: 2006
  ident: 10.1016/j.cpc.2023.108742_br0280
  publication-title: J. Chem. Phys.
– volume: 102
  start-page: 473
  year: 1998
  ident: 10.1016/j.cpc.2023.108742_br0190
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp972381h
– volume: 118
  year: 2021
  ident: 10.1016/j.cpc.2023.108742_br0030
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2103154118
– volume: 13
  year: 2018
  ident: 10.1016/j.cpc.2023.108742_br0490
  publication-title: PLoS ONE
– volume: 134
  year: 2011
  ident: 10.1016/j.cpc.2023.108742_br0390
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3553378
– volume: 142
  year: 2015
  ident: 10.1016/j.cpc.2023.108742_br0480
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4922166
– volume: 19
  start-page: 102
  year: 1997
  ident: 10.1016/j.cpc.2023.108742_br0250
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(19980115)19:1<102::AID-JCC9>3.0.CO;2-T
– volume: 5
  start-page: 1214
  year: 2006
  ident: 10.1016/j.cpc.2023.108742_br0420
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/06065146X
– volume: 321
  start-page: 108
  year: 2008
  ident: 10.1016/j.cpc.2023.108742_br0010
  publication-title: Science
  doi: 10.1126/science.1159455
– volume: 125
  start-page: 9537
  year: 2021
  ident: 10.1016/j.cpc.2023.108742_br0170
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.1c03665
– volume: 17
  start-page: 9509
  year: 2015
  ident: 10.1016/j.cpc.2023.108742_br0450
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP00678C
– volume: 26
  start-page: 1701
  year: 2005
  ident: 10.1016/j.cpc.2023.108742_br0350
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20291
– volume: 79
  start-page: 926
  year: 1983
  ident: 10.1016/j.cpc.2023.108742_br0630
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 30
  start-page: 2485
  year: 2009
  ident: 10.1016/j.cpc.2023.108742_br0290
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21237
– start-page: 160
  year: 2016
  ident: 10.1016/j.cpc.2023.108742_br0550
– volume: 23
  year: 2012
  ident: 10.1016/j.cpc.2023.108742_br0070
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183112300011
– volume: 91
  start-page: 1
  year: 1995
  ident: 10.1016/j.cpc.2023.108742_br0360
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(95)00041-D
– volume: 3
  start-page: 26
  year: 2007
  ident: 10.1016/j.cpc.2023.108742_br0410
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct0502864
– volume: 15
  start-page: 970
  year: 2015
  ident: 10.1016/j.cpc.2023.108742_br0430
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23881
– volume: 373
  year: 2021
  ident: 10.1016/j.cpc.2023.108742_br0610
  publication-title: Science
  doi: 10.1126/science.abj5338
– volume: 39
  start-page: 3449
  year: 2021
  ident: 10.1016/j.cpc.2023.108742_br0040
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.2020.1766572
– volume: 23
  start-page: 327
  year: 1977
  ident: 10.1016/j.cpc.2023.108742_br0300
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– volume: 18
  start-page: 1463
  year: 1997
  ident: 10.1016/j.cpc.2023.108742_br0140
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– volume: 227
  start-page: 8949
  year: 2008
  ident: 10.1016/j.cpc.2023.108742_br0230
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.07.002
– volume: 112
  start-page: 2672
  year: 2014
  ident: 10.1016/j.cpc.2023.108742_br0320
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2014.905719
– volume: 45
  year: 2012
  ident: 10.1016/j.cpc.2023.108742_br0560
  publication-title: J. Phys. A, Math. Theor.
  doi: 10.1088/1751-8113/45/6/065204
– volume: 52
  start-page: 24
  year: 1983
  ident: 10.1016/j.cpc.2023.108742_br0210
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(83)90014-1
– volume: 12
  start-page: 4114
  year: 2016
  ident: 10.1016/j.cpc.2023.108742_br0520
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00186
– volume: 119
  start-page: 1588
  year: 2015
  ident: 10.1016/j.cpc.2023.108742_br0370
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp510365c
– volume: 148
  year: 2018
  ident: 10.1016/j.cpc.2023.108742_br0440
  publication-title: J. Chem. Phys.
– year: 1993
  ident: 10.1016/j.cpc.2023.108742_br0570
– volume: 159
  start-page: 98
  year: 1967
  ident: 10.1016/j.cpc.2023.108742_br0680
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.159.98
– volume: 4
  start-page: 116
  year: 2008
  ident: 10.1016/j.cpc.2023.108742_br0150
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700200b
– volume: 55
  start-page: 386
  year: 1999
  ident: 10.1016/j.cpc.2023.108742_br0590
  publication-title: Acta Crystallogr., D Biol. Crystallogr.
  doi: 10.1107/S0907444998010865
– volume: 370
  year: 2020
  ident: 10.1016/j.cpc.2023.108742_br0080
  publication-title: Science
  doi: 10.1126/science.aaz3041
– volume: 22
  start-page: 1
  year: 2016
  ident: 10.1016/j.cpc.2023.108742_br0470
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-016-2921-4
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.cpc.2023.108742_br0600
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18709-w
– year: 1996
  ident: 10.1016/j.cpc.2023.108742_br0340
– volume: 175
  start-page: 70
  year: 1978
  ident: 10.1016/j.cpc.2023.108742_br0060
  publication-title: Abstr. Pap.—Am. Chem. Soc.
– volume: 184
  start-page: 2641
  year: 2013
  ident: 10.1016/j.cpc.2023.108742_br0690
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.06.003
– volume: 21
  start-page: 121
  year: 2000
  ident: 10.1016/j.cpc.2023.108742_br0380
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(20000130)21:2<121::AID-JCC4>3.0.CO;2-W
– volume: 19
  start-page: 401
  year: 1976
  ident: 10.1016/j.cpc.2023.108742_br0640
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00941484
– volume: 16
  start-page: 845
  year: 1999
  ident: 10.1016/j.cpc.2023.108742_br0500
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.1999.10508297
– volume: 41
  start-page: 6750
  year: 2013
  ident: 10.1016/j.cpc.2023.108742_br0530
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt357
– volume: 81
  start-page: 3684
  year: 1984
  ident: 10.1016/j.cpc.2023.108742_br0660
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 59
  start-page: 81
  year: 2005
  ident: 10.1016/j.cpc.2023.108742_br0020
  publication-title: CHIMIA Int. J. Chem.
  doi: 10.2533/000942905777676795
– volume: 84
  start-page: 6933
  year: 1986
  ident: 10.1016/j.cpc.2023.108742_br0200
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.450613
– volume: 9
  start-page: 357
  year: 1972
  ident: 10.1016/j.cpc.2023.108742_br0310
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0709035
SSID ssj0007793
Score 2.42004
Snippet In molecular dynamics simulations we can often increase the time step by imposing constraints on bond lengths and bond angles. This allows us to extend the...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 108742
SubjectTerms Constraint algorithms
LINCS
Molecular dynamics
Newton's method
Non-linear equations
nonlinear equations
SHAKE
Title Accurate and efficient constrained molecular dynamics of polymers using Newton's method and special purpose code
URI https://dx.doi.org/10.1016/j.cpc.2023.108742
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-208209
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 1879-2944
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKBxIviE8xvuQHBBJVUGOndfxYYAOmMU3amPoWJY5TteuSKGmmwX_kP3Ht66RlExMg8RJVVmInvqf28fX1uYS8ZAEfplpoT4uYeYGENasEXuDpkeBhmKRqqKxk_r44OAinU3nY6_1oz8KcL0WehxcXsvyvpoYyMLY5OvsX5u4qhQL4DUaHK5gdrn9k-IlSjdF_sNsC2ipEmP1-ZYigyQcBDPOszYk7SDEhvY3nKIvlN-PFHjTWfwDDn-WFonZppm2FNearH5RgIAx1T39VO3BZIpzLpDYx6-sTKB2B3zcb9O94qb97J-Y0IoDRAmq_qOa4d7-ODljo5Sw23o4v89NTM5XnLlJl6aQRNhD-0URqFt5u1awwfnCvseezaqx07X-vVOEdwbIeveI51DErNj0gjHfRss4td-VoDg71MMEYcTic6HB0D4X0mETByXb4Z5hW8MpUgl6NxVtVGqVLxk00pkAlsEsK3UdW5AiaguWczRBwg2wxMZJhn2xNPu9M9zpqIIRTgXbv1m6z24DDSw39lihtKtpaFnR8l9xxyxc6QdjdIz2d3ye3DtHWD0jZgo8CVmgHProBPtqBj7bgo0VGW_BRCz6K4HtdU4Serc5BjzroUQO9h-Tr7s7x-0-ey-nhKSCWzJNZEGqWcDVSLIuHQRzG42SUBkqocaKFZH7Gh1pzCUxbsNjPoFAHqfRZxn2mEv6I9PMi148JHfMgG-p0xLOEBUBk4zATKVAtFmqpfV9tk2HbgZFygvfmU5dRG9m4iKDPI9PnEfb5NnnTPVKi2st1NwetVSJHV5GGRgCh6x57hRbsWjAK7x_mJ5OoqGZRc9bA3fA58sm_1f-U3F7_SZ6R_qpq9HNyU52v5nX1wiHyJ6gFyhI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+and+efficient+constrained+molecular+dynamics+of+polymers+using+Newton%27s+method+and+special+purpose+code&rft.jtitle=Computer+physics+communications&rft.au=L%C3%B3pez-Villellas%2C+Lori%C3%A9n&rft.au=Kjelgaard+Mikkelsen%2C+Carl+Christian&rft.au=Galano-Frutos%2C+Juan+Jos%C3%A9&rft.au=Marco-Sola%2C+Santiago&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=288&rft_id=info:doi/10.1016%2Fj.cpc.2023.108742&rft.externalDocID=S0010465523000875
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon