Adversarial autoencoder for continuous sign language recognition

Summary Sign language serves as a vital communication medium for the deaf community, encompassing a diverse array of signs conveyed through distinct hand shapes along with non‐manual gestures like facial expressions and body movements. Accurate recognition of sign language is crucial for bridging th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Concurrency and computation Ročník 36; číslo 22
Hlavní autori: Kamal, Suhail Muhammad, Chen, Yidong, Li, Shaozi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 10.10.2024
Predmet:
ISSN:1532-0626, 1532-0634
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary Sign language serves as a vital communication medium for the deaf community, encompassing a diverse array of signs conveyed through distinct hand shapes along with non‐manual gestures like facial expressions and body movements. Accurate recognition of sign language is crucial for bridging the communication gap between deaf and hearing individuals, yet the scarcity of large‐scale datasets poses a significant challenge in developing robust recognition technologies. Existing works address this challenge by employing various strategies, such as enhancing visual modules, incorporating pretrained visual models, and leveraging multiple modalities to improve performance and mitigate overfitting. However, the exploration of the contextual module, responsible for modeling long‐term dependencies, remains limited. This work introduces an Adversarial Autoencoder for Continuous Sign Language Recognition, AA‐CSLR, to address the constraints imposed by limited data availability, leveraging the capabilities of generative models. The integration of pretrained knowledge, coupled with cross‐modal alignment, enhances the representation of sign language by effectively aligning visual and textual features. Through extensive experiments on publicly available datasets (PHOENIX‐2014, PHOENIX‐2014T, and CSL‐Daily), we demonstrate the effectiveness of our proposed method in achieving competitive performance in continuous sign language recognition.
AbstractList Summary Sign language serves as a vital communication medium for the deaf community, encompassing a diverse array of signs conveyed through distinct hand shapes along with non‐manual gestures like facial expressions and body movements. Accurate recognition of sign language is crucial for bridging the communication gap between deaf and hearing individuals, yet the scarcity of large‐scale datasets poses a significant challenge in developing robust recognition technologies. Existing works address this challenge by employing various strategies, such as enhancing visual modules, incorporating pretrained visual models, and leveraging multiple modalities to improve performance and mitigate overfitting. However, the exploration of the contextual module, responsible for modeling long‐term dependencies, remains limited. This work introduces an Adversarial Autoencoder for Continuous Sign Language Recognition, AA‐CSLR, to address the constraints imposed by limited data availability, leveraging the capabilities of generative models. The integration of pretrained knowledge, coupled with cross‐modal alignment, enhances the representation of sign language by effectively aligning visual and textual features. Through extensive experiments on publicly available datasets (PHOENIX‐2014, PHOENIX‐2014T, and CSL‐Daily), we demonstrate the effectiveness of our proposed method in achieving competitive performance in continuous sign language recognition.
Sign language serves as a vital communication medium for the deaf community, encompassing a diverse array of signs conveyed through distinct hand shapes along with non‐manual gestures like facial expressions and body movements. Accurate recognition of sign language is crucial for bridging the communication gap between deaf and hearing individuals, yet the scarcity of large‐scale datasets poses a significant challenge in developing robust recognition technologies. Existing works address this challenge by employing various strategies, such as enhancing visual modules, incorporating pretrained visual models, and leveraging multiple modalities to improve performance and mitigate overfitting. However, the exploration of the contextual module, responsible for modeling long‐term dependencies, remains limited. This work introduces an Adversarial Autoencoder for Continuous Sign Language Recognition, AA‐CSLR, to address the constraints imposed by limited data availability, leveraging the capabilities of generative models. The integration of pretrained knowledge, coupled with cross‐modal alignment, enhances the representation of sign language by effectively aligning visual and textual features. Through extensive experiments on publicly available datasets (PHOENIX‐2014, PHOENIX‐2014T, and CSL‐Daily), we demonstrate the effectiveness of our proposed method in achieving competitive performance in continuous sign language recognition.
Sign language serves as a vital communication medium for the deaf community, encompassing a diverse array of signs conveyed through distinct hand shapes along with non‐manual gestures like facial expressions and body movements. Accurate recognition of sign language is crucial for bridging the communication gap between deaf and hearing individuals, yet the scarcity of large‐scale datasets poses a significant challenge in developing robust recognition technologies. Existing works address this challenge by employing various strategies, such as enhancing visual modules, incorporating pretrained visual models, and leveraging multiple modalities to improve performance and mitigate overfitting. However, the exploration of the contextual module, responsible for modeling long‐term dependencies, remains limited. This work introduces an A dversarial A utoencoder for C ontinuous S ign L anguage R ecognition, AA‐CSLR , to address the constraints imposed by limited data availability, leveraging the capabilities of generative models. The integration of pretrained knowledge, coupled with cross‐modal alignment, enhances the representation of sign language by effectively aligning visual and textual features. Through extensive experiments on publicly available datasets (PHOENIX‐2014, PHOENIX‐2014T, and CSL‐Daily), we demonstrate the effectiveness of our proposed method in achieving competitive performance in continuous sign language recognition.
Author Li, Shaozi
Kamal, Suhail Muhammad
Chen, Yidong
Author_xml – sequence: 1
  givenname: Suhail Muhammad
  orcidid: 0000-0001-8019-6012
  surname: Kamal
  fullname: Kamal, Suhail Muhammad
  organization: Bayero University Kano
– sequence: 2
  givenname: Yidong
  orcidid: 0000-0002-0243-7228
  surname: Chen
  fullname: Chen, Yidong
  email: ydchen@xmu.edu.cn
  organization: Ministry of Culture and Tourism
– sequence: 3
  givenname: Shaozi
  surname: Li
  fullname: Li, Shaozi
  organization: Ministry of Culture and Tourism
BookMark eNp1kE1LAzEQhoMo2FbBn7DgxcvWfDTp5mYp9QMKetBzmM3OLilrUpNdpf_erRUPoqeZw_O-MzxjcuyDR0IuGJ0ySvm13eK04JwekRGTgudUidnxz87VKRmntKGUMSrYiNwsqneMCaKDNoO-C-htqDBmdYiZDb5zvg99ypJrfNaCb3poMItoQ-Nd54I_Iyc1tAnPv-eEvNyunpf3-frx7mG5WOeWa0HzkgtRWVuVsqyQW1vqeUGt4LJgwGsBSipFoZ7NqShLpQFQVxx1YaVUs1oLMSGXh95tDG89ps5sQh_9cNIIxgsmC6HVQE0PlI0hpYi1sa6D_Z9dBNcaRs3ekhksmb2lIXD1K7CN7hXi7i80P6AfrsXdv5xZPq2--E9o-3hX
CitedBy_id crossref_primary_10_1002_cpe_70136
crossref_primary_10_1002_cpe_8385
Cites_doi 10.1109/CVPR.2018.00812
10.1109/TMM.2018.2889563
10.1109/LSP.2018.2797228
10.1109/ICCV.2019.00756
10.1145/1143844.1143891
10.1145/3581783.3611745
10.1109/ICCV.2017.332
10.1109/COMST.2022.3205643
10.1007/978-3-030-58517-4_11
10.1109/JIOT.2022.3145845
10.1109/ICME.2019.00223
10.1109/TC.2023.3236900
10.1109/TPAMI.2019.2911077
10.1145/3394171.3413931
10.1109/LSP.2018.2817179
10.1109/CVPR42600.2020.01004
10.1109/LSP.2018.2877891
10.1109/ICCV48922.2021.01134
10.1007/978-3-030-58586-0_41
10.1109/CVPR.2016.90
10.1109/CVPR52688.2022.00507
10.1109/CVPR52729.2023.00249
10.1109/CVPR.2017.175
10.1016/j.cviu.2015.09.013
10.1109/CVPR.2019.00429
10.1109/LSP.2018.2883864
10.1109/LSP.2022.3199665
10.1109/LSP.2023.3289111
10.1109/ACCESS.2019.2929174
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.8220
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_8220
CPE8220
Genre article
GrantInformation_xml – fundername: National Nature Science Foundation of China
  funderid: 62076211
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2930-b233dccdb5bde2ccb9780c32581a2f3a65660af4703bb69aae9d2e98c5564f933
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001262065800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sat Jul 26 00:05:58 EDT 2025
Tue Nov 18 22:25:20 EST 2025
Sat Nov 29 03:49:55 EST 2025
Wed Jan 22 17:12:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-b233dccdb5bde2ccb9780c32581a2f3a65660af4703bb69aae9d2e98c5564f933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0243-7228
0000-0001-8019-6012
PQID 3128158396
PQPubID 2045170
PageCount 10
ParticipantIDs proquest_journals_3128158396
crossref_citationtrail_10_1002_cpe_8220
crossref_primary_10_1002_cpe_8220
wiley_primary_10_1002_cpe_8220_CPE8220
PublicationCentury 2000
PublicationDate 10 October 2024
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 10 October 2024
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2015; 141
2023; 73
2023; 30
2023
2019; 42
2022
2021
2020
2019; 21
2019
2022; 35
2018
2022; 25
2006
2017
2016
2022; 10
2018; 26
2018; 25
2022; 29
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_27_1
Huang J (e_1_2_8_10_1) 2018
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Chen Y (e_1_2_8_34_1) 2022
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
Zheng J (e_1_2_8_25_1) 2023
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
Chen Y (e_1_2_8_26_1) 2022; 35
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
Koller O (e_1_2_8_38_1) 2017
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Shen T (e_1_2_8_32_1) 2020
Zhou H (e_1_2_8_11_1) 2020
Zhou H (e_1_2_8_15_1) 2021
Hao A (e_1_2_8_21_1) 2021
e_1_2_8_31_1
Hu L (e_1_2_8_23_1) 2023
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 25
  start-page: 442
  issue: 3
  year: 2018
  end-page: 446
  article-title: A novel Chinese sign language recognition method based on keyframe‐centered clips
  publication-title: IEEE Signal Process Lett
– start-page: 8719
  year: 2020
  end-page: 8729
– volume: 10
  start-page: 6733
  issue: 8
  year: 2022
  end-page: 6741
  article-title: A numerical splitting and adaptive privacy budget‐allocation‐based LDP mechanism for privacy preservation in blockchain‐powered IoT
  publication-title: IEEE Internet Things J
– start-page: 854
  year: 2023
  end-page: 862
– volume: 7
  start-page: 96926
  year: 2019
  end-page: 96935
  article-title: Technical approaches to Chinese sign language processing: a review
  publication-title: IEEE Access
– start-page: 770
  year: 2016
  end-page: 778
– start-page: 11542
  year: 2021
  end-page: 11551
– volume: 25
  start-page: 289
  issue: 1
  year: 2022
  end-page: 318
  article-title: Anomaly detection in blockchain networks: a comprehensive survey
  publication-title: IEEE Commun Surv Tutor
– start-page: 709
  year: 2023
  end-page: 718
– start-page: 369
  year: 2006
  end-page: 376
– volume: 141
  start-page: 108
  year: 2015
  end-page: 125
  article-title: Continuous sign language recognition: towards large vocabulary statistical recognition systems handling multiple signers
  publication-title: Comput Vis Image Underst
– start-page: 4165
  year: 2019
  end-page: 4174
– start-page: 2529
  year: 2023
  end-page: 2539
– start-page: 10023
  year: 2020
  end-page: 10033
– start-page: 1282
  year: 2019
  end-page: 1287
– start-page: 697
  year: 2020
  end-page: 714
– start-page: 5131
  year: 2022
  end-page: 5140
– volume: 30
  start-page: 768
  year: 2023
  end-page: 772
  article-title: QISampling: an effective sampling strategy for event‐based sign language recognition
  publication-title: IEEE Signal Process Lett
– volume: 25
  start-page: 645
  issue: 5
  year: 2018
  end-page: 649
  article-title: Training CNNs for 3‐D sign language recognition with color texture coded joint angular displacement maps
  publication-title: IEEE Signal Process Lett
– start-page: 3056
  year: 2017
  end-page: 3065
– start-page: 1316
  year: 2021
  end-page: 1325
– start-page: 23141
  year: 2023
  end-page: 23150
– volume: 29
  start-page: 1818
  year: 2022
  end-page: 1822
  article-title: A cross‐attention BERT‐based framework for continuous sign language recognition
  publication-title: IEEE Signal Process Lett
– start-page: 11303
  year: 2021
  end-page: 11312
– start-page: 5120
  year: 2022
  end-page: 5130
– start-page: 1497
  year: 2020
  end-page: 1505
– start-page: 7464
  year: 2019
  end-page: 7473
– volume: 26
  start-page: 169
  issue: 1
  year: 2018
  end-page: 173
  article-title: S3DRGF: spatial 3‐D relational geometric features for 3‐D sign language representation and recognition
  publication-title: IEEE Signal Process Lett
– start-page: 2257
  year: 2018
  end-page: 2264
– volume: 35
  start-page: 17043
  year: 2022
  end-page: 17056
  article-title: Two‐stream network for sign language recognition and translation
  publication-title: Adv Neural Inf Process Syst
– start-page: 4297
  year: 2017
  end-page: 4305
– start-page: 172
  year: 2020
  end-page: 186
– start-page: 13009
  year: 2020
  end-page: 13016
– start-page: 7784
  year: 2018
  end-page: 7793
– volume: 42
  start-page: 2306
  issue: 9
  year: 2019
  end-page: 2320
  article-title: Weakly supervised learning with multi‐stream CNN‐LSTM‐HMMs to discover sequential parallelism in sign language videos
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 21
  start-page: 1880
  issue: 7
  year: 2019
  end-page: 1891
  article-title: A deep neural framework for continuous sign language recognition by iterative training
  publication-title: IEEE Trans Multimed
– volume: 25
  start-page: 1860
  issue: 12
  year: 2018
  end-page: 1864
  article-title: Three‐dimensional sign language recognition with angular velocity maps and connived feature ResNet
  publication-title: IEEE Signal Process Lett
– volume: 73
  start-page: 970
  year: 2023
  end-page: 979
  article-title: Vector‐indistinguishability: location dependency based privacy protection for successive location data
  publication-title: IEEE Trans Comput
– start-page: 7361
  year: 2017
  end-page: 7369
– ident: e_1_2_8_14_1
  doi: 10.1109/CVPR.2018.00812
– start-page: 23141
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_8_25_1
– ident: e_1_2_8_40_1
  doi: 10.1109/TMM.2018.2889563
– ident: e_1_2_8_31_1
– start-page: 4297
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2017
  ident: e_1_2_8_38_1
– ident: e_1_2_8_17_1
– start-page: 13009
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2020
  ident: e_1_2_8_11_1
– ident: e_1_2_8_3_1
  doi: 10.1109/LSP.2018.2797228
– start-page: 2257
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2018
  ident: e_1_2_8_10_1
– ident: e_1_2_8_16_1
  doi: 10.1109/ICCV.2019.00756
– ident: e_1_2_8_29_1
  doi: 10.1145/1143844.1143891
– ident: e_1_2_8_22_1
  doi: 10.1145/3581783.3611745
– ident: e_1_2_8_35_1
  doi: 10.1109/ICCV.2017.332
– ident: e_1_2_8_27_1
  doi: 10.1109/COMST.2022.3205643
– ident: e_1_2_8_39_1
  doi: 10.1007/978-3-030-58517-4_11
– ident: e_1_2_8_24_1
  doi: 10.1109/JIOT.2022.3145845
– ident: e_1_2_8_37_1
  doi: 10.1109/ICME.2019.00223
– volume: 35
  start-page: 17043
  year: 2022
  ident: e_1_2_8_26_1
  article-title: Two‐stream network for sign language recognition and translation
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_8_20_1
  doi: 10.1109/TC.2023.3236900
– start-page: 8719
  volume-title: International Conference on Machine Learning
  year: 2020
  ident: e_1_2_8_32_1
– ident: e_1_2_8_18_1
  doi: 10.1109/TPAMI.2019.2911077
– ident: e_1_2_8_41_1
  doi: 10.1145/3394171.3413931
– ident: e_1_2_8_7_1
  doi: 10.1109/LSP.2018.2817179
– start-page: 854
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2023
  ident: e_1_2_8_23_1
– ident: e_1_2_8_42_1
  doi: 10.1109/CVPR42600.2020.01004
– ident: e_1_2_8_6_1
  doi: 10.1109/LSP.2018.2877891
– ident: e_1_2_8_9_1
  doi: 10.1109/ICCV48922.2021.01134
– ident: e_1_2_8_30_1
– ident: e_1_2_8_19_1
  doi: 10.1007/978-3-030-58586-0_41
– ident: e_1_2_8_33_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_8_43_1
  doi: 10.1109/CVPR52688.2022.00507
– ident: e_1_2_8_12_1
  doi: 10.1109/CVPR52729.2023.00249
– ident: e_1_2_8_36_1
  doi: 10.1109/CVPR.2017.175
– ident: e_1_2_8_13_1
  doi: 10.1016/j.cviu.2015.09.013
– start-page: 11303
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2021
  ident: e_1_2_8_21_1
– ident: e_1_2_8_28_1
  doi: 10.1109/CVPR.2019.00429
– start-page: 1316
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2021
  ident: e_1_2_8_15_1
– start-page: 5120
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2022
  ident: e_1_2_8_34_1
– ident: e_1_2_8_5_1
  doi: 10.1109/LSP.2018.2883864
– ident: e_1_2_8_8_1
  doi: 10.1109/LSP.2022.3199665
– ident: e_1_2_8_4_1
  doi: 10.1109/LSP.2023.3289111
– ident: e_1_2_8_2_1
  doi: 10.1109/ACCESS.2019.2929174
SSID ssj0011031
Score 2.388864
Snippet Summary Sign language serves as a vital communication medium for the deaf community, encompassing a diverse array of signs conveyed through distinct hand...
Sign language serves as a vital communication medium for the deaf community, encompassing a diverse array of signs conveyed through distinct hand shapes along...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms adversarial autoencoder
Availability
continuous sign language recognition
Datasets
Deafness
Knowledge representation
Modules
Performance enhancement
Sign language
vision‐language
Title Adversarial autoencoder for continuous sign language recognition
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.8220
https://www.proquest.com/docview/3128158396
Volume 36
WOSCitedRecordID wos001262065800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-yefDi_MTplAiip7o2Tbr0pswND2MMcbBbSV4bEKQd6-rfb14_NgUFwVMvL1DeR97vJS-_R8iNCXgQSOU5NlmDww0IRzGw4c69gZIiAWVKS08G06lcLMJZ3VWJb2EqfojNgRtGRrlfY4Arnfe3pKGwTO5tdrPleptZt-Ut0n56Gc8nmzsEHGBQsaUyx7W4vaGedVm_Wfs9GW0R5lecWiaacec_v3hA9mt4SR8rfzgkO0l6RDrN6AZaR_IxeSgHMecK3Y-qYp0hn2VsJSyGpdi-_pYWWZFTbO-gzZkm3XQbZekJmY9Hr8Nnpx6m4IDN6K6jme_HALEWOk4YgEbqIfCZkJ5ixleI61xluFWl1kGoVBLGLAklCBFwE_r-KWmlWZqcEcqF0dpWWgBSYsEUGgFMxIErubF7Au-Su0arEdRM4zjw4j2qOJJZZBUToWK65HojuazYNX6Q6TWGier4yiMfLwCFBXdBl9yWJvh1fTScjfB7_lfBC7LHLHLBBOW5PdJar4rkkuzCx_otX13VXvYJ663VxA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_GJuiL8xOnUyuIPtW1adK1-KLMjYlzDNlgbyW9NjCQdqyrf79Jv6agIPjUlwuU3F3ud5fL7wCuhU1t2-GmLoM16lQg0zlB6e7U7HKHhchFpulRdzx25nN3UoP78i1Mzg9RFdyUZ2TntXJwVZDubFhDcRneyfAm8_UGlVbE6tB4ehvMRtUlgppgkNOlEt2QwL3knjVIp1z7PRptIOZXoJpFmkHzX_-4B7sFwNQec4vYh1oYHUCzHN6gFb58CA_ZKOaEKwPUeLqOFaNlICUkitVUA_siSuM00VSDh1ZWNbWq3yiOjmA26E97Q70Yp6CjjOmG7hPLChADn_lBSBB9RT6EFmGOyYmwuEJ2BhdUngG-b7uch25AQtdBxmwqXMs6hnoUR-EJaJQJ35e5FqLjqJTJFQwJC2zDoUKeCrQFt-W2elhwjauRF-9ezpJMPLkxntqYFlxVksucX-MHmXapGa_wsMSz1BUgk_DObsFNpoNf13u9SV99T_8qeAnbw-nryBs9j1_OYIdIHKPClWm0ob5epeE5bOHHepGsLgqT-wS-8Nm0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KK-LF-sRq1Qiip9hks5smeFHaBsVSiljoLWwmu1CQtDStv9_dvKqgIHjKZRbCPL_ZxzcA19Klrutx21TFGk0qkZmcoAp3ane5xwRymVl62B2NvOnUH9fgvnwLk_NDVBtuOjKyfK0DXCxi2dmwhuJC3Knypvr1BmW-q6Ky0X8NJsPqEEFPMMjpUolpKeBecs9apFOu_V6NNhDzK1DNKk3Q_Nc_7sFuATCNx9wj9qEmkgNolsMbjCKWD-EhG8Wccu2ABl-v5prRMlYSCsUa-gL7LFnP16mhL3gY5a6mUd03midHMAkGb70nsxinYKKq6ZYZEceJEeOIRbEgiJEmH0KHMM_mRDpcIzuLS6pyQBS5PufCj4nwPWTMpdJ3nGOoJ_NEnIBBmYwi1Wshep5umXzJkLDYtTwqVVagLbgt1RpiwTWuR168hzlLMgmVYkKtmBZcVZKLnF_jB5l2aZmwiLA0dPQRIFPwzm3BTWaDX9eHvfFAf0__KngJ2-N-EA6fRy9nsEMUjNHVyrbaUF8t1-IctvBjNUuXF4XHfQKCmNkv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversarial+autoencoder+for+continuous+sign+language+recognition&rft.jtitle=Concurrency+and+computation&rft.au=Kamal%2C+Suhail+Muhammad&rft.au=Chen%2C+Yidong&rft.au=Li%2C+Shaozi&rft.date=2024-10-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=36&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.8220&rft.externalDBID=10.1002%252Fcpe.8220&rft.externalDocID=CPE8220
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon