Sparse convolutional autoencoder‐based fault location for drive circuits in nuclear reactors

Drive circuit is a critical part of instrumentation and control systems in nuclear reactors, and its performance directly influences the operation of nuclear reactors. However, comparing with the open circuit IGBT faults, soft faults caused by the degradation of electronic components present much sl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Quality and reliability engineering international Ročník 40; číslo 2; s. 819 - 837
Hlavní autoři: Yang, Cheng, Yuan, Yannan, Wang, Fu, Li, Jueying, Li, Ang, Min, Yuan, Zhang, Qiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis Wiley Subscription Services, Inc 01.03.2024
Témata:
ISSN:0748-8017, 1099-1638
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Drive circuit is a critical part of instrumentation and control systems in nuclear reactors, and its performance directly influences the operation of nuclear reactors. However, comparing with the open circuit IGBT faults, soft faults caused by the degradation of electronic components present much slighter fluctuations to the performance of drive circuits. If the two fault modes co‐exist, traditional fault diagnosis models are prone to misclassify soft faults as the normal condition. To improve the accuracy of fault diagnosis of drive circuits, it necessitates to accurately locate the faults of drive circuits, while effectively extracting the distinguishable fault features is one of the critical factors for fault location. In this article, a fault location method combining the empirical modal decomposition (EMD) algorithm and sparse convolutional autoencoder (SCAE) is proposed. The EMD algorithm is applied to decompose the three‐phase current signals of drive circuits. An SCAE‐based feature extractor is constructed to capture high‐dimensional and sparse fault feature data with the aid of the powerful feature autonomic extraction capability of deep learning. A deep classifier is designed to locate faults in the driver circuit. A fault simulation model of the drive circuit is developed and the monitor data is collected. The effectiveness of the proposed method is validated via a real case of drive circuit in nuclear reactors.
AbstractList Drive circuit is a critical part of instrumentation and control systems in nuclear reactors, and its performance directly influences the operation of nuclear reactors. However, comparing with the open circuit IGBT faults, soft faults caused by the degradation of electronic components present much slighter fluctuations to the performance of drive circuits. If the two fault modes co‐exist, traditional fault diagnosis models are prone to misclassify soft faults as the normal condition. To improve the accuracy of fault diagnosis of drive circuits, it necessitates to accurately locate the faults of drive circuits, while effectively extracting the distinguishable fault features is one of the critical factors for fault location. In this article, a fault location method combining the empirical modal decomposition (EMD) algorithm and sparse convolutional autoencoder (SCAE) is proposed. The EMD algorithm is applied to decompose the three‐phase current signals of drive circuits. An SCAE‐based feature extractor is constructed to capture high‐dimensional and sparse fault feature data with the aid of the powerful feature autonomic extraction capability of deep learning. A deep classifier is designed to locate faults in the driver circuit. A fault simulation model of the drive circuit is developed and the monitor data is collected. The effectiveness of the proposed method is validated via a real case of drive circuit in nuclear reactors.
Author Yang, Cheng
Wang, Fu
Zhang, Qiang
Yuan, Yannan
Li, Jueying
Li, Ang
Min, Yuan
Author_xml – sequence: 1
  givenname: Cheng
  surname: Yang
  fullname: Yang, Cheng
  organization: Nuclear Power Institute of China
– sequence: 2
  givenname: Yannan
  surname: Yuan
  fullname: Yuan, Yannan
  email: yannan_yuan@163.com
  organization: Nuclear Power Institute of China
– sequence: 3
  givenname: Fu
  surname: Wang
  fullname: Wang, Fu
  organization: University of Electronic Science and Technology of China
– sequence: 4
  givenname: Jueying
  surname: Li
  fullname: Li, Jueying
  organization: Nuclear Power Institute of China
– sequence: 5
  givenname: Ang
  surname: Li
  fullname: Li, Ang
  organization: Nuclear Power Institute of China
– sequence: 6
  givenname: Yuan
  orcidid: 0000-0001-7771-1984
  surname: Min
  fullname: Min, Yuan
  organization: Nuclear Power Institute of China
– sequence: 7
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Civil Aviation Flight University of China
BookMark eNp10MtKAzEYBeAgCrZV8BECbtxMzSQznWQppV6gIN62hn8yGUiJkzbJVLrzEXxGn8S0dSW6Shbf-eGcITrsXKcROsvJOCeEXq68HrOipAdokBMhsnzC-CEakKrgGSd5dYyGISwISVjwAXp9WoIPGivXrZ3to3EdWAx9dLpTrtH-6-OzhqAb3EJvI7ZOwRbh1nnceLNOUeNVb2LApsNdr6wGj70GFZ0PJ-ioBRv06c87Qi_Xs-fpbTa_v7mbXs0zRQWj2YSUBedAdAN1-jRlDqwQNRGgoCpazapasVaxSSpTli1AQ0hFdaUpQEknwEbofH936d2q1yHKhet9qhIkFZQWJRecJTXeK-VdCF63Upm4qxM9GCtzIrcbyrSh3G6YAhe_Aktv3sBv_qLZnr4bqzf_OvnwONv5b1mmhOk
CitedBy_id crossref_primary_10_1016_j_ress_2024_110198
crossref_primary_10_1002_qre_3580
Cites_doi 10.1109/TPEL.2009.2017082
10.1016/j.advengsoft.2022.103354
10.1016/j.ress.2022.108561
10.1016/j.ress.2023.109120
10.1007/s42524‐023‐0256‐2
10.1080/15325008.2020.1793835
10.1109/TPEL.2012.2192503
10.1016/j.rser.2017.03.021
10.1109/TPEL.2013.2242093
10.1002/qre.3172
10.1109/TIE.2018.2833045
10.1109/TPEL.2021.3122816
10.1109/TIE.2014.2348934
10.1016/j.ijepes.2019.105425
10.1016/j.asoc.2016.11.012
10.1109/TIE.2009.2013845
10.1002/qre.315
10.1109/TIE.2017.2777378
10.1121/1.395916
10.1109/TIE.2014.2375853
10.1109/TPEL.2016.2526684
10.1098/rspa.1998.0193
10.1109/5.4428
10.1109/63.575672
10.1109/TPEL.2014.2348194
10.1109/TPWRD.2022.3223410
10.1016/j.renene.2022.08.080
10.1109/5.931486
10.1109/TPEL.2019.2941129
10.1016/j.measurement.2016.04.007
10.1007/s42524-021-0169-x
10.1002/qre.3319
10.1109/TIA.2021.3123199
10.1207/s15516709cog0901_7
10.1109/TPEL.2017.2679439
10.1002/qre.3280
10.1109/TIE.2022.3153810
10.1016/j.ymssp.2022.109628
10.1109/TIE.2020.3028808
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1002/qre.3452
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1638
EndPage 837
ExternalDocumentID 10_1002_qre_3452
QRE3452
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7TB
8FD
FR3
ID FETCH-LOGICAL-c2932-605488a0edab488d51a349b09aca74fe37bc3fc3663855faad0072e7e2aa526a3
IEDL.DBID DRFUL
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001069740900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0748-8017
IngestDate Mon Sep 29 02:33:13 EDT 2025
Tue Nov 18 20:49:31 EST 2025
Sat Nov 29 02:33:18 EST 2025
Wed Jan 22 16:14:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2932-605488a0edab488d51a349b09aca74fe37bc3fc3663855faad0072e7e2aa526a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7771-1984
PQID 2922458983
PQPubID 1016437
PageCount 19
ParticipantIDs proquest_journals_2922458983
crossref_citationtrail_10_1002_qre_3452
crossref_primary_10_1002_qre_3452
wiley_primary_10_1002_qre_3452_QRE3452
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Quality and reliability engineering international
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2009; 24
2022; 198
2013; 28
2023; 39
2022; 70
2012
2023; 183
2019; 35
1985; 9
2017; 65
1988; 76
2016; 32
2014; 62
2018; 66
2001; 89
1998; 454
2021; 58
2009; 56
2017; 50
2017; 74
2021; 37
2023
2022
2017; 33
2023; 233
1997; 12
2023; 176
2020; 115
2020; 48
2020; 68
1988; 83
2012; 28
2015
2014; 30
2022; 38
2022; 225
2016; 89
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
Yu F (e_1_2_7_39_1) 2015
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Hinton GE (e_1_2_7_40_1) 2012
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – volume: 32
  start-page: 39
  issue: 1
  year: 2016
  end-page: 51
  article-title: Reliable modular multilevel converter fault detection with redundant voltage sensor
  publication-title: IEEE Trans Power Electron
– volume: 66
  start-page: 8760
  issue: 11
  year: 2018
  end-page: 8771
  article-title: Real‐time fault detection and identification for MMC using 1‐D convolutional neural networks
  publication-title: IEEE Trans Ind Electron
– volume: 89
  start-page: 898
  issue: 6
  year: 2001
  end-page: 912
  article-title: Modeling and simulation of power electronic converters
– year: 2022
  article-title: Health status assessment of radar systems at aerospace launch sites by fuzzy analytic hierarchy process
  publication-title: Qual Reliab Eng Int
– volume: 30
  start-page: 2721
  issue: 5
  year: 2014
  end-page: 2732
  article-title: Fault detection and localization method for modular multilevel converters
  publication-title: IEEE Trans Power Electron
– volume: 8
  start-page: 572
  issue: 4
  year: 2021
  end-page: 581
  article-title: Novel interpretable mechanism of neural networks based on network decoupling method
  publication-title: Front Eng Manag
– volume: 58
  start-page: 457
  issue: 1
  year: 2021
  end-page: 467
  article-title: An open‐circuit fault detection and localization scheme for cascaded H‐bridge multilevel converter without additional sensors
  publication-title: IEEE Trans Ind Appl
– volume: 24
  start-page: 1859
  issue: 8
  year: 2009
  end-page: 1875
  article-title: A review of the state of the art of power electronics for wind turbines
  publication-title: IEEE Trans Power Electron
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  end-page: 995
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non‐stationary time series analysis
– volume: 225
  year: 2022
  article-title: A multi‐layer spiking neural network‐based approach to bearing fault diagnosis
  publication-title: Reliab Eng Syst Saf
– year: 2015
  article-title: Multi‐scale context aggregation by dilated convolutions
  publication-title: arXiv preprint arXiv
– volume: 62
  start-page: 1921
  issue: 3
  year: 2014
  end-page: 1930
  article-title: Kalman‐filter‐based indicator for online interturn short circuits detection in permanent‐magnet synchronous generators
  publication-title: IEEE Trans Ind Electron
– volume: 28
  start-page: 4867
  issue: 11
  year: 2013
  end-page: 4872
  article-title: Fault detection for modular multilevel converters based on sliding mode observer
  publication-title: IEEE Trans Power Electron
– volume: 70
  start-page: 112
  issue: 1
  year: 2022
  end-page: 124
  article-title: A novel detection and localization approach of open‐circuit switch fault for the grid‐connected modular multilevel converter
  publication-title: IEEE Trans Ind Electron
– volume: 39
  start-page: 1863
  year: 2023
  end-page: 1877
  article-title: An evidential network approach to reliability assessment by aggregating system‐level imprecise knowledge
  publication-title: Qual Reliab Eng Int
– volume: 39
  start-page: 1681
  year: 2023
  end-page: 1703
  article-title: Evidential network‐based system reliability assessment by fusing multi‐source evidential information
  publication-title: Qual Reliab Eng Int
– volume: 83
  start-page: 1615
  issue: 4
  year: 1988
  end-page: 1626
  article-title: Learning the hidden structure of speech
  publication-title: J Acoust Soc Am
– volume: 76
  start-page: 428
  issue: 4
  year: 1988
  end-page: 437
  article-title: Power electronic circuit topology
– year: 2012
  article-title: Improving neural networks by preventing co‐adaptation of feature detectors
  publication-title: arXiv preprint arXiv
– volume: 183
  year: 2023
  article-title: Bayesian transfer learning with active querying for intelligent cross‐machine fault prognosis under limited data
  publication-title: Mech Syst Sig Process
– volume: 33
  start-page: 1597
  issue: 2
  year: 2017
  end-page: 1608
  article-title: A submodule fault ride‐through strategy for modular multilevel converters with nearest level modulation
  publication-title: IEEE Trans Power Electron
– volume: 198
  start-page: 936
  year: 2022
  end-page: 946
  article-title: Hybrid Gaussian Process Regression and Fuzzy Inference System based approach for condition monitoring at the rotor side of a doubly fed induction generator
  publication-title: Renewable Energy
– volume: 56
  start-page: 2275
  issue: 6
  year: 2009
  end-page: 2283
  article-title: Fault detection on multicell converter based on output voltage frequency analysis
  publication-title: IEEE Trans Ind Electron
– volume: 9
  start-page: 147
  issue: 1
  year: 1985
  end-page: 169
  article-title: A learning algorithm for Boltzmann machines
  publication-title: Cogn Sci
– year: 2022
  article-title: A model of software fault detection and correction processes considering heterogeneous faults
  publication-title: Qual Reliab Eng Int
– volume: 74
  start-page: 949
  year: 2017
  end-page: 958
  article-title: Fault location and detection techniques in power distribution systems with distributed generation: a review
  publication-title: Renewable Sustainable Energy Rev
– volume: 233
  year: 2023
  article-title: Reliability modeling of modular ‐out‐of‐ systems with functional dependency: a case study of radar transmitter systems
  publication-title: Reliab Eng Syst Saf
– volume: 115
  year: 2020
  article-title: Detection and location of open‐circuit fault for modular multilevel converter
  publication-title: Int J Electr Power Energy Syst
– volume: 12
  start-page: 443
  issue: 3
  year: 1997
  end-page: 452
  article-title: Behavior‐mode simulation of power electronic circuits
  publication-title: IEEE Trans Power Electron
– volume: 62
  start-page: 1746
  issue: 3
  year: 2014
  end-page: 1759
  article-title: Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: state of the art
  publication-title: IEEE Trans Ind Electron
– volume: 28
  start-page: 591
  issue: 1
  year: 2012
  end-page: 604
  article-title: Survey on reliability of power electronic systems
  publication-title: IEEE Trans Power Electron
– volume: 68
  start-page: 10193
  issue: 10
  year: 2020
  end-page: 10206
  article-title: Switch open‐circuit fault localization strategy for MMCs using sliding‐time window based features extraction algorithm
  publication-title: IEEE Trans Ind Electron
– volume: 35
  start-page: 5190
  issue: 5
  year: 2019
  end-page: 5204
  article-title: Fault localization strategy for modular multilevel converters under submodule lower switch open‐circuit fault
  publication-title: IEEE Trans Power Electron
– volume: 50
  start-page: 252
  year: 2017
  end-page: 259
  article-title: Research on WNN soft fault diagnosis for analog circuit based on adaptive UKF algorithm
  publication-title: Appl Soft Comput
– volume: 38
  start-page: 1731
  issue: 3
  year: 2022
  end-page: 1746
  article-title: Unsynchronized parameter‐free fault location for two or three terminal double‐circuit transmission lines sharing the same tower via unscented Kalman filter
  publication-title: IEEE Trans Power Delivery
– volume: 65
  start-page: 5224
  issue: 7
  year: 2017
  end-page: 5236
  article-title: Fault detection methods for three‐level NPC inverter based on DC‐bus electromagnetic signatures
  publication-title: IEEE Trans Ind Electron
– volume: 48
  start-page: 589
  issue: 6‐7
  year: 2020
  end-page: 602
  article-title: An automatic diagnosis of an inverter IGBT open‐circuit fault based on HHT‐ANN
  publication-title: Electr Pow Compo Sys
– volume: 37
  start-page: 4600
  issue: 4
  year: 2021
  end-page: 4613
  article-title: Submodule open‐circuit fault detection for modular multilevel converters under light load condition with rearranged bleeding resistor circuit
  publication-title: IEEE Trans Power Electron
– volume: 176
  year: 2023
  article-title: An intelligent technique for fault detection and localization of three‐level ANPC inverter with NP connection for electric vehicles
  publication-title: Adv Eng Software
– volume: 89
  start-page: 171
  year: 2016
  end-page: 178
  article-title: A sparse auto‐encoder‐based deep neural network approach for induction motor faults classification
  publication-title: Measurement
– year: 2023
  article-title: Machine learning for fault diagnosis of high‐speed train traction systems: a review
  publication-title: Front Eng Manag
– ident: e_1_2_7_4_1
  doi: 10.1109/TPEL.2009.2017082
– ident: e_1_2_7_32_1
  doi: 10.1016/j.advengsoft.2022.103354
– ident: e_1_2_7_35_1
  doi: 10.1016/j.ress.2022.108561
– ident: e_1_2_7_9_1
  doi: 10.1016/j.ress.2023.109120
– ident: e_1_2_7_14_1
  doi: 10.1007/s42524‐023‐0256‐2
– ident: e_1_2_7_30_1
  doi: 10.1080/15325008.2020.1793835
– ident: e_1_2_7_12_1
  doi: 10.1109/TPEL.2012.2192503
– ident: e_1_2_7_6_1
  doi: 10.1016/j.rser.2017.03.021
– ident: e_1_2_7_19_1
  doi: 10.1109/TPEL.2013.2242093
– ident: e_1_2_7_5_1
  doi: 10.1002/qre.3172
– ident: e_1_2_7_33_1
  doi: 10.1109/TIE.2018.2833045
– ident: e_1_2_7_18_1
  doi: 10.1109/TPEL.2021.3122816
– ident: e_1_2_7_25_1
  doi: 10.1109/TIE.2014.2348934
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ijepes.2019.105425
– ident: e_1_2_7_42_1
  doi: 10.1016/j.asoc.2016.11.012
– ident: e_1_2_7_28_1
  doi: 10.1109/TIE.2009.2013845
– year: 2015
  ident: e_1_2_7_39_1
  article-title: Multi‐scale context aggregation by dilated convolutions
  publication-title: arXiv preprint arXiv
– ident: e_1_2_7_10_1
  doi: 10.1002/qre.315
– ident: e_1_2_7_29_1
  doi: 10.1109/TIE.2017.2777378
– ident: e_1_2_7_37_1
  doi: 10.1121/1.395916
– ident: e_1_2_7_15_1
  doi: 10.1109/TIE.2014.2375853
– ident: e_1_2_7_16_1
  doi: 10.1109/TPEL.2016.2526684
– ident: e_1_2_7_34_1
  doi: 10.1098/rspa.1998.0193
– ident: e_1_2_7_2_1
  doi: 10.1109/5.4428
– ident: e_1_2_7_3_1
  doi: 10.1109/63.575672
– year: 2012
  ident: e_1_2_7_40_1
  article-title: Improving neural networks by preventing co‐adaptation of feature detectors
  publication-title: arXiv preprint arXiv
– ident: e_1_2_7_24_1
  doi: 10.1109/TPEL.2014.2348194
– ident: e_1_2_7_26_1
  doi: 10.1109/TPWRD.2022.3223410
– ident: e_1_2_7_27_1
  doi: 10.1016/j.renene.2022.08.080
– ident: e_1_2_7_41_1
  doi: 10.1109/5.931486
– ident: e_1_2_7_23_1
  doi: 10.1109/TPEL.2019.2941129
– ident: e_1_2_7_38_1
  doi: 10.1016/j.measurement.2016.04.007
– ident: e_1_2_7_13_1
  doi: 10.1007/s42524-021-0169-x
– ident: e_1_2_7_7_1
  doi: 10.1002/qre.3319
– ident: e_1_2_7_22_1
  doi: 10.1109/TIA.2021.3123199
– ident: e_1_2_7_36_1
  doi: 10.1207/s15516709cog0901_7
– ident: e_1_2_7_17_1
  doi: 10.1109/TPEL.2017.2679439
– ident: e_1_2_7_8_1
  doi: 10.1002/qre.3280
– ident: e_1_2_7_21_1
  doi: 10.1109/TIE.2022.3153810
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ymssp.2022.109628
– ident: e_1_2_7_31_1
  doi: 10.1109/TIE.2020.3028808
SSID ssj0010098
Score 2.3620572
Snippet Drive circuit is a critical part of instrumentation and control systems in nuclear reactors, and its performance directly influences the operation of nuclear...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 819
SubjectTerms Algorithms
Circuit design
Circuits
Control equipment
Decomposition
drive circuit
Driver circuits
Electronic components
empirical mode decomposition (EMD) algorithm
Fault diagnosis
Fault location
Faults
Feature extraction
Machine learning
Nuclear reactors
Phase current
sparse convolutional autoencoder (SCAE)
Title Sparse convolutional autoencoder‐based fault location for drive circuits in nuclear reactors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqre.3452
https://www.proquest.com/docview/2922458983
Volume 40
WOSCitedRecordID wos001069740900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010098
  issn: 0748-8017
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8MwGMeDbB704Ls4nRJB9FTtkrRJjqIbHsbwbeDJ8jRJYSB1dp1nP4Kf0U9i0pdNQUHw1B6eQJs8L_-2T39B6EhQkwQguac7GjwmfelJQ6nHQ9UxwmgSJwXEtc8HA_HwIK-rrkr3L0zJh5i9cHORUeRrF-AQT87m0NCXzJxSFtj02yTWbVkDNS9ve8P-7BuCQ2WWEE7h8jCv0bM-OavHfi9Gc4X5VacWhaa3-p9LXEMrlbzE56U_rKMFk26g5S_QwU30eDe2D7MGu37zyu_sCJjmz45pqU328fbuapvGCUyfcuyqnTPCVt5indnsiNUoU9NRPsGjFKcOiAwZtuKz2LlnCw173fuLK6_aZcFTttQTzz7P2CAG32iI7YkOOkCZjH0JCjhLDOWxoomiVpqIIEgAtKONG24IQEBCoNuokT6nZgfhhLIYgCjX68niMBQiCayCY5ozo33gLXRST3ekKgS52wnjKSrhySSyMxa5GWuhw5nluMRu_GDTrlcsqgJvEhFpNUkgpKAtdFysza_jo5vbrjvu_tVwDy0Re2NlB1obNfJsavbRonrNR5PsoHK_T9QX4V0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_kLLQ-1NpWvPq1QrFPqbndTTZLn0Q9FM-jWgWfGia7GziQaHO5PvdP6N_oX9KdfJwKFgp9Sh5mIJmdj99uJr8B-JgIl0eoVWAHFgOpQx1oJ0SgYjNwibM8y2sS15Eaj5Pra_11Ab50_8I0_BDzAzeKjDpfU4DTgfTeA2voj9J9FjLy-XdRei-KerB4eDG8Gs0_IhBXZsPCmVAiVh33bMj3Ot2n1egBYj4GqnWlGS7_1zO-gdctwGT7jUeswIIr3sLSI9rBd_D9253fzjpGHeet53kNnFW3xGppXXn_6zdVN8tynN1UjOodCTEPcJktfX5kZlKa2aSasknBCqJExpJ5-FnP7nkPV8Ojy4PjoJ2zEBhf7HngdzQ-jDF0FjN_Y6MBCqmzUKNBJXMnVGZEbkRMVo5yREt84045jhjxGMUq9Irbwq0By4XMELmhbk-ZxXGS5JHHcNIq6WyIqg-fOnunpiUhp1kYN2lDn8xTb7GULNaHnbnkXUO88YzMRrdkaRt605Rrj0qiRCeiD7v14vxVPz2_OKLrh38V3IaXx5dno3R0Mj5dh1fcv2TTj7YBvaqcuU14YX5Wk2m51friH0zb5U0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bSxwxFMcPolLaB7U3umptCqV9mjqbyyTBp1JdWros1lbwqcOZXGBBxu3srM9-hH7GfhKTuawWFAo-zTycwExyLv9MMr8AvFPMeYFaJnZoMeE61Yl2jCUyM0OnnKWFbyCuYzmZqLMzfbwCB_2_MC0fYvnBLUZGk69jgLuZ9fs31NDflfvIuAj5d40LnYWoXDs8GZ2Ol4sIkZXZUjhVTMSyZ8-mdL9v-281upGYt4VqU2lGmw96xi3Y6AQm-dR6xFNYceUzeHILO_gcfv2YhemsI3HHeed5oQUu6otItbSu-nv1J1Y3SzwuzmsS6100IkHgEluF_EjMtDKLaT0n05KUEYmMFQnyszm75wWcjo5-fv6SdOcsJCYUe5qEGU0IY0ydxSLcWDFExnWRajQouXdMFoZ5w4I4UUJ4RBt54046iihohuwlrJYXpXsFxDNeIFITd3vyIsuU8iJoOG4ldzZFOYAPfX_npoOQx7MwzvMWn0zz0GN57LEBvF1azlrwxh02u_2Q5V3ozXOqgyoRSis2gPfN4NzbPv9-chSv2_9r-AYeHR-O8vHXybcdeEzDO7bb0XZhta4W7jWsm8t6Oq_2Ole8BgDr5Mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+convolutional+autoencoder%E2%80%90based+fault+location+for+drive+circuits+in+nuclear+reactors&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Yang%2C+Cheng&rft.au=Yuan%2C+Yannan&rft.au=Wang%2C+Fu&rft.au=Li%2C+Jueying&rft.date=2024-03-01&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=40&rft.issue=2&rft.spage=819&rft.epage=837&rft_id=info:doi/10.1002%2Fqre.3452&rft.externalDBID=10.1002%252Fqre.3452&rft.externalDocID=QRE3452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon