Design of auxiliary model and hierarchical normalized fractional adaptive algorithms for parameter estimation of bilinear‐in‐parameter systems
Summary This study investigates the parameter identification issues of bilinear‐in‐parameter systems through fractional adaptive algorithms. An auxiliary model based ε‐normalized$$ \varepsilon \hbox{-} \mathrm{normalized} $$ modified fractional least mean square algorithm is proposed for acceleratin...
Uložené v:
| Vydané v: | International journal of adaptive control and signal processing Ročník 36; číslo 10; s. 2562 - 2584 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken, USA
John Wiley & Sons, Inc
01.10.2022
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 0890-6327, 1099-1115 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Summary
This study investigates the parameter identification issues of bilinear‐in‐parameter systems through fractional adaptive algorithms. An auxiliary model based ε‐normalized$$ \varepsilon \hbox{-} \mathrm{normalized} $$ modified fractional least mean square algorithm is proposed for accelerating the parameter estimation accuracy based on the auxiliary model identification idea and the introduced convergence index, a normalized modified hierarchical fractional least mean square algorithm is presented for improving the computational efficiency based on the hierarchical identification principle. The proposed normalized fractional adaptive strategies are effective and could provide more accurate parameter estimates comparing with conventional counterparts for bilinear‐in‐parameter identification model based on the mean square error metrics and the average predicted output error. The effectiveness and accuracy of the proposed algorithms are further verified and validated through numerical simulations for different noise variances, fractional orders and gain parameters. |
|---|---|
| Bibliografia: | Funding information National Natural Science Foundation of China, Grant/Award Numbers: 62003249; 62073250; 62173262 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0890-6327 1099-1115 |
| DOI: | 10.1002/acs.3471 |