Co‐design implementation of High Efficiency Video Coding standard encoder on Zynq MPSoC

Summary Statistical analysis of High Efficiency Video Coding (HEVC) encoder reveals that in the motion compensation block, the interpolation filter consumes more than 30% in the encoder time in comparison with other blocks. In this paper, we start with an optimized hardware implementation of the int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of circuit theory and applications Jg. 49; H. 4; S. 1013 - 1027
Hauptverfasser: Touzani, Hajar, Mansouri, Anass, Errahimi, Fatima, Ahaitouf, Ali
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.04.2021
Schlagworte:
ISSN:0098-9886, 1097-007X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Summary Statistical analysis of High Efficiency Video Coding (HEVC) encoder reveals that in the motion compensation block, the interpolation filter consumes more than 30% in the encoder time in comparison with other blocks. In this paper, we start with an optimized hardware implementation of the interpolation filter on field‐programmable gate array (FPGA) based on Xilinx setup environment. In a second step, a Hardware/Software (HW/SW) co‐design implementation of HM16.7 encoder is performed on Zynq MPSoC platform to evaluate the proposed interpolation filter IP in terms of total encoder run‐time, taking advantages of both processing units (quad‐core ARM Cortex TM‐A53 processor and Programmable Logic FPGA component) available on the Zynq MPSoC. The proposed architecture of luma and chroma filters was simulated and synthesized on Xilinx XCZU7EV‐2FFVC1156 FPGA at 250‐MHz clock frequency. The synthesis results present an optimized power consumption of 3.308 mW for higher resolutions (2560 × 1600 and 1920 × 1080) at 50 fps with the use of just 1% of the FPGA resources. The experimental results of the co‐design implementation of HEVC encoder present a speedup of 2 times (41% in PeopleOnStreet sequence) in terms of processing time compared to the software alone implementation, with a an increase of 0.51% of bit rate and a very small degradation of peak signal‐to‐noise ratio (PSNR) (0.01%). This paper presents an optimized implementation of High Efficiency Video Coding (HEVC) on Zynq based on the co‐design technic that combines between a hardware implementation of interpolation filter on field‐programmable gate array (FPGA) and a software implementation of other blocks on ARM processor. The results present a speed‐up in encoding time of 40% compared to the full software implementation of HEVC with an increase of 0.15% on bit rate.
AbstractList Statistical analysis of High Efficiency Video Coding (HEVC) encoder reveals that in the motion compensation block, the interpolation filter consumes more than 30% in the encoder time in comparison with other blocks. In this paper, we start with an optimized hardware implementation of the interpolation filter on field‐programmable gate array (FPGA) based on Xilinx setup environment. In a second step, a Hardware/Software (HW/SW) co‐design implementation of HM16.7 encoder is performed on Zynq MPSoC platform to evaluate the proposed interpolation filter IP in terms of total encoder run‐time, taking advantages of both processing units (quad‐core ARM Cortex TM‐A53 processor and Programmable Logic FPGA component) available on the Zynq MPSoC. The proposed architecture of luma and chroma filters was simulated and synthesized on Xilinx XCZU7EV‐2FFVC1156 FPGA at 250‐MHz clock frequency. The synthesis results present an optimized power consumption of 3.308 mW for higher resolutions (2560 × 1600 and 1920 × 1080) at 50 fps with the use of just 1% of the FPGA resources. The experimental results of the co‐design implementation of HEVC encoder present a speedup of 2 times (41% in PeopleOnStreet sequence) in terms of processing time compared to the software alone implementation, with a an increase of 0.51% of bit rate and a very small degradation of peak signal‐to‐noise ratio (PSNR) (0.01%).
Summary Statistical analysis of High Efficiency Video Coding (HEVC) encoder reveals that in the motion compensation block, the interpolation filter consumes more than 30% in the encoder time in comparison with other blocks. In this paper, we start with an optimized hardware implementation of the interpolation filter on field‐programmable gate array (FPGA) based on Xilinx setup environment. In a second step, a Hardware/Software (HW/SW) co‐design implementation of HM16.7 encoder is performed on Zynq MPSoC platform to evaluate the proposed interpolation filter IP in terms of total encoder run‐time, taking advantages of both processing units (quad‐core ARM Cortex TM‐A53 processor and Programmable Logic FPGA component) available on the Zynq MPSoC. The proposed architecture of luma and chroma filters was simulated and synthesized on Xilinx XCZU7EV‐2FFVC1156 FPGA at 250‐MHz clock frequency. The synthesis results present an optimized power consumption of 3.308 mW for higher resolutions (2560 × 1600 and 1920 × 1080) at 50 fps with the use of just 1% of the FPGA resources. The experimental results of the co‐design implementation of HEVC encoder present a speedup of 2 times (41% in PeopleOnStreet sequence) in terms of processing time compared to the software alone implementation, with a an increase of 0.51% of bit rate and a very small degradation of peak signal‐to‐noise ratio (PSNR) (0.01%). This paper presents an optimized implementation of High Efficiency Video Coding (HEVC) on Zynq based on the co‐design technic that combines between a hardware implementation of interpolation filter on field‐programmable gate array (FPGA) and a software implementation of other blocks on ARM processor. The results present a speed‐up in encoding time of 40% compared to the full software implementation of HEVC with an increase of 0.15% on bit rate.
Statistical analysis of High Efficiency Video Coding (HEVC) encoder reveals that in the motion compensation block, the interpolation filter consumes more than 30% in the encoder time in comparison with other blocks. In this paper, we start with an optimized hardware implementation of the interpolation filter on field‐programmable gate array (FPGA) based on Xilinx setup environment. In a second step, a Hardware/Software (HW/SW) co‐design implementation of HM16.7 encoder is performed on Zynq MPSoC platform to evaluate the proposed interpolation filter IP in terms of total encoder run‐time, taking advantages of both processing units (quad‐core ARM Cortex TM‐A53 processor and Programmable Logic FPGA component) available on the Zynq MPSoC. The proposed architecture of luma and chroma filters was simulated and synthesized on Xilinx XCZU7EV‐2FFVC1156 FPGA at 250‐MHz clock frequency. The synthesis results present an optimized power consumption of 3.308 mW for higher resolutions (2560 × 1600 and 1920 × 1080) at 50 fps with the use of just 1% of the FPGA resources. The experimental results of the co‐design implementation of HEVC encoder present a speedup of 2 times (41% in PeopleOnStreet sequence) in terms of processing time compared to the software alone implementation, with a an increase of 0.51% of bit rate and a very small degradation of peak signal‐to‐noise ratio (PSNR) (0.01%).
Author Ahaitouf, Ali
Errahimi, Fatima
Mansouri, Anass
Touzani, Hajar
Author_xml – sequence: 1
  givenname: Hajar
  orcidid: 0000-0002-7367-989X
  surname: Touzani
  fullname: Touzani, Hajar
  email: hajar.touzani@usmba.ac.ma
  organization: Sidi Mohamed Ben Abdellah University
– sequence: 2
  givenname: Anass
  surname: Mansouri
  fullname: Mansouri, Anass
  organization: Sidi Mohamed Ben Abdellah University
– sequence: 3
  givenname: Fatima
  surname: Errahimi
  fullname: Errahimi, Fatima
  organization: Sidi Mohamed Ben Abdellah University
– sequence: 4
  givenname: Ali
  orcidid: 0000-0003-1133-1887
  surname: Ahaitouf
  fullname: Ahaitouf, Ali
  organization: Sidi Mohamed Ben Abdellah University
BookMark eNp1kMtKAzEUhoNUsK2CjxBw42bqSeaaZRmqFSoKVlE3QyaXmtImbWaKzM5H8Bl9EqeOK9HF4SzO9_8HvgHqWWcVQqcERgSAXoiajyiL6QHqE2BpAJA-9VAfgGUBy7LkCA2qagkAGQ1ZHz3n7vP9Q6rKLCw2681KrZWteW2cxU7jqVm84onWRhhlRYMfjVQO504au8BVza3kXuL25KTyuM28NHaLb-7uXX6MDjVfVerkZw_Rw-Vknk-D2e3VdT6eBYKykAYRSUISQxJHhJakTFUYJhBppqkUUSQzHhJOJSVxGYNgBHQq2kk5ScqYM6LCITrrejfebXeqqoul23nbvixoDCyKMpakLXXeUcK7qvJKFxtv1tw3BYFiL65oxRV7cS06-oUK0xmpPTervwJBF3gzK9X8W1zk8_E3_wUFk3_Y
CitedBy_id crossref_primary_10_1016_j_micpro_2025_105202
Cites_doi 10.1109/ISCE.2015.7177796
10.1109/TCSVT.2012.2223011
10.1109/ICASSP.2013.6637943
10.1007/s11554-019-00923-5
10.3390/jlpea10030024
10.1109/TCSVT.2012.2221192
10.1109/TCSVT.2012.2221255
10.1109/SSD.2018.8570668
10.1016/j.jvcir.2018.09.006
10.1109/DTIS.2016.7483883
10.1109/IT4OD.2016.7479325
10.1109/JSTSP.2013.2272771
10.1007/s11042-019-08548-3
10.1002/cta.2308
10.1109/TCSVT.2012.2221191
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1002/cta.2952
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-007X
EndPage 1027
ExternalDocumentID 10_1002_cta_2952
CTA2952
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SP
8FD
L7M
ID FETCH-LOGICAL-c2932-416315065412b1b7e33604f9f2dc44d8a31a2d215b50c910f7c0f77a16b5a91e3
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616400600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-9886
IngestDate Fri Jul 25 12:18:26 EDT 2025
Tue Nov 18 22:26:20 EST 2025
Sat Nov 29 04:11:20 EST 2025
Wed Jan 22 16:29:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2932-416315065412b1b7e33604f9f2dc44d8a31a2d215b50c910f7c0f77a16b5a91e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7367-989X
0000-0003-1133-1887
PQID 2509448967
PQPubID 996369
PageCount 15
ParticipantIDs proquest_journals_2509448967
crossref_primary_10_1002_cta_2952
crossref_citationtrail_10_1002_cta_2952
wiley_primary_10_1002_cta_2952_CTA2952
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of circuit theory and applications
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016; 7
1982; 39
2012
2001
2015; 95
2017; 22
2019; 79
2017; 10
2017; 45
2020; 28
2019; 17
2019
2018
2016
2020; 79
2015
2014
2020; 10
2013
2013; 7
2018; 56
2012; 12
2012; 22
Ahmed BA (e_1_2_6_12_1) 2020; 28
Habib S (e_1_2_6_10_1) 2017; 10
Zhou W (e_1_2_6_6_1) 2015; 95
e_1_2_6_19_1
Touzani H (e_1_2_6_20_1) 2017; 22
Saurty K (e_1_2_6_17_1) 2016; 7
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_18_1
Graham Sl (e_1_2_6_23_1) 1982; 39
Siham B (e_1_2_6_29_1) 2019; 79
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 22
  start-page: 1685
  issue: 12
  year: 2012
  end-page: 1696
  article-title: HEVC complexity and implementation analysis
  publication-title: IEEE Trans Circ Syst Video Technol
– volume: 17
  start-page: 2047
  year: 2019
  end-page: 2063
  article-title: Low delay error resilience algorithm for H.265/HEVC video transmission
  publication-title: J Real‐Time Image Process
– volume: 22
  start-page: 1669
  issue: 12
  year: 2012
  end-page: 1684
  article-title: Comparison of the coding efficiency of video coding standards‐including High Efficiency Video Coding (HEVC)
  publication-title: IEEE Trans Circ Syst Video Technol
– volume: 10
  start-page: 261
  issue: 11
  year: 2017
  end-page: 281
  article-title: Performance estimation of HEVC/h.265 decoder in a co‐design flow with SADF‐FSM graphs
  publication-title: Int J Commun Netw Syst Sci
– volume: 39
  start-page: 49
  year: 1982
  end-page: 57
  article-title: GPROF: a call graph execution profiler (with retrospective)
  publication-title: Best of PLDI
– year: 2001
– volume: 79
  start-page: 6987
  year: 2019
  end-page: 7004
  article-title: Fast CU size and mode decision algorithm for 3D‐HEVC interceding
  publication-title: Multimed Tools Appl
– volume: 45
  start-page: 2243
  issue: 12
  year: 2017
  end-page: 2259
  article-title: Design exploration of efficient implementation on SOC heterogeneous platform: HEVC intra prediction application
  publication-title: Int J Circ Theory Appl
– volume: 28
  start-page: 1656
  issue: 3
  year: 2020
  end-page: 1672
  article-title: An optimized FPGA design of inverse quantization and transform for HEVC decoding blocks and validation in an SW/HW environment
  publication-title: Turkish J Elect Eng Comput Sci Scientif Techn Res Counc
– start-page: 1
  year: 2016
  end-page: 5
– start-page: 842
  year: 2018
  end-page: 845
– year: 2014
– volume: 10
  start-page: 24
  issue: 3
  year: 2020
  article-title: Optimized VLSI architecture of HEVC fractional pixel interpolators with approximate computing
  publication-title: J Low Power Electron Appl
– year: 2012
– volume: 95
  start-page: 266
  issue: 1
  year: 2015
  end-page: 298
  article-title: An efficient interpolation filter VLSI architecture for HEVC standard
  publication-title: EURASIP J Adv Sig Process
– volume: 79
  start-page: 7685
  year: 2020
  end-page: 7703
  article-title: Hardware‐software implementation of HEVC decoder on Zynq
  publication-title: Multimed Tools Appl
– volume: 22
  start-page: 1
  issue: 12
  year: 2017
  end-page: 5
  article-title: Implementation analysis of HEVC encoding on Zynq platform under embedded Linux
  publication-title: Int Conf Wirel Technol Embed Intell Syst (WITS)
– volume: 7
  start-page: 310
  issue: 10
  year: 2016
  end-page: 318
  article-title: Inter prediction complexity reduction for HEVC based on residuals characteristics
  publication-title: (IJACSA) Int J Adv Comput Sci Appl
– volume: 12
  start-page: 1697
  year: 2012
  end-page: 1706
  article-title: Block partitioning structure in the HEVC standard
  publication-title: IEEE Trans Circ Syst Video Technol
– start-page: 2
  year: 2019
  end-page: 30
– start-page: 1704
  year: 2013
  end-page: 1708
– volume: 7
  start-page: 946
  issue: 6
  year: 2013
  end-page: 956
  article-title: Motion compensated prediction and interpolation filter design in h.265/HEVC
  publication-title: IEEE J Sel Top Sig Process
– volume: 56
  start-page: 131
  year: 2018
  end-page: 138
  article-title: Content adaptive interpolation filters based on HEVC framework
  publication-title: J Vis Commun Image Represent
– start-page: 1
  year: 2015
  end-page: 2
– start-page: 1
  year: 2016
  end-page: 4
– volume: 22
  start-page: 1649
  issue: 12
  year: 2012
  end-page: 1668
  article-title: Overview of the High Efficiency Video Coding (HEVC) standard
  publication-title: IEEE Trans Circ Syst Video Technol
– year: 2013
– ident: e_1_2_6_27_1
  doi: 10.1109/ISCE.2015.7177796
– ident: e_1_2_6_26_1
– ident: e_1_2_6_14_1
  doi: 10.1109/TCSVT.2012.2223011
– volume: 28
  start-page: 1656
  issue: 3
  year: 2020
  ident: e_1_2_6_12_1
  article-title: An optimized FPGA design of inverse quantization and transform for HEVC decoding blocks and validation in an SW/HW environment
  publication-title: Turkish J Elect Eng Comput Sci Scientif Techn Res Counc
– ident: e_1_2_6_18_1
  doi: 10.1109/ICASSP.2013.6637943
– volume: 95
  start-page: 266
  issue: 1
  year: 2015
  ident: e_1_2_6_6_1
  article-title: An efficient interpolation filter VLSI architecture for HEVC standard
  publication-title: EURASIP J Adv Sig Process
– volume: 10
  start-page: 261
  issue: 11
  year: 2017
  ident: e_1_2_6_10_1
  article-title: Performance estimation of HEVC/h.265 decoder in a co‐design flow with SADF‐FSM graphs
  publication-title: Int J Commun Netw Syst Sci
– ident: e_1_2_6_28_1
  doi: 10.1007/s11554-019-00923-5
– ident: e_1_2_6_7_1
  doi: 10.3390/jlpea10030024
– ident: e_1_2_6_25_1
– ident: e_1_2_6_13_1
  doi: 10.1109/TCSVT.2012.2221192
– ident: e_1_2_6_19_1
  doi: 10.1109/TCSVT.2012.2221255
– ident: e_1_2_6_22_1
  doi: 10.1109/SSD.2018.8570668
– ident: e_1_2_6_4_1
  doi: 10.1016/j.jvcir.2018.09.006
– ident: e_1_2_6_5_1
– ident: e_1_2_6_8_1
  doi: 10.1109/DTIS.2016.7483883
– ident: e_1_2_6_2_1
– ident: e_1_2_6_24_1
– volume: 39
  start-page: 49
  year: 1982
  ident: e_1_2_6_23_1
  article-title: GPROF: a call graph execution profiler (with retrospective)
  publication-title: Best of PLDI
– ident: e_1_2_6_21_1
  doi: 10.1109/IT4OD.2016.7479325
– ident: e_1_2_6_3_1
  doi: 10.1109/JSTSP.2013.2272771
– ident: e_1_2_6_11_1
  doi: 10.1007/s11042-019-08548-3
– ident: e_1_2_6_9_1
  doi: 10.1002/cta.2308
– ident: e_1_2_6_16_1
  doi: 10.1109/TCSVT.2012.2221191
– volume: 22
  start-page: 1
  issue: 12
  year: 2017
  ident: e_1_2_6_20_1
  article-title: Implementation analysis of HEVC encoding on Zynq platform under embedded Linux
  publication-title: Int Conf Wirel Technol Embed Intell Syst (WITS)
– ident: e_1_2_6_15_1
– volume: 7
  start-page: 310
  issue: 10
  year: 2016
  ident: e_1_2_6_17_1
  article-title: Inter prediction complexity reduction for HEVC based on residuals characteristics
  publication-title: (IJACSA) Int J Adv Comput Sci Appl
– volume: 79
  start-page: 6987
  year: 2019
  ident: e_1_2_6_29_1
  article-title: Fast CU size and mode decision algorithm for 3D‐HEVC interceding
  publication-title: Multimed Tools Appl
SSID ssj0008239
Score 2.2437837
Snippet Summary Statistical analysis of High Efficiency Video Coding (HEVC) encoder reveals that in the motion compensation block, the interpolation filter consumes...
Statistical analysis of High Efficiency Video Coding (HEVC) encoder reveals that in the motion compensation block, the interpolation filter consumes more than...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1013
SubjectTerms Coders
Coding
Coding standards
Field programmable gate arrays
Hardware
HEVC
HW/SW co‐design
Interpolation
interpolation filter design
Microprocessors
Motion compensation
Petalinux
Power consumption
Programmable logic arrays
Software
Statistical analysis
Video compression
Zynq SoC
Title Co‐design implementation of High Efficiency Video Coding standard encoder on Zynq MPSoC
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcta.2952
https://www.proquest.com/docview/2509448967
Volume 49
WOSCitedRecordID wos000616400600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-007X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008239
  issn: 0098-9886
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcXsR704FusVllB9BSbbJ57LLHFQy1F21K9hM0-oKCJtlXw5kfwM_pJ3MmjraAgeAi57ELY2Zn_ZJn5LUKnWjWk5_rS0FKgDEdLqEFN7Vd2HAB-jXGeYRcHbb_TCYZD2i2qKqEXJudDzA7cwDOyeA0OzuJJfQ4N5VN2Qairw28Feqr0j1fl8qbVb8_icEBsWhIzaRB4JXrWJPVy7ncxmmeYi3lqJjStjf984iZaL9JL3Mj3wxZaksk2WluADu6guzD9fP8QWeUGHj2W9eNgIJwqDIUfuJmBJaArEw9GQqY4TEHjcHnwgAF_KeQY6zn3b8kzvu7epuEu6reavfDKKC5YMLhWeWJAMgaEQVfbKLZiX9q2ZzqKKiK444iA2RYjQicFsWtynVcon-vHZ5YXu4xa0t5Dy0mayH2EOVU6WgjGJSC0PJspaZuCmEIxTwQxraLzcqUjXtDH4RKMhyjnJpNIL1YEi1VFJ7ORTzlx44cxtdJYUeFzk4gAC9AJqOdX0Vlmll_nR2GvAe-Dvw48RKsEilmykp0aWp6OX-QRWuGv09FkfFzsvC-cC9ua
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEMcHWQX14FtcnxFET9Vu0keCJ6kuiusiuop6KWmSwoJudV0Fb34EP6OfxEy3XRUUBA-llwyETGb-Q5j8ArBhVcMEfmgcKwWp41kJdYRr44olHPFrUqkcu3jZCJtNfnUlTodgt7wL0-dDDA7cMDLyfI0BjgfSO5_UUNWT21T4Nv8OewELeQWG98_qF41BIuaUiRKZKTgPSvasS3dK2-9q9Flifi1Uc6WpT_5rjlMwURSYZK-_I6ZhyHRmYPwLdnAWrqPs_fVN570bpH1XdpCji0iWEmz9IAc5WgLvZZLLtjYZiTJUOVIePRAEYGrTJdbm5qXzQE5Oz7NoDi7qB63o0CmeWHCU1XnqYDmGjEHfeimpJaFhLHC9VKRUK8_TXLKapNqWBYnvKltZpKGyXyhrQeJLUTNsHiqdrGMWgCiR2nyhpTII0QqYTA1zNXV1KgPNE1GFrXKpY1Xwx_EZjNu4T06msV2sGBerCuuDkfd95sYPY5ZLb8VF1D3GFGmAHhdBWIXN3C-_2sdRaw__i38duAajh62TRtw4ah4vwRjF1pa8gWcZKr3uk1mBEfXcaz92V4tt-AHITd-K
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEMeHUkX04FusVo0gelq7m30GT2XbolhL8VHUy5LNAwrarbUK3vwIfkY_icl2t62gIHhY9pKBkMnMfwiTXwAOlGoIz_WFoaRAGo6SUIOYKq7sOND4NcpYil3sNP1WK7i9Je0CnOR3YUZ8iPGBm46MNF_rABd9LisTaigb0mNMXJV_ZxyXuE4RZmqXjZvmOBEH2CY5MpMEgZezZ01cyW2_q9GkxJwuVFOlaSz9a47LsJgVmKg62hErUBC9VViYwg6uwV2YfL5_8LR3A3Uf8w5y7SKUSKRbP1A9RUvoe5mo0-UiQWGiVQ7lRw9IAzC5GCBlc__We0IX7askXIebRv06PDWyJxYMpnQeG7oc04xBV3kptmJf2LZnOpJIzJnj8IDaFsVclQWxazJVWUifqc-nlhe7lFjC3oBiL-mJTUCMSJUvOGVCQ7Q8m0phmxybXFKPBzEpwVG-1BHL-OP6GYyHaEROxpFarEgvVgn2xyP7I-bGD2PKubeiLOqeI6xpgE5APL8Eh6lffrWPwuuq_m_9deAezLVrjah51jrfhnmsO1vS_p0yFIeDF7EDs-x12H0e7Ga78AuC698F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co%E2%80%90design+implementation+of+High+Efficiency+Video+Coding+standard+encoder+on+Zynq+MPSoC&rft.jtitle=International+journal+of+circuit+theory+and+applications&rft.au=Touzani%2C+Hajar&rft.au=Mansouri%2C+Anass&rft.au=Errahimi%2C+Fatima&rft.au=Ahaitouf%2C+Ali&rft.date=2021-04-01&rft.issn=0098-9886&rft.eissn=1097-007X&rft.volume=49&rft.issue=4&rft.spage=1013&rft.epage=1027&rft_id=info:doi/10.1002%2Fcta.2952&rft.externalDBID=10.1002%252Fcta.2952&rft.externalDocID=CTA2952
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-9886&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-9886&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-9886&client=summon