The inverse conductivity problem via the calculus of functions of bounded variation
In this work, a novel approach for the solution of the inverse conductivity problem from one and multiple boundary measurements has been developed on the basis of the implication of the framework of BV functions. The space of the functions of bounded variation is recommended here as the most appropr...
Uloženo v:
| Vydáno v: | Mathematical methods in the applied sciences Ročník 43; číslo 8; s. 5032 - 5072 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Freiburg
Wiley Subscription Services, Inc
30.05.2020
|
| Témata: | |
| ISSN: | 0170-4214, 1099-1476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this work, a novel approach for the solution of the inverse conductivity problem from one and multiple boundary measurements has been developed on the basis of the implication of the framework of
BV functions. The space of the functions of bounded variation is recommended here as the most appropriate functional space hosting the conductivity profile under reconstruction. For the numerical investigation of the inversion of the inclusion problem, we propose and implement a suitable minimization scheme of an enriched—constructed herein—functional, by exploiting the inner structure of
BV space. Finally, we validate and illustrate our theoretical results with numerical experiments. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0170-4214 1099-1476 |
| DOI: | 10.1002/mma.6251 |