Nonlinear equations with degenerate operator at fractional Caputo derivative

At first, the existence of a unique solution for the Cauchy problem to nondegenerate fractional differential equation was proved. These results were used for research of the unique solvability for the initial Cauchy and Showalter–Sidorov problems to differential equations in Banach spaces with degen...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences Vol. 40; no. 17; pp. 6138 - 6146
Main Author: Plekhanova, Marina V.
Format: Journal Article
Language:English
Published: Freiburg Wiley Subscription Services, Inc 30.11.2017
Subjects:
ISSN:0170-4214, 1099-1476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract At first, the existence of a unique solution for the Cauchy problem to nondegenerate fractional differential equation was proved. These results were used for research of the unique solvability for the initial Cauchy and Showalter–Sidorov problems to differential equations in Banach spaces with degenerate operator at fractional Caputo derivative in linear and nonlinear cases. results are applied to the research of an initial boundary value problem for time‐fractional order Oskolkov system of equations. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList At first, the existence of a unique solution for the Cauchy problem to nondegenerate fractional differential equation was proved. These results were used for research of the unique solvability for the initial Cauchy and Showalter–Sidorov problems to differential equations in Banach spaces with degenerate operator at fractional Caputo derivative in linear and nonlinear cases. results are applied to the research of an initial boundary value problem for time‐fractional order Oskolkov system of equations. Copyright © 2016 John Wiley & Sons, Ltd.
At first, the existence of a unique solution for the Cauchy problem to nondegenerate fractional differential equation was proved. These results were used for research of the unique solvability for the initial Cauchy and Showalter-Sidorov problems to differential equations in Banach spaces with degenerate operator at fractional Caputo derivative in linear and nonlinear cases. Abstract results are applied to the research of an initial boundary value problem for time-fractional order Oskolkov system of equations. Copyright © 2016 John Wiley & Sons, Ltd.
Author Plekhanova, Marina V.
Author_xml – sequence: 1
  givenname: Marina V.
  surname: Plekhanova
  fullname: Plekhanova, Marina V.
  email: mariner79@mail.ru
  organization: South Ural State University
BookMark eNp1kD1PwzAURS1UJNqCxE-IxMKS8hy7iT1WFV9SgQVmy7VfwFUap3baqv-epGVCMN3l3KurMyKD2tdIyDWFCQXI7tZrPWGCwRkZUpAypbzIB2QItICUZ5RfkFGMKwAQlGZDsnj1deVq1CHBzVa3ztcx2bv2K7H4iTUG3WLimz59SHSblEGbntJVMtfNtvUdGNyua-7wkpyXuop49ZNj8vFw_z5_Shdvj8_z2SI1mWSQaiuKklGUzEorxRJzmuWgy8JSJmTBpqJEy_Jcg0GKAnJurFgaqS03AnPOxuTmtNsEv9libNXKb0N3KSoqpxJ4xjh01O2JMsHHGLBUTXBrHQ6Kgupdqc6V6l116OQXalx7lNEG7aq_CumpsHcVHv4dVi8vsyP_DfFLfMg
CitedBy_id crossref_primary_10_1016_j_ifacol_2018_11_502
crossref_primary_10_1080_17476933_2020_1833870
crossref_primary_10_1134_S00122661200120101
crossref_primary_10_1002_mma_4796
crossref_primary_10_1134_S1995080223020178
crossref_primary_10_3390_fractalfract9030140
crossref_primary_10_1515_jiip_2017_0099
crossref_primary_10_1007_s10958_023_06271_x
crossref_primary_10_1007_s10958_020_05044_0
Cites_doi 10.3103/S1066369X15010065
10.1002/mma.2935
10.1137/0506004
10.4310/DPDE.2014.v11.n1.a4
10.1134/S003744661504014X
10.1002/mma.3151
10.1515/9783110915501
10.1007/s10957-012-0174-7
10.1007/s10958-010-9981-2
10.1007/BF01139992
10.1002/mma.1582
10.1134/S0012266113120112
10.1134/S0012266113030087
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
– notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.3830
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 6146
ExternalDocumentID 10_1002_mma_3830
MMA3830
Genre article
GrantInformation_xml – fundername: Laboratory of Quantum Topology of Chelyabinsk State University
  funderid: 14.Z50.31.0020
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
O8X
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2930-ad87f31e93d9d98be61260af7d13897358fed366a0ce1e8064cd8bc9ad4c8e643
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414353300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0170-4214
IngestDate Fri Jul 25 12:29:26 EDT 2025
Sat Nov 29 01:33:53 EST 2025
Tue Nov 18 22:16:23 EST 2025
Wed Jan 22 16:38:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-ad87f31e93d9d98be61260af7d13897358fed366a0ce1e8064cd8bc9ad4c8e643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1959042340
PQPubID 1016386
PageCount 9
ParticipantIDs proquest_journals_1959042340
crossref_primary_10_1002_mma_3830
crossref_citationtrail_10_1002_mma_3830
wiley_primary_10_1002_mma_3830_MMA3830
PublicationCentury 2000
PublicationDate 30 November 2017
2017-11-30
20171130
PublicationDateYYYYMMDD 2017-11-30
PublicationDate_xml – month: 11
  year: 2017
  text: 30 November 2017
  day: 30
PublicationDecade 2010
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 19
2015; 56
2015; 12
2015; 59
2015; 38
2013; 49
2001
2010; 168
1984; 35
2013; 156
2014; 37
1988; 179
2003
2012; 15
2012; 35
2014; 11
1975; 6
1999
Favini A (e_1_2_9_2_1) 1999
e_1_2_9_11_1
e_1_2_9_10_1
Xinwei Y (e_1_2_9_8_1) 2012; 35
e_1_2_9_13_1
Gordievskikh DM (e_1_2_9_14_1) 2015; 12
Ivanova ND (e_1_2_9_20_1) 2012; 15
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Fedorov VE (e_1_2_9_12_1) 2013; 19
Oskolkov AP (e_1_2_9_15_1) 1988; 179
e_1_2_9_9_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
References_xml – volume: 35
  start-page: 676
  year: 2012
  end-page: 683
  article-title: Well‐posedness for fractional Navier–Stokes equations in the largest critical spaces
  publication-title: Mathematical Methods in the Applied Sciences
– volume: 179
  start-page: 137
  year: 1988
  end-page: 182
  article-title: Initial boundary value problems for motion equations of Kelvin–Voight and Oldroyd fluids
  publication-title: Proceedings of the Steklov Institute of Mathematics
– volume: 19
  start-page: 267
  year: 2013
  end-page: 278
  article-title: Semilinear degenerate evolution equations and nonlinear systems of hydrodynamics type
  publication-title: Trudy Instituta Matematiki i Mekhaniki
– volume: 49
  start-page: 338
  year: 2013
  end-page: 347
  article-title: On nonlocal solutions of semilinear equations of the Sobolev type
  publication-title: Differential Equations
– volume: 59
  start-page: 60
  year: 2015
  end-page: 70
  publication-title: Russian Mathematics
– year: 2001
– volume: 37
  start-page: 1784
  year: 2014
  end-page: 1806
  article-title: A fractional partial differential equation based multiscale denoising model for texture image
  publication-title: Mathematical Methods in the Applied Sciences
– volume: 38
  start-page: 1352
  year: 2015
  end-page: 1368
  article-title: A novel method for travelling wave solutions of fractional Whitham–Broer–Kaup, fractional modified Boussinesq and fractional approximate long wave equations in shallow water
  publication-title: Mathematical Methods in the Applied Sciences
– volume: 6
  start-page: 25
  year: 1975
  end-page: 42
  article-title: Nonlinear degenerate evolution equations and partial differential equations of mixed type
  publication-title: SIAM Journal on Mathematical Analysis
– year: 2003
– volume: 12
  start-page: 12
  year: 2015
  end-page: 22
  article-title: Solutions for initial boundary value problems for some degenerate equations systems of fractional order with respect to the time
  publication-title: The Bulletin of Irkutsk State University. Series Mathematics
– volume: 168
  start-page: 157
  issue: 2
  year: 2010
  end-page: 308
  article-title: The study of initial‐boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids
  publication-title: Journal of Mathematical Sciences
– volume: 56
  start-page: 725
  issue: 4
  year: 2015
  end-page: 735
  article-title: Quasilinear equations that are not solved for the higher‐order time derivative
  publication-title: Siberian Mathematical Journal
– volume: 15
  start-page: 49
  year: 2012
  end-page: 70
  article-title: Nonlinear inverse problem for Oskolkov system linearized in a neighborhood of a stationary solution
  publication-title: Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika. Mekhanika. Informatika.
– volume: 49
  start-page: 1569
  year: 2013
  end-page: 1576
  article-title: A class of degenerate fractional evolution systems in Banach spaces
  publication-title: Differential Equations
– volume: 35
  start-page: 300
  year: 1984
  end-page: 305
  article-title: A class of degenerate differential equations with convergence
  publication-title: Mathematical Notes
– volume: 156
  start-page: 79
  year: 2013
  end-page: 95
  article-title: Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators
  publication-title: Journal of Optimization Theory and Applications
– year: 1999
– volume: 11
  start-page: 71
  year: 2014
  end-page: 87
  article-title: Controllability of Sobolev type fractional evolution systems
  publication-title: Dynamics of Partial Differential Equations
– volume: 19
  start-page: 267
  year: 2013
  ident: e_1_2_9_12_1
  article-title: Semilinear degenerate evolution equations and nonlinear systems of hydrodynamics type
  publication-title: Trudy Instituta Matematiki i Mekhaniki
– volume-title: Degenerate Differential Equations in Banach Spaces
  year: 1999
  ident: e_1_2_9_2_1
– ident: e_1_2_9_5_1
  doi: 10.3103/S1066369X15010065
– ident: e_1_2_9_9_1
  doi: 10.1002/mma.2935
– volume: 179
  start-page: 137
  year: 1988
  ident: e_1_2_9_15_1
  article-title: Initial boundary value problems for motion equations of Kelvin–Voight and Oldroyd fluids
  publication-title: Proceedings of the Steklov Institute of Mathematics
– ident: e_1_2_9_18_1
  doi: 10.1137/0506004
– ident: e_1_2_9_7_1
  doi: 10.4310/DPDE.2014.v11.n1.a4
– ident: e_1_2_9_13_1
  doi: 10.1134/S003744661504014X
– volume: 12
  start-page: 12
  year: 2015
  ident: e_1_2_9_14_1
  article-title: Solutions for initial boundary value problems for some degenerate equations systems of fractional order with respect to the time
  publication-title: The Bulletin of Irkutsk State University. Series Mathematics
– ident: e_1_2_9_10_1
  doi: 10.1002/mma.3151
– ident: e_1_2_9_17_1
– ident: e_1_2_9_3_1
  doi: 10.1515/9783110915501
– ident: e_1_2_9_6_1
  doi: 10.1007/s10957-012-0174-7
– ident: e_1_2_9_16_1
  doi: 10.1007/s10958-010-9981-2
– ident: e_1_2_9_19_1
  doi: 10.1007/BF01139992
– volume: 35
  start-page: 676
  year: 2012
  ident: e_1_2_9_8_1
  article-title: Well‐posedness for fractional Navier–Stokes equations in the largest critical spaces
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.1582
– ident: e_1_2_9_4_1
  doi: 10.1134/S0012266113120112
– volume: 15
  start-page: 49
  year: 2012
  ident: e_1_2_9_20_1
  article-title: Nonlinear inverse problem for Oskolkov system linearized in a neighborhood of a stationary solution
  publication-title: Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika. Mekhanika. Informatika.
– ident: e_1_2_9_11_1
  doi: 10.1134/S0012266113030087
SSID ssj0008112
Score 2.2228937
Snippet At first, the existence of a unique solution for the Cauchy problem to nondegenerate fractional differential equation was proved. These results were used for...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6138
SubjectTerms Boundary value problems
Cauchy problems
degenerate fractional differential equation
Differential equations
fractional partial differential equations
Mathematical analysis
Nonlinear equations
nonlinear equations in abstract spaces
nonlinear evolution equations
Operators (mathematics)
Title Nonlinear equations with degenerate operator at fractional Caputo derivative
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.3830
https://www.proquest.com/docview/1959042340
Volume 40
WOSCitedRecordID wos000414353300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-y-aAP6qbidEoE8eOhrk2zNn0c0-HDNkSc7K2k-RDBfdh2-_tN0qxTUBB8KrSXJlzucne55HcAXAREsiig3CE8xA5WFs6JGKcqVMEBESxgnkm0v_TD4ZCMx9GjPVWp78IU-BDlhpvWDLNeawWnSdZag4ZOJvRWhVcqXK8iJbbtCqjePfVG_XIdJp7JdWqAGAcjD6-gZ13UWrX9bozWHuZXP9UYmt7uf4a4B3asewk7hTzUwIaY1sH2oMRmzeqgZtU5g9cWc_pmH_SHRX80heKjQP_OoN6jhVy8GqpcwNlcmKQ8pDmUaXEjQnXWpfNFPlOEqamUthQHYNS7f-4-OLbQgsOUtXcdykkofU9EPo94RBKh3J7ApTLkOo0Z-m0iBfeDgLpMeIIoL4ZxkrCIcsyIUD7NIahMZ1NxBCCSiPrqHXVDhEmUJOrPDEvEAi6YbIcNcLXieMwsCrkuhvEeF_jJKFZMizXTGuC8pJwXyBs_0DRXkxZb3ctiDZejT_tg9fnSTM-v7ePBoKOfx38lPAFbSNt1g_3YBJU8XYhTsMmW-VuWnlkJ_ASk5t_b
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED-GE9QHdVNxOjWC-PFQ14-sTfFpqGNiN0Sc-FayJBXBfdh2-_tN0nZTUBB8KrSXplzucl_N7wBOXBIx36XcINzDBpYWzvAZpzJUwS4RzGWWLrQ_B16vR15e_IcSXBVnYTJ8iHnCTWmG3q-VgquEdGOBGjoc0ksZX8l4vYylFEnxLt88tvvBfCMmli52KoQYA9sWLrBnTbtRjP1ujRYu5ldHVVua9sa_vnET1nMHE7UyiahASYyqsNado7MmVajkCp2g8xx1-mILgl42IY2R-MjwvxOksrSIi1dNlQo0nghdlkc0RVGcnYmQk13TyTQdS8JY90qbiW3ot2-frjtG3mrBYNLemwblxIscS_gO97lPBkI6Pq5JI4-rQqbnNEkkuOO61GTCEkT6MYyTAfMpx4wI6dXswNJoPBK7gOzIpo68R03PxsQfDOSbGY5s5nLBoqZXg7OC5SHLcchVO4z3MENQtkPJtFAxrQbHc8pJhr3xA029WLUw174kVIA56n8fLB-f6vX5dXzY7bbUde-vhEew0nnqBmFw17vfh1VbWXmNBFmHpTSeigNYZrP0LYkPc3H8BA2n48s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kiuiDOj_wY2oE8eOh2o_Ypvgk6lDchoiKbyVLLiLoNtu6v98kbTcFBcGnQntpyiWX-12u-R3AbsiUiEMuHSYj6lDt4ZxYSK5DFRoyFKHwbKL9sRV1OuzpKb6dgNPqLEzBDzHacDOWYddrY-A4kOp4zBr69saPdHyl4_VJamrI1GDy4q750BotxMyzyU7DEONQ36MV96zrH1dtv3ujMcT8ClStp2nO_-sbF2CuBJjkrJgRdZjA3iLMtkfsrNki1EuDzshByTp9uAStTtEhTwm-F_zfGTG7tETis5XKkfQHaNPyhOdEpcWZCN3ZOR985H0tmNpaaUNchofm5f35lVOWWnCE9veuwyWLVOBhHMhYxqyLGviELleRNInMKDhhCmUQhtwV6CHTOEZI1hUxl1Qw1KhmBWq9fg9XgfjK54G-x93IpyzudvWbBVW-CCUKdRKtwX6l8kSUPOSmHMZrUjAo-4lWWmKUtgY7I8lBwb3xg0yjGrWktL4sMYQ55n8fqh_v2fH5tX3Sbp-Z6_pfBbdh-vaimbSuOzcbMOMbJ2-JIBtQy9MP3IQpMcxfsnSrnI2fwrLjRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+equations+with+degenerate+operator+at+fractional+Caputo+derivative&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Plekhanova%2C+Marina+V.&rft.date=2017-11-30&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=40&rft.issue=17&rft.spage=6138&rft.epage=6146&rft_id=info:doi/10.1002%2Fmma.3830&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_3830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon