The inverse conductivity problem via the calculus of functions of bounded variation

In this work, a novel approach for the solution of the inverse conductivity problem from one and multiple boundary measurements has been developed on the basis of the implication of the framework of BV functions. The space of the functions of bounded variation is recommended here as the most appropr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical methods in the applied sciences Ročník 43; číslo 8; s. 5032 - 5072
Hlavní autoři: Charalambopoulos, Antonios, Markaki, Vanessa, Kourounis, Drosos
Médium: Journal Article
Jazyk:angličtina
Vydáno: Freiburg Wiley Subscription Services, Inc 30.05.2020
Témata:
ISSN:0170-4214, 1099-1476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work, a novel approach for the solution of the inverse conductivity problem from one and multiple boundary measurements has been developed on the basis of the implication of the framework of BV functions. The space of the functions of bounded variation is recommended here as the most appropriate functional space hosting the conductivity profile under reconstruction. For the numerical investigation of the inversion of the inclusion problem, we propose and implement a suitable minimization scheme of an enriched—constructed herein—functional, by exploiting the inner structure of BV space. Finally, we validate and illustrate our theoretical results with numerical experiments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.6251