Application of an improved k‐means clustering algorithm in power user grouping
The illegal act of stealing electricity has brought serious security risks to the operation of power transmission system. The electricity consumption law of power users has obvious characteristics, which can be classified by clustering method. However, the traditional k‐means clustering method has t...
Saved in:
| Published in: | International journal of numerical modelling Vol. 35; no. 4 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester, UK
John Wiley & Sons, Inc
01.07.2022
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0894-3370, 1099-1204 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The illegal act of stealing electricity has brought serious security risks to the operation of power transmission system. The electricity consumption law of power users has obvious characteristics, which can be classified by clustering method. However, the traditional k‐means clustering method has the characteristics of randomly selecting the initial cluster center, which leads to the instability of clustering results. Aiming at the shortcomings of traditional k‐means clustering algorithm, this paper proposes a density based k‐means clustering algorithm (Dk‐means clustering) to optimize the initial center selection. According to the characteristics of users' power load, the method of determining the number of clusters and the evaluation method of clustering effect are selected. Then, the traditional k‐means clustering algorithm and the improved Dk‐means clustering algorithm are used to analyze the power load data of a residential area, and six groups of characteristic curves are obtained. Based on the analysis of these curves, the power consumption characteristics of each group of users were evaluated. Finally, through the comparative analysis of Euclidean distance, Manhattan distance and correlation coefficient r, it is proved that Dk‐means algorithm has better clustering effect and is more accurate for the selection of suspicious power stealing users. |
|---|---|
| AbstractList | The illegal act of stealing electricity has brought serious security risks to the operation of power transmission system. The electricity consumption law of power users has obvious characteristics, which can be classified by clustering method. However, the traditional
k
‐means clustering method has the characteristics of randomly selecting the initial cluster center, which leads to the instability of clustering results. Aiming at the shortcomings of traditional
k
‐means clustering algorithm, this paper proposes a density based
k
‐means clustering algorithm (D
k
‐means clustering) to optimize the initial center selection. According to the characteristics of users' power load, the method of determining the number of clusters and the evaluation method of clustering effect are selected. Then, the traditional
k
‐means clustering algorithm and the improved D
k
‐means clustering algorithm are used to analyze the power load data of a residential area, and six groups of characteristic curves are obtained. Based on the analysis of these curves, the power consumption characteristics of each group of users were evaluated. Finally, through the comparative analysis of Euclidean distance, Manhattan distance and correlation coefficient r, it is proved that D
k
‐means algorithm has better clustering effect and is more accurate for the selection of suspicious power stealing users. The illegal act of stealing electricity has brought serious security risks to the operation of power transmission system. The electricity consumption law of power users has obvious characteristics, which can be classified by clustering method. However, the traditional k‐means clustering method has the characteristics of randomly selecting the initial cluster center, which leads to the instability of clustering results. Aiming at the shortcomings of traditional k‐means clustering algorithm, this paper proposes a density based k‐means clustering algorithm (Dk‐means clustering) to optimize the initial center selection. According to the characteristics of users' power load, the method of determining the number of clusters and the evaluation method of clustering effect are selected. Then, the traditional k‐means clustering algorithm and the improved Dk‐means clustering algorithm are used to analyze the power load data of a residential area, and six groups of characteristic curves are obtained. Based on the analysis of these curves, the power consumption characteristics of each group of users were evaluated. Finally, through the comparative analysis of Euclidean distance, Manhattan distance and correlation coefficient r, it is proved that Dk‐means algorithm has better clustering effect and is more accurate for the selection of suspicious power stealing users. |
| Author | Gang, Wu Dongdong, Zhang Shengrong, Fan |
| Author_xml | – sequence: 1 givenname: Wu surname: Gang fullname: Gang, Wu email: 122513613@qq.com organization: China Three Gorges University – sequence: 2 givenname: Zhang surname: Dongdong fullname: Dongdong, Zhang organization: China Three Gorges University – sequence: 3 givenname: Fan surname: Shengrong fullname: Shengrong, Fan organization: Wuhan Shengjieda Power Technology Co., Ltd |
| BookMark | eNp1kE1OwzAQhS0EEm1B4giW2LBJGdtJEy-ril-VnwWsLSdxiktiBzuh6o4jcEZOgtuyQrCZmcX3Zt68Ido31iiETgiMCQA9X5pmTDmHPTQgwHlEKMT7aAAZjyPGUjhEQ--XAMBIQgfocdq2tS5kp63BtsLSYN20zr6rEr9-fXw2ShqPi7r3nXLaLLCsF9bp7qXB2uDWrpTDvQ9l4WzfBuAIHVSy9ur4p4_Q8-XF0-w6mj9c3cym86ignEFU5oQmhZRlBmFSeZGkspQlTzPFKgq5jCtGOMtoRtM0l3lJZEy5nBCmKpVMFBuh093eYPatV74TS9s7E04KOklZlsaU0ECNd1ThrPdOVaLQ3fbZzkldCwJik5oIqYlNakFw9kvQOt1It_4LjXboStdq_S8nbu_vtvw3nYt_kg |
| CitedBy_id | crossref_primary_10_32604_cmes_2023_026113 crossref_primary_10_1016_j_heliyon_2024_e25838 |
| Cites_doi | 10.1016/j.compeleceng.2021.107203 10.1016/j.patrec.2018.03.004 10.1109/IWCMC48107.2020.9148301 10.1109/ICAECC.2014.7002457 10.3390/en13082039 10.1016/j.epsr.2020.106425 10.1016/j.ijepes.2020.106162 10.32604/cmc.2019.06497 10.1109/TII.2018.2873814 10.1016/j.epsr.2016.07.002 10.1016/j.epsr.2020.106258 10.1016/j.ijepes.2018.03.031 10.1109/ISGT-Asia.2017.8378347 10.1016/j.apenergy.2019.01.076 10.1109/ICNSC.2017.8000124 10.1109/TSG.2015.2425222 10.1016/j.ijepes.2020.106544 10.1109/FUZZ-IEEE.2017.8015546 10.1016/j.epsr.2010.10.036 10.1109/ICEMS.2019.8922302 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/jnm.2990 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1099-1204 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_jnm_2990 JNM2990 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION O8X 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2930-db125caad80b12ebc57adad978e3f20ba4f3193828277babd1a429a613efe56e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757158800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0894-3370 |
| IngestDate | Sun Nov 09 06:14:23 EST 2025 Tue Nov 18 20:53:18 EST 2025 Sat Nov 29 06:25:14 EST 2025 Wed Jan 22 16:24:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2930-db125caad80b12ebc57adad978e3f20ba4f3193828277babd1a429a613efe56e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2673874212 |
| PQPubID | 1026348 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2673874212 crossref_citationtrail_10_1002_jnm_2990 crossref_primary_10_1002_jnm_2990 wiley_primary_10_1002_jnm_2990_JNM2990 |
| PublicationCentury | 2000 |
| PublicationDate | July/August 2022 2022-07-00 20220701 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: July/August 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
| PublicationTitle | International journal of numerical modelling |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2016; 7 2019; 60 2018; 108 2021; 125 2020; 121 2020 2020; 187 2018; 101 2011; 81 2020; 182 2019; 15 2019 2017 2020; 13 2014 2019; 238 2021; 93 2016; 141 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_22_1 e_1_2_7_10_1 e_1_2_7_21_1 e_1_2_7_20_1 |
| References_xml | – volume: 182 issue: 9 year: 2020 article-title: Detection and identification of energy theft in advanced metering infrastructures publication-title: Electr Power Syst Res – volume: 101 start-page: 301 year: 2018 end-page: 310 article-title: Clustering‐based novelty detection for identification of non‐technical losses publication-title: Int J Electr Power Energy Syst – volume: 60 start-page: 15 issue: 1 year: 2019 end-page: 39 article-title: A hybrid model for anomalies detection in AMI system combining ‐means clustering and deep neural network publication-title: Comput Mater Continua – volume: 141 start-page: 114 year: 2016 end-page: 123 article-title: Comparison and clustering analysis of the daily electrical load in eight European countries publication-title: Electr Power Syst Res – volume: 187 year: 2020 article-title: A moving shape‐based robust fuzzy ‐modes clustering algorithm for electricity profiles publication-title: Electr Power Syst Res – volume: 93 issue: 4 year: 2021 article-title: Design, power quality analysis, and implementation of smart energy meter using internet of things publication-title: Comput Electr Eng – volume: 108 start-page: 56 year: 2018 end-page: 61 article-title: Snatch theft detection in unconstrained surveillance videos using action attribute modelling publication-title: Pattern Recogn Lett – volume: 121 year: 2020 article-title: Energy theft detection in an edge data center using threshold‐based abnormality detector publication-title: Int J Electr Power Energy Syst – volume: 13 start-page: 1 issue: 8 year: 2020 end-page: 20 article-title: Detection of electricity theft behavior based on improved synthetic minority oversampling technique and random forest classifier publication-title: Energies – year: 2020 – volume: 7 start-page: 216 issue: 1 year: 2016 end-page: 226 article-title: Electricity theft detection in AMI using customers' consumption patterns publication-title: IEEE Trans Smart Grid – volume: 15 start-page: 1809 issue: 3 year: 2019 end-page: 1819 article-title: A novel combined data‐driven approach for electricity theft detection publication-title: IEEE Trans Ind Inf – start-page: 63 year: 2014 end-page: 68 – volume: 81 start-page: 716 issue: 2 year: 2011 end-page: 724 article-title: Hopfield– ‐means clustering algorithm: a proposal for the segmentation of electricity customers publication-title: Electr Power Syst Res – year: 2017 – volume: 238 start-page: 481 year: 2019 end-page: 494 article-title: A practical feature‐engineering framework for electricity theft detection in smart grids publication-title: Appl Energy – start-page: 589 year: 2017 end-page: 592 – year: 2019 – volume: 125 issue: 3 year: 2021 article-title: Electricity theft detection in low‐voltage stations based on similarity measure and DT‐KSVM publication-title: Int J Electr Power Energy Syst – start-page: 389 year: 2017 end-page: 393 – ident: e_1_2_7_8_1 doi: 10.1016/j.compeleceng.2021.107203 – ident: e_1_2_7_6_1 doi: 10.1016/j.patrec.2018.03.004 – ident: e_1_2_7_19_1 doi: 10.1109/IWCMC48107.2020.9148301 – ident: e_1_2_7_4_1 doi: 10.1109/ICAECC.2014.7002457 – ident: e_1_2_7_16_1 doi: 10.3390/en13082039 – ident: e_1_2_7_21_1 doi: 10.1016/j.epsr.2020.106425 – ident: e_1_2_7_14_1 – ident: e_1_2_7_18_1 doi: 10.1016/j.ijepes.2020.106162 – ident: e_1_2_7_5_1 doi: 10.32604/cmc.2019.06497 – ident: e_1_2_7_10_1 doi: 10.1109/TII.2018.2873814 – ident: e_1_2_7_20_1 doi: 10.1016/j.epsr.2016.07.002 – ident: e_1_2_7_2_1 doi: 10.1016/j.epsr.2020.106258 – ident: e_1_2_7_3_1 doi: 10.1016/j.ijepes.2018.03.031 – ident: e_1_2_7_15_1 doi: 10.1109/ISGT-Asia.2017.8378347 – ident: e_1_2_7_9_1 doi: 10.1016/j.apenergy.2019.01.076 – ident: e_1_2_7_13_1 doi: 10.1109/ICNSC.2017.8000124 – ident: e_1_2_7_7_1 doi: 10.1109/TSG.2015.2425222 – ident: e_1_2_7_12_1 doi: 10.1016/j.ijepes.2020.106544 – ident: e_1_2_7_11_1 doi: 10.1109/FUZZ-IEEE.2017.8015546 – ident: e_1_2_7_22_1 doi: 10.1016/j.epsr.2010.10.036 – ident: e_1_2_7_17_1 doi: 10.1109/ICEMS.2019.8922302 |
| SSID | ssj0003152 |
| Score | 2.267125 |
| Snippet | The illegal act of stealing electricity has brought serious security risks to the operation of power transmission system. The electricity consumption law of... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Clustering Correlation coefficients Dk‐means clustering Electrical loads Electricity consumption Electricity distribution Euclidean geometry Evaluation k‐means clustering Power consumption power load curve power user grouping Residential areas |
| Title | Application of an improved k‐means clustering algorithm in power user grouping |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnm.2990 https://www.proquest.com/docview/2673874212 |
| Volume | 35 |
| WOSCitedRecordID | wos000757158800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1204 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003152 issn: 0894-3370 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32K1ygqip9h08z4WtYi0pYiF3sJudqvRNi1N69mf4G_0lzibVysoCJ6ygZkQdmd2vn3MNwDnQhe269meZpqirlJyuOa6Ni5WuKCWMGzbkwmJa8vpdNx-3-tmtypVLkzKD1FsuCnPSOZr5eCMx7UFaehLNLpSc-kqlCmarVWC8s1Ds9cq5mEjrbeju56pGYaj59SzOq3lut-D0QJhLuPUJNA0t_7zi9uwmcFL0kjtYQdWZLQLG0ukg_jWLpha4z3oNhYn2GQ8ICwiYbLPIAV5_Xz_GEmMZSQYzhWhAuoTNnwaT8PZ84iEEZmoGmtEbXSQJD0EBfah17x9vL7TsioLWoChXtcER4wTMCZcHVuSB5bDBBO4upTGgOqcmQN0UwNXZtRxOOOizjCGMYQBciAtWxoHUIrGkTwEIhFAeQ73AkOYJuXqCwgfPcqEzS3K7Qpc5t3tBxkFuaqEMfRT8mTqY4_5qscqcFZITlLajR9kqvmI-ZnjxT5VVUwddcxdgYtkbH7V9-87bfU8-qvgMaxTlfyQXNatQmk2ncsTWAveZmE8Pc3M7wtqAt-R |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gmKgH30YUdU2MniplW_qIJ6ISVCDEQMKt2e0uikIhPDz7E_yN_hJn-wBMNDHx1DaZbZrZmZ1vZzvfAJwJXViOa7maaYqCKsnhmuNYuFnhghaFYVmuDElcq3a97rTbbiMFV0ktTMQPMUu4Kc8I12vl4CohnZ-zhr4E_Uu1mC5BxkQrQvPO3DyWW9XZQmxEDXd0xzU1w7D1hHtWp_lk7PdoNIeYi0A1jDTljX994yasxwCTlCKL2IKUDLZhbYF2EJ9qM67W8Q40SvMzbDLoEBaQbphpkIK8fr5_9CVGM-L3popSAccT1nsajLqT5z7pBmSouqwRleogYYEICuxCq3zbvK5ocZ8Fzcdgr2uCI8rxGROOjneS-0WbCSZwfymNDtU5MzvoqAbuzahtc8ZFgWEUYwgEZEcWLWnsQToYBHIfiEQI5drc9Q1hmpSrNyCAdCkTFi9SbmXhItG358ck5KoXRs-L6JOphxrzlMaycDqTHEbEGz_I5JIp82LXG3tU9TG11UF3Fs7Dyfl1vHdfr6nrwV8FT2Cl0qxVvepd_eEQVqkqhQh_3c1BejKayiNY9t8m3fHoOLbFL8s044E |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6IH32K16gqip9h088ZTsRYfbShiobewm91otE1LH579Cf5Gf4m7eVVBQfCUBGZD2N2Z-WY28w3ACVOZaTumo-g6q8mSHKrYtimCFcqwwTTTdHhM4tqyXNfu9ZxOAS6yWpiEHyJPuEnNiO21VHA-YkF1zhr6HA3OpTFdgJIue8gUodS4b3ZbuSHWkoY7qu3oiqZZasY9q-JqNva7N5pDzK9ANfY0zbV_feM6rKYAE9WTHbEBBR5twsoX2kHx1M65Widb0KnPz7DRMEAkQmGcaeAMvXy8vQ-48GbI788kpYIYj0j_cTgOp08DFEZoJLusIZnqQHGBiBDYhm7z6uHyWkn7LCi-cPaqwqhAOT4hzFbFHae-YRFGmIgvuRZglRI9EIqqidgMWxYllNWI8GJEAAEecMPk2g4Uo2HEdwFxAaEcizq-xnQdU_kGASAdTJhJDUzNMpxl8-35KQm57IXR9xL6ZOyJGfPkjJXhOJccJcQbP8hUsiXzUtWbeFj2MbXkQXcZTuPF-XW8d-u25XXvr4JHsNRpNL3WjXu3D8tYVkLEf-5WoDgdz_gBLPqv03AyPky34ieBEuL8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+an+improved+k%E2%80%90means+clustering+algorithm+in+power+user+grouping&rft.jtitle=International+journal+of+numerical+modelling&rft.au=Wu%2C+Gang&rft.au=Zhang%2C+Dongdong&rft.au=Fan+Shengrong&rft.date=2022-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0894-3370&rft.eissn=1099-1204&rft.volume=35&rft.issue=4&rft_id=info:doi/10.1002%2Fjnm.2990&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-3370&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-3370&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-3370&client=summon |