Efficient heterogeneous parallel programming for compressed sensing based direction of arrival estimation

Summary In the direction of arrival (DoA) estimation, typically sensor arrays are used where the number of required sensors can be large depending on the application. With the help of compressed sensing (CS), hardware complexity of the sensor array system can be reduced since reliable estimations ar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Concurrency and computation Ročník 34; číslo 9
Hlavní autoři: Fisne, Alparslan, Kilic, Berkan, Güngör, Alper, Ozsoy, Adnan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 25.04.2022
Témata:
ISSN:1532-0626, 1532-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary In the direction of arrival (DoA) estimation, typically sensor arrays are used where the number of required sensors can be large depending on the application. With the help of compressed sensing (CS), hardware complexity of the sensor array system can be reduced since reliable estimations are possible by using the compressed measurements where the compression is done by measurement matrices. After the compression, DoAs are reconstructed by using sparsity promoting algorithms such as alternating direction method of multipliers (ADMM). For the given procedure, both the measurement matrix design and the reconstruction algorithm may include computationally intensive operations, which are addressed in this study. The presented simulation results imply the feasibility of the system in real‐time processing with energy efficient implementations. We propose employing parallel programming to satisfy the real‐time processing requirements. While the measurement matrix design has been accelerated 16× with CPU based parallel version with respect to the fastest serial implementation, ADMM based DoA estimation has been improved 1.1× with GPU based parallel version compared to the fastest CPU parallel implementation. In addition, we achieved, to the best of our knowledge, the first energy‐efficient real‐time DoA estimation on embedded Jetson GPGPUs in 15 W power consumption without affecting the DoA accuracy performance.
AbstractList In the direction of arrival (DoA) estimation, typically sensor arrays are used where the number of required sensors can be large depending on the application. With the help of compressed sensing (CS), hardware complexity of the sensor array system can be reduced since reliable estimations are possible by using the compressed measurements where the compression is done by measurement matrices. After the compression, DoAs are reconstructed by using sparsity promoting algorithms such as alternating direction method of multipliers (ADMM). For the given procedure, both the measurement matrix design and the reconstruction algorithm may include computationally intensive operations, which are addressed in this study. The presented simulation results imply the feasibility of the system in real‐time processing with energy efficient implementations. We propose employing parallel programming to satisfy the real‐time processing requirements. While the measurement matrix design has been accelerated 16 with CPU based parallel version with respect to the fastest serial implementation, ADMM based DoA estimation has been improved 1.1 with GPU based parallel version compared to the fastest CPU parallel implementation. In addition, we achieved, to the best of our knowledge, the first energy‐efficient real‐time DoA estimation on embedded Jetson GPGPUs in 15 W power consumption without affecting the DoA accuracy performance.
In the direction of arrival (DoA) estimation, typically sensor arrays are used where the number of required sensors can be large depending on the application. With the help of compressed sensing (CS), hardware complexity of the sensor array system can be reduced since reliable estimations are possible by using the compressed measurements where the compression is done by measurement matrices. After the compression, DoAs are reconstructed by using sparsity promoting algorithms such as alternating direction method of multipliers (ADMM). For the given procedure, both the measurement matrix design and the reconstruction algorithm may include computationally intensive operations, which are addressed in this study. The presented simulation results imply the feasibility of the system in real‐time processing with energy efficient implementations. We propose employing parallel programming to satisfy the real‐time processing requirements. While the measurement matrix design has been accelerated 16× with CPU based parallel version with respect to the fastest serial implementation, ADMM based DoA estimation has been improved 1.1× with GPU based parallel version compared to the fastest CPU parallel implementation. In addition, we achieved, to the best of our knowledge, the first energy‐efficient real‐time DoA estimation on embedded Jetson GPGPUs in 15 W power consumption without affecting the DoA accuracy performance.
Summary In the direction of arrival (DoA) estimation, typically sensor arrays are used where the number of required sensors can be large depending on the application. With the help of compressed sensing (CS), hardware complexity of the sensor array system can be reduced since reliable estimations are possible by using the compressed measurements where the compression is done by measurement matrices. After the compression, DoAs are reconstructed by using sparsity promoting algorithms such as alternating direction method of multipliers (ADMM). For the given procedure, both the measurement matrix design and the reconstruction algorithm may include computationally intensive operations, which are addressed in this study. The presented simulation results imply the feasibility of the system in real‐time processing with energy efficient implementations. We propose employing parallel programming to satisfy the real‐time processing requirements. While the measurement matrix design has been accelerated 16× with CPU based parallel version with respect to the fastest serial implementation, ADMM based DoA estimation has been improved 1.1× with GPU based parallel version compared to the fastest CPU parallel implementation. In addition, we achieved, to the best of our knowledge, the first energy‐efficient real‐time DoA estimation on embedded Jetson GPGPUs in 15 W power consumption without affecting the DoA accuracy performance.
Author Kilic, Berkan
Ozsoy, Adnan
Güngör, Alper
Fisne, Alparslan
Author_xml – sequence: 1
  givenname: Alparslan
  orcidid: 0000-0003-2120-9260
  surname: Fisne
  fullname: Fisne, Alparslan
  email: afisne@hacettepe.edu.tr
  organization: Aselsan Inc
– sequence: 2
  givenname: Berkan
  surname: Kilic
  fullname: Kilic, Berkan
  organization: Bilkent University
– sequence: 3
  givenname: Alper
  surname: Güngör
  fullname: Güngör, Alper
  organization: Bilkent University
– sequence: 4
  givenname: Adnan
  orcidid: 0000-0002-0302-3721
  surname: Ozsoy
  fullname: Ozsoy, Adnan
  email: adnan.ozsoy@hacettepe.edu.tr
  organization: Hacettepe University
BookMark eNp1kMtKAzEUhoNUsK2CjxBw42ZqLtNMs5RSL1DQha5DJnNSU2YmYzJV-vZmWnEhujrn_Hzn9k_QqPUtIHRJyYwSwm5MBzORS3KCxnTOWUYEz0c_ORNnaBLjlhBKCadj5FbWOuOg7fEb9BD8Blrwu4g7HXRdQ427pAXdNK7dYOsDNr7pAsQIFY7QxkEu9VBVLoDpnW-xt1iH4D50jSH2rtGDeo5Ora4jXHzHKXq9W70sH7L10_3j8nadGSY5ySQvqcxtUS5KDVIWghFZ5YYwIS2z1nIQZckLYSAv0hd6YQwhlWHznDIyX2g-RVfHuenw913ar7Z-F9q0UjGRU8kWjOeJuj5SJvgYA1jVhXRo2CtK1GCkSkaqwciEzn6hxvWHl_qgXf1XQ3Zs-HQ17P8drJbPqwP_BU8jh3M
CitedBy_id crossref_primary_10_1002_cpe_6972
crossref_primary_10_1109_ACCESS_2023_3292218
Cites_doi 10.1561/2200000016
10.1109/TIT.2005.862083
10.1109/TIT.2006.871582
10.1109/TCI.2016.2580498
10.1109/IPDPS.2009.5161058
10.1109/TIP.2009.2022459
10.1109/TSP.2005.850882
10.1109/TIP.2010.2047910
10.1109/SIU.2018.8404389
10.1109/ICASSP.2015.7178648
10.23919/USNC/URSI49741.2020.9321646
10.1109/TIT.2006.885507
10.1007/978-0-8176-4948-7
10.1109/ACCESS.2018.2793851
10.1109/ACCESS.2018.2886471
10.1109/TSP.2007.900760
10.23919/Eusipco47968.2020.9287679
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.6490
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_6490
CPE6490
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2930-93b194f7b8bae9976209d4c0269f2fff3e6bb376ce47001a8cc00dc25412058a3
IEDL.DBID DRFUL
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674855000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sun Nov 30 03:51:50 EST 2025
Tue Nov 18 20:06:00 EST 2025
Sat Nov 29 01:41:26 EST 2025
Wed Jan 22 16:25:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-93b194f7b8bae9976209d4c0269f2fff3e6bb376ce47001a8cc00dc25412058a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0302-3721
0000-0003-2120-9260
PQID 2641928234
PQPubID 2045170
PageCount 14
ParticipantIDs proquest_journals_2641928234
crossref_primary_10_1002_cpe_6490
crossref_citationtrail_10_1002_cpe_6490
wiley_primary_10_1002_cpe_6490_CPE6490
PublicationCentury 2000
PublicationDate 25 April 2022
PublicationDateYYYYMMDD 2022-04-25
PublicationDate_xml – month: 04
  year: 2022
  text: 25 April 2022
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2018; 6
2006; 52
2016; 2
2010; 19
2010
2021
2020
2009
2005; 53
2018
2009; 7
2015
2013
2011; 3
2007; 55
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Intel Math Kernel Library (e_1_2_9_20_1) 2009
References_xml – volume: 55
  start-page: 5695
  issue: 12
  year: 2007
  end-page: 5701
  article-title: Optimized projections for compressed sensing
  publication-title: IEEE Trans Signal Process
– year: 2009
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans Inform Theory
– volume: 52
  start-page: 5406
  issue: 12
  year: 2006
  end-page: 5425
  article-title: Near‐optimal signal recovery from random projections: universal encoding strategies?
  publication-title: IEEE Trans Inform Theory
– volume: 6
  start-page: 4875
  year: 2018
  end-page: 4894
  article-title: A systematic review of compressive sensing: concepts, implementations and applications
  publication-title: IEEE Access
– year: 2020
– volume: 19
  start-page: 2345
  issue: 9
  year: 2010
  end-page: 2356
  article-title: Fast image recovery using variable splitting and constrained optimization
  publication-title: IEEE Trans Image Process
– year: 2021
– volume: 2
  start-page: 235
  issue: 3
  year: 2016
  end-page: 250
  article-title: An augmented Lagrangian method for complex‐valued compressed SAR imaging
  publication-title: IEEE Trans Comput Imaging
– volume: 53
  start-page: 3010
  issue: 8
  year: 2005
  end-page: 3022
  article-title: A sparse signal reconstruction perspective for source localization with sensor arrays
  publication-title: IEEE Trans Signal Process
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found Trends Mach Learn
– volume: 7
  start-page: 1395
  issue: 18
  year: 2009
  end-page: 1408
  article-title: Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization
  publication-title: IEEE Trans Image Process
– year: 2018
– volume: 7
  start-page: 1300
  year: 2019
  end-page: 1322
  article-title: A review of sparse recovery algorithms
  publication-title: IEEE Access
– year: 2015
– year: 2010
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  article-title: Compressed sensing
  publication-title: IEEE Trans Inform Theory
– year: 2013
– ident: e_1_2_9_6_1
  doi: 10.1561/2200000016
– ident: e_1_2_9_2_1
  doi: 10.1109/TIT.2005.862083
– ident: e_1_2_9_28_1
– ident: e_1_2_9_25_1
– ident: e_1_2_9_3_1
  doi: 10.1109/TIT.2006.871582
– ident: e_1_2_9_4_1
  doi: 10.1109/TCI.2016.2580498
– ident: e_1_2_9_22_1
  doi: 10.1109/IPDPS.2009.5161058
– ident: e_1_2_9_13_1
  doi: 10.1109/TIP.2009.2022459
– ident: e_1_2_9_19_1
– ident: e_1_2_9_7_1
  doi: 10.1109/TSP.2005.850882
– ident: e_1_2_9_18_1
  doi: 10.1109/TIP.2010.2047910
– ident: e_1_2_9_17_1
  doi: 10.1109/SIU.2018.8404389
– ident: e_1_2_9_21_1
– ident: e_1_2_9_24_1
– ident: e_1_2_9_10_1
– ident: e_1_2_9_27_1
– ident: e_1_2_9_11_1
  doi: 10.1109/ICASSP.2015.7178648
– ident: e_1_2_9_12_1
  doi: 10.23919/USNC/URSI49741.2020.9321646
– ident: e_1_2_9_8_1
  doi: 10.1109/TIT.2006.885507
– ident: e_1_2_9_5_1
  doi: 10.1007/978-0-8176-4948-7
– ident: e_1_2_9_16_1
  doi: 10.1109/ACCESS.2018.2793851
– ident: e_1_2_9_23_1
– ident: e_1_2_9_26_1
– ident: e_1_2_9_15_1
  doi: 10.1109/ACCESS.2018.2886471
– volume-title: Reference Manual
  year: 2009
  ident: e_1_2_9_20_1
– ident: e_1_2_9_9_1
  doi: 10.1109/TSP.2007.900760
– ident: e_1_2_9_14_1
  doi: 10.23919/Eusipco47968.2020.9287679
SSID ssj0011031
Score 2.3201373
Snippet Summary In the direction of arrival (DoA) estimation, typically sensor arrays are used where the number of required sensors can be large depending on the...
In the direction of arrival (DoA) estimation, typically sensor arrays are used where the number of required sensors can be large depending on the application....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Central processing units
compressed sensing
CPUs
Direction of arrival
direction of arrival estimation
embedded GPGPU
Parallel programming
Power consumption
real time computing
Sensor arrays
Title Efficient heterogeneous parallel programming for compressed sensing based direction of arrival estimation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6490
https://www.proquest.com/docview/2641928234
Volume 34
WOSCitedRecordID wos000674855000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5iPXjxLVarRBA9RdNstk2Ooi0eREQs9LYk2QQLa7d0q7_fmX1UBQXB08KSwJJ5fbOZ-YaQs9hD2iOUYT1tBJPKKmbiuM_ikIJH5r7rXNkofN9_eFDjsX6sqyqxF6bih1j-cEPLKP01GrixxdUnaaib-cue1JCut7CnChKv1u3TcHS_vEPAAQYVW6pgHHB7Qz3LxVWz93sw-kSYX3FqGWiGm__5xC2yUcNLel3pwzZZ8dMdstmMbqC1Je-SyaCkjoCIQ1-wICYHPfL5W0GRCjzLfEbrwq1XCG0UgC3F2vOSaDylBRa9w2uMgCmtgiKIl-aBmvl8ArpLkbujaorcI6Ph4PnmjtVTF5iD0M-ZjmxXy9C3yhqvAa0IrlPpIFfTQYQQIt-zFtyS8xLvrI1yjvPUQaLZFTxWJtonq9N86g8IRfI-I50CiacySGl1HAUbBHexDOA42uSiOf7E1ZTkOBkjSyoyZZHACSZ4gm1yulw5q2g4fljTaSSY1IZYJID3AMMqEck2OS9l9ev-5OZxgM_Dvy48IusCmyG4ZCLukNXF_M0fkzX3vpgU85NaHT8AC6Xl8Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSwJBEB9Eg3rJPsmy2iDqaXPd29NdegpTjEwkCnw77vZ2STAVrf7-Zu9DCwqCng6OXTh2vn6zN_MbgHPfYNrDZUgbKuRUyEjS0Peb1LcxemRm6lonjcK9Zr8vh0M1KMB13guT8kMsL9ycZST-2hm4u5CurVhD9cxcNYTCfL0kGl5TFqF0-9h57i1_IrgJBildKqcMgXvOPct4Ld_7PRqtIOZXoJpEmk75X9-4BZsZwCQ3qUZsQ8FMdqCcD28gmS3vwqidkEdgzCEvriRmippkpu8L4sjAx2MzJlnp1isGN4LQlrjq84RqPCYLV_aOr10MjEkaFlHAZGpJOJ-PUHuJY-9I2yL34LnTfmp1aTZ3gWoM_owqL6orYZuRjEKjEK9wpmKhMVtTlltrPdOIInRM2gj31zqUWjMWa0w165z5MvT2oTiZTswBEEffFwotUeaxsEJEyvdsZDnTvrDoOipwmZ9_oDNScjcbYxykdMo8wBMM3AlW4Gy5cpYScfywppqLMMhMcREg4kMUK7knKnCRCOvX_UFr0HbPw78uPIX17tNDL-jd9e-PYIO71ggmKPerUHybv5tjWNMfb6PF_CTTzU_LlOnh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5KFfHiW6xWjSB6iqbZpE3wJNqiWEoRC70tu9kEC7Utffj7neyjKigInhaWBJbM65vNzDcA59Ji2sNVROs64lSoWNFIygaVLkGPzGzNmLRRuN3odFS_r7sluCl6YTJ-iOUPN28Zqb_2Bm4nibv-ZA01E3tVFxrz9RUhtRRlWLl_bvXay0sEP8Ego0vllCFwL7hnGb8u9n6PRp8Q8ytQTSNNa_Nf37gFGznAJLeZRmxDyY52YLMY3kByW96FQTMlj8CYQ159ScwYNcmOFzPiycCHQzskeenWGwY3gtCW-OrzlGo8ITNf9o6vfQxMSBYWUcBk7Eg0nQ5Qe4ln78jaIveg12q-3D3QfO4CNRj8GdVBXNPCNWIVR1YjXuFMJ8JgtqYdd84Fth7H6JiMFf7WOlLGMJYYTDVrnEkVBftQHo1H9gCIp--LhFEo80Q4IWItAxc7zowUDl1HBS6L8w9NTkruZ2MMw4xOmYd4gqE_wQqcLVdOMiKOH9ZUCxGGuSnOQkR8iGIVD0QFLlJh_bo_vOs2_fPwrwtPYa173wrbj52nI1jnvjOCCcplFcrz6cIew6p5nw9m05NcNT8AeIXpXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+heterogeneous+parallel+programming+for+compressed+sensing+based+direction+of+arrival+estimation&rft.jtitle=Concurrency+and+computation&rft.au=Fisne%2C+Alparslan&rft.au=Kilic%2C+Berkan&rft.au=G%C3%BCng%C3%B6r%2C+Alper&rft.au=Ozsoy%2C+Adnan&rft.date=2022-04-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.6490&rft.externalDBID=10.1002%252Fcpe.6490&rft.externalDocID=CPE6490
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon