Application of an improved k‐means clustering algorithm in power user grouping

The illegal act of stealing electricity has brought serious security risks to the operation of power transmission system. The electricity consumption law of power users has obvious characteristics, which can be classified by clustering method. However, the traditional k‐means clustering method has t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of numerical modelling Vol. 35; no. 4
Main Authors: Gang, Wu, Dongdong, Zhang, Shengrong, Fan
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Inc 01.07.2022
Wiley Subscription Services, Inc
Subjects:
ISSN:0894-3370, 1099-1204
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The illegal act of stealing electricity has brought serious security risks to the operation of power transmission system. The electricity consumption law of power users has obvious characteristics, which can be classified by clustering method. However, the traditional k‐means clustering method has the characteristics of randomly selecting the initial cluster center, which leads to the instability of clustering results. Aiming at the shortcomings of traditional k‐means clustering algorithm, this paper proposes a density based k‐means clustering algorithm (Dk‐means clustering) to optimize the initial center selection. According to the characteristics of users' power load, the method of determining the number of clusters and the evaluation method of clustering effect are selected. Then, the traditional k‐means clustering algorithm and the improved Dk‐means clustering algorithm are used to analyze the power load data of a residential area, and six groups of characteristic curves are obtained. Based on the analysis of these curves, the power consumption characteristics of each group of users were evaluated. Finally, through the comparative analysis of Euclidean distance, Manhattan distance and correlation coefficient r, it is proved that Dk‐means algorithm has better clustering effect and is more accurate for the selection of suspicious power stealing users.
AbstractList The illegal act of stealing electricity has brought serious security risks to the operation of power transmission system. The electricity consumption law of power users has obvious characteristics, which can be classified by clustering method. However, the traditional k ‐means clustering method has the characteristics of randomly selecting the initial cluster center, which leads to the instability of clustering results. Aiming at the shortcomings of traditional k ‐means clustering algorithm, this paper proposes a density based k ‐means clustering algorithm (D k ‐means clustering) to optimize the initial center selection. According to the characteristics of users' power load, the method of determining the number of clusters and the evaluation method of clustering effect are selected. Then, the traditional k ‐means clustering algorithm and the improved D k ‐means clustering algorithm are used to analyze the power load data of a residential area, and six groups of characteristic curves are obtained. Based on the analysis of these curves, the power consumption characteristics of each group of users were evaluated. Finally, through the comparative analysis of Euclidean distance, Manhattan distance and correlation coefficient r, it is proved that D k ‐means algorithm has better clustering effect and is more accurate for the selection of suspicious power stealing users.
The illegal act of stealing electricity has brought serious security risks to the operation of power transmission system. The electricity consumption law of power users has obvious characteristics, which can be classified by clustering method. However, the traditional k‐means clustering method has the characteristics of randomly selecting the initial cluster center, which leads to the instability of clustering results. Aiming at the shortcomings of traditional k‐means clustering algorithm, this paper proposes a density based k‐means clustering algorithm (Dk‐means clustering) to optimize the initial center selection. According to the characteristics of users' power load, the method of determining the number of clusters and the evaluation method of clustering effect are selected. Then, the traditional k‐means clustering algorithm and the improved Dk‐means clustering algorithm are used to analyze the power load data of a residential area, and six groups of characteristic curves are obtained. Based on the analysis of these curves, the power consumption characteristics of each group of users were evaluated. Finally, through the comparative analysis of Euclidean distance, Manhattan distance and correlation coefficient r, it is proved that Dk‐means algorithm has better clustering effect and is more accurate for the selection of suspicious power stealing users.
Author Gang, Wu
Dongdong, Zhang
Shengrong, Fan
Author_xml – sequence: 1
  givenname: Wu
  surname: Gang
  fullname: Gang, Wu
  email: 122513613@qq.com
  organization: China Three Gorges University
– sequence: 2
  givenname: Zhang
  surname: Dongdong
  fullname: Dongdong, Zhang
  organization: China Three Gorges University
– sequence: 3
  givenname: Fan
  surname: Shengrong
  fullname: Shengrong, Fan
  organization: Wuhan Shengjieda Power Technology Co., Ltd
BookMark eNp1kE1OwzAQhS0EEm1B4giW2LBJGdtJEy-ril-VnwWsLSdxiktiBzuh6o4jcEZOgtuyQrCZmcX3Zt68Ido31iiETgiMCQA9X5pmTDmHPTQgwHlEKMT7aAAZjyPGUjhEQ--XAMBIQgfocdq2tS5kp63BtsLSYN20zr6rEr9-fXw2ShqPi7r3nXLaLLCsF9bp7qXB2uDWrpTDvQ9l4WzfBuAIHVSy9ur4p4_Q8-XF0-w6mj9c3cym86ignEFU5oQmhZRlBmFSeZGkspQlTzPFKgq5jCtGOMtoRtM0l3lJZEy5nBCmKpVMFBuh093eYPatV74TS9s7E04KOklZlsaU0ECNd1ThrPdOVaLQ3fbZzkldCwJik5oIqYlNakFw9kvQOt1It_4LjXboStdq_S8nbu_vtvw3nYt_kg
CitedBy_id crossref_primary_10_32604_cmes_2023_026113
crossref_primary_10_1016_j_heliyon_2024_e25838
Cites_doi 10.1016/j.compeleceng.2021.107203
10.1016/j.patrec.2018.03.004
10.1109/IWCMC48107.2020.9148301
10.1109/ICAECC.2014.7002457
10.3390/en13082039
10.1016/j.epsr.2020.106425
10.1016/j.ijepes.2020.106162
10.32604/cmc.2019.06497
10.1109/TII.2018.2873814
10.1016/j.epsr.2016.07.002
10.1016/j.epsr.2020.106258
10.1016/j.ijepes.2018.03.031
10.1109/ISGT-Asia.2017.8378347
10.1016/j.apenergy.2019.01.076
10.1109/ICNSC.2017.8000124
10.1109/TSG.2015.2425222
10.1016/j.ijepes.2020.106544
10.1109/FUZZ-IEEE.2017.8015546
10.1016/j.epsr.2010.10.036
10.1109/ICEMS.2019.8922302
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/jnm.2990
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1099-1204
EndPage n/a
ExternalDocumentID 10_1002_jnm_2990
JNM2990
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2930-db125caad80b12ebc57adad978e3f20ba4f3193828277babd1a429a613efe56e3
IEDL.DBID DRFUL
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757158800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0894-3370
IngestDate Sun Nov 09 06:14:23 EST 2025
Tue Nov 18 20:53:18 EST 2025
Sat Nov 29 06:25:14 EST 2025
Wed Jan 22 16:24:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-db125caad80b12ebc57adad978e3f20ba4f3193828277babd1a429a613efe56e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2673874212
PQPubID 1026348
PageCount 13
ParticipantIDs proquest_journals_2673874212
crossref_citationtrail_10_1002_jnm_2990
crossref_primary_10_1002_jnm_2990
wiley_primary_10_1002_jnm_2990_JNM2990
PublicationCentury 2000
PublicationDate July/August 2022
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July/August 2022
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of numerical modelling
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2016; 7
2019; 60
2018; 108
2021; 125
2020; 121
2020
2020; 187
2018; 101
2011; 81
2020; 182
2019; 15
2019
2017
2020; 13
2014
2019; 238
2021; 93
2016; 141
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 182
  issue: 9
  year: 2020
  article-title: Detection and identification of energy theft in advanced metering infrastructures
  publication-title: Electr Power Syst Res
– volume: 101
  start-page: 301
  year: 2018
  end-page: 310
  article-title: Clustering‐based novelty detection for identification of non‐technical losses
  publication-title: Int J Electr Power Energy Syst
– volume: 60
  start-page: 15
  issue: 1
  year: 2019
  end-page: 39
  article-title: A hybrid model for anomalies detection in AMI system combining ‐means clustering and deep neural network
  publication-title: Comput Mater Continua
– volume: 141
  start-page: 114
  year: 2016
  end-page: 123
  article-title: Comparison and clustering analysis of the daily electrical load in eight European countries
  publication-title: Electr Power Syst Res
– volume: 187
  year: 2020
  article-title: A moving shape‐based robust fuzzy ‐modes clustering algorithm for electricity profiles
  publication-title: Electr Power Syst Res
– volume: 93
  issue: 4
  year: 2021
  article-title: Design, power quality analysis, and implementation of smart energy meter using internet of things
  publication-title: Comput Electr Eng
– volume: 108
  start-page: 56
  year: 2018
  end-page: 61
  article-title: Snatch theft detection in unconstrained surveillance videos using action attribute modelling
  publication-title: Pattern Recogn Lett
– volume: 121
  year: 2020
  article-title: Energy theft detection in an edge data center using threshold‐based abnormality detector
  publication-title: Int J Electr Power Energy Syst
– volume: 13
  start-page: 1
  issue: 8
  year: 2020
  end-page: 20
  article-title: Detection of electricity theft behavior based on improved synthetic minority oversampling technique and random forest classifier
  publication-title: Energies
– year: 2020
– volume: 7
  start-page: 216
  issue: 1
  year: 2016
  end-page: 226
  article-title: Electricity theft detection in AMI using customers' consumption patterns
  publication-title: IEEE Trans Smart Grid
– volume: 15
  start-page: 1809
  issue: 3
  year: 2019
  end-page: 1819
  article-title: A novel combined data‐driven approach for electricity theft detection
  publication-title: IEEE Trans Ind Inf
– start-page: 63
  year: 2014
  end-page: 68
– volume: 81
  start-page: 716
  issue: 2
  year: 2011
  end-page: 724
  article-title: Hopfield– ‐means clustering algorithm: a proposal for the segmentation of electricity customers
  publication-title: Electr Power Syst Res
– year: 2017
– volume: 238
  start-page: 481
  year: 2019
  end-page: 494
  article-title: A practical feature‐engineering framework for electricity theft detection in smart grids
  publication-title: Appl Energy
– start-page: 589
  year: 2017
  end-page: 592
– year: 2019
– volume: 125
  issue: 3
  year: 2021
  article-title: Electricity theft detection in low‐voltage stations based on similarity measure and DT‐KSVM
  publication-title: Int J Electr Power Energy Syst
– start-page: 389
  year: 2017
  end-page: 393
– ident: e_1_2_7_8_1
  doi: 10.1016/j.compeleceng.2021.107203
– ident: e_1_2_7_6_1
  doi: 10.1016/j.patrec.2018.03.004
– ident: e_1_2_7_19_1
  doi: 10.1109/IWCMC48107.2020.9148301
– ident: e_1_2_7_4_1
  doi: 10.1109/ICAECC.2014.7002457
– ident: e_1_2_7_16_1
  doi: 10.3390/en13082039
– ident: e_1_2_7_21_1
  doi: 10.1016/j.epsr.2020.106425
– ident: e_1_2_7_14_1
– ident: e_1_2_7_18_1
  doi: 10.1016/j.ijepes.2020.106162
– ident: e_1_2_7_5_1
  doi: 10.32604/cmc.2019.06497
– ident: e_1_2_7_10_1
  doi: 10.1109/TII.2018.2873814
– ident: e_1_2_7_20_1
  doi: 10.1016/j.epsr.2016.07.002
– ident: e_1_2_7_2_1
  doi: 10.1016/j.epsr.2020.106258
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ijepes.2018.03.031
– ident: e_1_2_7_15_1
  doi: 10.1109/ISGT-Asia.2017.8378347
– ident: e_1_2_7_9_1
  doi: 10.1016/j.apenergy.2019.01.076
– ident: e_1_2_7_13_1
  doi: 10.1109/ICNSC.2017.8000124
– ident: e_1_2_7_7_1
  doi: 10.1109/TSG.2015.2425222
– ident: e_1_2_7_12_1
  doi: 10.1016/j.ijepes.2020.106544
– ident: e_1_2_7_11_1
  doi: 10.1109/FUZZ-IEEE.2017.8015546
– ident: e_1_2_7_22_1
  doi: 10.1016/j.epsr.2010.10.036
– ident: e_1_2_7_17_1
  doi: 10.1109/ICEMS.2019.8922302
SSID ssj0003152
Score 2.267125
Snippet The illegal act of stealing electricity has brought serious security risks to the operation of power transmission system. The electricity consumption law of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Clustering
Correlation coefficients
Dk‐means clustering
Electrical loads
Electricity consumption
Electricity distribution
Euclidean geometry
Evaluation
k‐means clustering
Power consumption
power load curve
power user grouping
Residential areas
Title Application of an improved k‐means clustering algorithm in power user grouping
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnm.2990
https://www.proquest.com/docview/2673874212
Volume 35
WOSCitedRecordID wos000757158800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1204
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003152
  issn: 0894-3370
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32K1ygqip9g0m7rpsahFpC1FrPQWZpONVtu09OHZn-Bv9Jc4m1crKAiesoEZWGZ3dr59zDcApyi54sKsGsKWgWGj9AwpK6aBPg9QRxAeVYl4bIhWy-l2q-3kVaXOhYn5IbIDN-0Z0XqtHRzlpDQnDX0JBxd6LV2GvEXTtpKD_PV9vdPI1mEe19sxnaptcOpPSj1rWqVU93swmiPMRZwaBZr6xn-6uAnrCbxktXg-bMGSCrdhbYF0kP6aGVPrZAfatfkNNhsGDEPWi84ZlM9eP98_BopiGfP6M02oQPoM-0_DcW_6PGC9kI10jTWmDzpYlB5CArvQqd88XN0aSZUFw6NQbxq-JIzjIfqOSS0lvYpAH33aXSoeWKZEOyA35bQzs4SQKP0yUgxDggEqUJVLxfcgFw5DtQ9MWtxGgjRlgm122UHH8ZQtAoIUBJNQVAtwnprb9RIKcl0Jo-_G5MmWSxZztcUKcJJJjmLajR9kiumIuYnjTVxLVzEV-pq7AGfR2Pyq7961mvp78FfBQ1i1dPJD9Fi3CLnpeKaOYMV7m_Ym4-Nk-n0BuCrgAA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6gH32K16gqip9g0m7opnopafLRFRMVbmE02Gm1Taatnf4K_0V_ibB6tgoLgKQnMwDI7s_PtbPYbgB2UXHFh1gxhy8CwUXqGlFXTQJ8HqDMIj7tE3DZFu-3c3dUuc3CY3YVJ-CFGBTcdGfF6rQNcF6TLY9bQx6i7rxfTCSjY5EXk3oXjq8ZNc7QQ86ThjunUbIPTgDLuWdMqZ7rfs9EYYn4FqnGmacz9a4zzMJsCTFZPPGIBcipahJkvtIP01RpxtQ6W4LI-PsNmvYBhxMK40qB89vTx9t5VlM2Y13nRlAqkz7Bz3-uHw4cuCyP2rLusMV3qYPEFERJYhpvGyfXRqZH2WTA8Svam4UtCOR6i75j0pqRXFeijT_tLxQPLlGgHFKic9maWEBKlX0HKYkhAQAWqeqD4CuSjXqRWgUmL20igpkLAza446DieskVAoIKAEopaEfYye7teSkKue2F03IQ-2XLJYq62WBG2R5LPCfHGDzKlbMrcNPQGrqX7mAp90F2E3XhyftV3z9st_Vz7q-AWTJ1et5pu86x9sQ7Tlr4KEf-6W4L8sP-iNmDSex2Gg_5m6oufIIXj8A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEB1qK6IP3sVq1RVEn6JpNnVTfCrW4qUtRVR8C7PJRqttWtrqs5_gN_olzubSKigIPiWBGVh2d2bO7mbPAdhDyRUXZtkQtgwMG6VnSFkyDfR5gLqC8Egl4q4umk3n_r7cysBJehcm5ocYb7jpyIjytQ5w1feDowlr6FPYPdTJdApyttaQyUKuel27rY8TMY8Fd0ynbBucGpRyz5rWUer7vRpNIOZXoBpVmtrCv9q4CPMJwGSVeEYsQUaFyzD3hXaQvhpjrtbhCrQqkzNs1gsYhqwd7TQonz1_vL13FVUz5nVeNKUC-TPsPPQG7dFjl7VD1tcqa0xvdbDogggZrMJt7ezm9NxIdBYMj4q9afiSUI6H6DsmvSnplQT66NP6UvHAMiXaAQUqp7WZJYRE6ReRqhgSEFCBKh0rvgbZsBeqdWDS4jYSqCkScLOLDjqOp2wREKggoISinIeDtL9dLyEh11oYHTemT7Zc6jFX91gedseW_Zh44webQjpkbhJ6Q9fSOqZCH3TnYT8anF_93ctmQz83_mq4AzOtas2tXzSvNmHW0jchoj93C5AdDV7UFkx7r6P2cLCdTMVP1eXjaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+an+improved+k%E2%80%90means+clustering+algorithm+in+power+user+grouping&rft.jtitle=International+journal+of+numerical+modelling&rft.au=Wu%2C+Gang&rft.au=Zhang%2C+Dongdong&rft.au=Fan+Shengrong&rft.date=2022-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0894-3370&rft.eissn=1099-1204&rft.volume=35&rft.issue=4&rft_id=info:doi/10.1002%2Fjnm.2990&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-3370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-3370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-3370&client=summon