Software reliability prediction: A survey

Softwares play an important role in controlling complex systems. Monitoring the proper functioning of the components of such systems is the principal role of softwares. Often, a petite fault in one of the subsystems may cause irreparable damages; therefore, it is of great importance to be able to pr...

Full description

Saved in:
Bibliographic Details
Published in:Quality and reliability engineering international Vol. 39; no. 1; pp. 412 - 453
Main Authors: Oveisi, Shahrzad, Moeini, Ali, Mirzaei, Sayeh, Farsi, Mohammad Ali
Format: Journal Article
Language:English
Published: Bognor Regis Wiley Subscription Services, Inc 01.02.2023
Subjects:
ISSN:0748-8017, 1099-1638
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Softwares play an important role in controlling complex systems. Monitoring the proper functioning of the components of such systems is the principal role of softwares. Often, a petite fault in one of the subsystems may cause irreparable damages; therefore, it is of great importance to be able to predict software faults and estimate the reliability of softwares. In this survey, we present a classification of various methods proposed in the literature to predict software reliability. This study summarizes the results of more than 200 research papers in the field. We also discuss the challenges involved in prediction methods along with proposed partial solutions (i.e., Bayesian methods) to improve the accuracy of such predictions. Moreover, we review numerous evaluation measures introduced so far to assess the performance of prediction models, the datasets they are based on, and also the results they yield.
AbstractList Softwares play an important role in controlling complex systems. Monitoring the proper functioning of the components of such systems is the principal role of softwares. Often, a petite fault in one of the subsystems may cause irreparable damages; therefore, it is of great importance to be able to predict software faults and estimate the reliability of softwares. In this survey, we present a classification of various methods proposed in the literature to predict software reliability. This study summarizes the results of more than 200 research papers in the field. We also discuss the challenges involved in prediction methods along with proposed partial solutions (i.e., Bayesian methods) to improve the accuracy of such predictions. Moreover, we review numerous evaluation measures introduced so far to assess the performance of prediction models, the datasets they are based on, and also the results they yield.
Author Mirzaei, Sayeh
Moeini, Ali
Farsi, Mohammad Ali
Oveisi, Shahrzad
Author_xml – sequence: 1
  givenname: Shahrzad
  surname: Oveisi
  fullname: Oveisi, Shahrzad
  organization: University of Tehran
– sequence: 2
  givenname: Ali
  surname: Moeini
  fullname: Moeini, Ali
  email: moeini@ut.ac.ir
  organization: University of Tehran
– sequence: 3
  givenname: Sayeh
  surname: Mirzaei
  fullname: Mirzaei, Sayeh
  organization: University of Tehran
– sequence: 4
  givenname: Mohammad Ali
  surname: Farsi
  fullname: Farsi, Mohammad Ali
  organization: (Ministry of Science, Research and Technology)
BookMark eNp10E1Lw0AQBuBFKthWwZ8Q8KKH1NlNsh_eSqkfUBC_zssmmYUtMWl3E0v-fVPrSfQ0l2fmHd4JGdVNjYRcUphRAHa79ThLGIMTMqagVEx5IkdkDCKVsQQqzsgkhDXAgJUck5u3xrY74zHyWDmTu8q1fbTxWLqidU19F82j0Pkv7M_JqTVVwIufOSUf98v3xWO8en54WsxXccFUAkMeKisEgsyslJBIYHkGuUGRS2U5slJkZVrSsjDUgJUpzxmnJuOWUcqZSabk6nh345tth6HV66bz9RCpmeCpVABcDmp2VIVvQvBodeFac_i49cZVmoI-1KGHOvShjmHh-tfCxrtP4_u_aHykO1dh_6_TL6_Lb78Hx7Zuog
CitedBy_id crossref_primary_10_1007_s12065_024_00940_9
crossref_primary_10_1016_j_eswa_2025_127359
crossref_primary_10_1016_j_ress_2025_111262
crossref_primary_10_1016_j_ast_2024_109101
crossref_primary_10_1016_j_jksuci_2024_102132
crossref_primary_10_1080_02286203_2023_2201905
crossref_primary_10_1007_s11227_024_06046_4
crossref_primary_10_26599_TST_2024_9010101
crossref_primary_10_1002_qre_3616
crossref_primary_10_1007_s10791_025_09597_z
Cites_doi 10.1109/TSE.1985.231889
10.1007/s12204-019-2151-x
10.1016/j.matpr.2020.11.518
10.1016/j.jss.2013.03.045
10.1109/ISSRE.1991.145350
10.1109/ICPR48806.2021.9412733
10.1007/s40010-018-0551-1
10.3390/e17063989
10.1109/TPWRS.2019.2919157
10.1007/BF00872054
10.1016/j.asoc.2019.02.008
10.1016/j.eswa.2007.12.029
10.1109/COMPSAC.2006.130
10.1002/qre.2098
10.1080/00207729708929380
10.1109/WCSE.2010.51
10.1109/TR.2010.2103590
10.1146/annurev-statistics-060116-054045
10.1609/aaai.v30i1.10199
10.1016/j.ress.2006.04.007
10.1002/asm.3150010108
10.1109/TSE.1985.232177
10.1007/978-981-13-1402-5_17
10.1063/1.2423258
10.1088/1757-899X/495/1/012003
10.1016/j.procs.2016.06.083
10.1214/aoms/1177729694
10.1016/j.knosys.2018.07.006
10.1145/168304.168306
10.1109/ICTUS.2017.8285989
10.1016/j.engappai.2012.01.023
10.1016/S0378-7206(98)00041-X
10.1002/stvr.1710
10.1109/ICFHR.2014.55
10.1609/aaai.v30i1.10200
10.1109/MS.2007.182
10.1142/4011
10.1109/TR.2021.3105531
10.1016/S0950-5849(02)00128-3
10.1137/1.9781611976236.23
10.1109/ICCET.2010.5485840
10.1109/TENCON.2005.301242
10.1109/32.21762
10.1007/s13198-016-0543-y
10.1109/24.740500
10.1016/0950-5849(96)01124-X
10.1080/10618600.2018.1497511
10.1016/j.ijar.2019.05.010
10.30699/IJRRS.4.2.1
10.1109/CVPR.2016.611
10.1088/1742-6596/1168/2/022022
10.1007/s11222-018-9817-3
10.1109/TPAMI.2018.2884905
10.1007/1-84628-295-0
10.1016/S0164-1212(99)00065-5
10.1145/390016.808456
10.1080/00207721.2013.791001
10.1177/17483026211034442
10.1016/j.asoc.2014.04.012
10.4236/ojs.2014.45039
10.1007/s10489-017-1078-x
10.1109/QRS.2016.50
10.1016/j.eswa.2008.10.027
10.1016/j.eswa.2009.02.064
10.1007/s12652-020-02476-z
10.1002/stvr.1663
10.2307/1403763
10.1109/ISSRE.1996.558886
10.52866/ijcsm.2021.02.02.003
10.1002/qre.1793
10.1109/ICCTA.2007.89
10.1002/qre.2653
10.1177/1748006X16673767
10.1016/j.asoc.2018.07.039
10.1016/S0019-9958(65)90241-X
10.1002/stvr.1717
10.1002/asmb.453
10.1016/S0045-7906(04)00025-4
10.1016/j.ress.2004.03.028
10.1007/978-1-4471-1599-1_2
10.1038/s41598-018-24271-9
10.1109/TR.1983.5221735
10.1002/9781119223931
10.1016/S0164-1212(97)00055-1
10.1007/s13198‐021‐01276‐8
10.1115/1.4037228
10.1016/j.asoc.2012.08.015
10.1109/ASRU.2015.7404775
10.1109/2.544240
10.1016/j.eswa.2009.11.085
10.4156/jcit.vol6.issue7.43
10.1007/s13369-019-04128-7
10.1016/j.procs.2015.07.450
10.1109/ICDAR.2015.7333848
10.1016/j.infsof.2006.09.001
10.3115/v1/D14-1179
10.1016/j.jss.2007.05.011
10.1049/iet-sen.2011.0138
10.2307/3318418
10.1109/IJCNN.1989.118274
10.1016/j.apm.2016.01.016
10.1109/TSE.2002.1033229
10.1109/24.589931
10.1007/s10489-011-0316-x
10.1007/978-94-011-5014-9_5
10.1002/smr.2150
10.1016/j.jss.2006.06.017
10.7763/IJCTE.2010.V2.109
10.1109/SNPD.2009.49
10.4018/JCIT.2019040101
10.1016/j.infsof.2015.03.001
10.1080/13873954.2012.678011
10.1109/ACCESS.2017.2779181
10.1080/0952813X.2018.1552315
10.1007/s10462-011-9208-z
10.1016/j.ress.2017.10.019
10.1016/j.asoc.2018.06.032
10.1142/S0217595917400176
10.1109/TSE.1982.235728
10.1007/s00607-010-0128-6
10.1109/24.326435
10.1109/32.90433
10.1016/j.jss.2005.02.025
10.1007/978-3-7908-2604-3_16
10.1080/01621459.2017.1285773
10.1007/s10489-010-0253-0
10.1080/01621459.1996.10476944
10.1007/s00500-020-05385-7
10.1023/A:1008375228885
10.1016/j.jss.2004.08.023
10.1109/TR.1979.5220561
10.5772/3409
10.1109/TR.2011.2134350
10.1007/s00500-015-1738-x
10.1007/978-1-4612-4024-2
10.1007/978-3-030-37599-7_1
10.3150/18-BEJ1073
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2023 John Wiley & Sons Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1002/qre.3220
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1638
EndPage 453
ExternalDocumentID 10_1002_qre_3220
QRE3220
Genre reviewArticle
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7TB
8FD
FR3
ID FETCH-LOGICAL-c2930-16e9f77e085f8803802b50bae7b89f6e2d75d4d1dca1a0f846b261a56f21162a3
IEDL.DBID DRFUL
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932973100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0748-8017
IngestDate Fri Jul 25 12:14:09 EDT 2025
Sat Nov 29 02:33:17 EST 2025
Tue Nov 18 22:37:49 EST 2025
Wed Jan 22 16:20:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-16e9f77e085f8803802b50bae7b89f6e2d75d4d1dca1a0f846b261a56f21162a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2764890068
PQPubID 1016437
PageCount 42
ParticipantIDs proquest_journals_2764890068
crossref_citationtrail_10_1002_qre_3220
crossref_primary_10_1002_qre_3220
wiley_primary_10_1002_qre_3220_QRE3220
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Quality and reliability engineering international
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1991; 17
2002; 18
2011; 60
2019; 12
1999; 49
1997; 46
2016; 32
2012; 18
1972
1975; 10
2018; 42
2018; 48
1994; 62
2014; 22
2021; 70
1979; 28
2004; 30
2018; 9
1988 1988
2018; 8
2018; 170
2018; 5
2000; 13
2019; 21
2020; 90
2019; 25
1987
2019; 28
2014; 15
2019; 29
2016; 40
1983
1981
1980
1985; 11
1985; 12
2010; 2
1998; 168
2005; 77
2015; 57
1989; 2
2018; 28
2010; 37
2021; 45
2019; 31
2019; 33
2019; 34
2013; 86
1998
1996
1997; 28
2007; 92
2005; 87
1995
2020; 36
1993
2012; 37
1991
1996; 91
2012; 36
2011; 6
1999
2016; 4
2016; 6
2006b; 79
2011; 92
2015; 63
2016; 20
2007; 80
1997; 39
2020; 25
1956; 8
2021; 25
2017; 6
1987; 1
2013; 26
2017; 4
1984; 28
1992a
2017; 45
1951; 22
2017; 112
1998; 47
2015; 46
2020; 6
1996; 29
2014; 4
2001
2013; 13
2017; 34
1982; 4
2002; 44
2018; 70
2011; 24
2020; 45
2018; 71
2016; 230
2007; 24
2019; 112
2016; 89
1985; 1
2015; 17
2015; 3
2021; 2
2012
2011
2019; 77
2010
2009
2008
2007
2006
2005
2017; 29
2011; 36
2006; 2
1994; 43
2002; 28
2009; 36
2021; 15
2021; 12
2017; 17
2021
2020
2018; 159
2019
2018
2017
2016
2015
2014
2013
2012; 6
1989; 15
2008; 81
1983; R‐32
1998; 34
2009; 37
1994; 4
2019; 495
2007; 49
e_1_2_8_26_1
e_1_2_8_49_1
Sutskever I (e_1_2_8_65_1) 2014
Hudaib A (e_1_2_8_127_1) 2018; 5
e_1_2_8_203_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_38_1
e_1_2_8_215_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_30_1
Mahmood Y (e_1_2_8_136_1) 2021
Bhuyan MK (e_1_2_8_70_1) 2016; 6
MacKay D (e_1_2_8_76_1) 1992
Boehm BW (e_1_2_8_217_1) 1981
e_1_2_8_25_1
e_1_2_8_48_1
Meeker WQ (e_1_2_8_185_1) 2021
Iyer RK (e_1_2_8_210_1) 1996
e_1_2_8_204_1
Musa JD (e_1_2_8_119_1) 1987
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_14_1
Cheruiyot N (e_1_2_8_63_1) 2018; 5
Ohba M (e_1_2_8_205_1) 1984; 28
e_1_2_8_37_1
Viswanath SPK (e_1_2_8_13_1) 2006
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_220_1
ISBSG (e_1_2_8_218_1) 2007
Barber D (e_1_2_8_79_1) 1998; 168
Bhuyan MK (e_1_2_8_57_1) 2016; 4
e_1_2_8_81_1
e_1_2_8_7_1
Ideri A (e_1_2_8_147_1) 2006
Dhami HS (e_1_2_8_55_1) 2017; 6
Shelbi J (e_1_2_8_115_1) 2017; 45
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
Jain M (e_1_2_8_117_1) 2020
e_1_2_8_17_1
e_1_2_8_122_1
Du C (e_1_2_8_97_1) 2017; 29
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
Musa JD (e_1_2_8_45_1) 1983
e_1_2_8_221_1
e_1_2_8_27_1
Kingma DP (e_1_2_8_176_1) 2015
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_173_1
Behera AK (e_1_2_8_15_1) 2019
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_16_1
e_1_2_8_92_1
Graves (e_1_2_8_80_1) 2011; 24
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_169_1
e_1_2_8_146_1
Srivastava N (e_1_2_8_84_1) 2014; 15
e_1_2_8_68_1
Jaakkola T (e_1_2_8_187_1) 1998
e_1_2_8_207_1
Anna‐Mary BM (e_1_2_8_209_1) 1980
e_1_2_8_151_1
Oveisi S (e_1_2_8_5_1) 2019; 12
e_1_2_8_22_1
e_1_2_8_113_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_211_1
Kumar A (e_1_2_8_11_1) 2011
Chatterjee S (e_1_2_8_28_1) 2019; 33
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_72_1
e_1_2_8_29_1
Akuno AO (e_1_2_8_126_1) 2015
e_1_2_8_200_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_212_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
Wright D (e_1_2_8_9_1) 2001
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
Denker J (e_1_2_8_73_1) 1987; 1
e_1_2_8_71_1
Cheruiyot N (e_1_2_8_123_1) 2019
Sander P (e_1_2_8_125_1) 2012
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_201_1
Denker JS (e_1_2_8_75_1) 1991
e_1_2_8_3_1
e_1_2_8_130_1
Hu QP (e_1_2_8_223_1) 2007
Oveisi S (e_1_2_8_6_1) 2020; 6
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_199_1
e_1_2_8_36_1
e_1_2_8_59_1
Reddy PV (e_1_2_8_153_1) 2010; 2
Boetticher G (e_1_2_8_216_1) 2009
e_1_2_8_190_1
Jelinski Z (e_1_2_8_46_1) 1972
e_1_2_8_213_1
Neal RM (e_1_2_8_78_1) 2012
e_1_2_8_141_1
e_1_2_8_164_1
Jaiswal GP (e_1_2_8_111_1) 2015; 3
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
Hammouri A (e_1_2_8_222_1) 2018; 9
e_1_2_8_103_1
Aggarwal G (e_1_2_8_33_1) 2014; 4
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
Shooman ML (e_1_2_8_206_1) 1972
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
Kim HS (e_1_2_8_61_1) 2009; 37
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
Kumar KS (e_1_2_8_12_1) 2009
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – start-page: 341
  year: 1996
  end-page: 363
  article-title: Exponential convergence of Langevin distributions and their discrete approximations
  publication-title: Bernoulli
– start-page: 1
  year: 2019
  end-page: 12
  article-title: Deep neural network ensembles
– start-page: 275
  year: 2009
  end-page: 280
  article-title: Using an artificial neural network for predicting embedded software development effort
– volume: 43
  start-page: 408
  issue: 3
  year: 1994
  end-page: 413
  article-title: Software‐reliability growth model: primary‐failures generate secondary‐faults under imperfect debugging
  publication-title: IEEE Trans Reliab
– volume: 2
  start-page: 18
  issue: 2
  year: 2021
  end-page: 24
  article-title: Investigating the use of an adaptive neuro‐fuzzy inference system in software development effort estimation
  publication-title: Iraqi J Comput Sci Math
– volume: 36
  start-page: 7346
  issue: 4
  year: 2009
  end-page: 7354
  article-title: A systematic review of software fault predictions studies
  publication-title: Expert Syst Appl
– volume: 2
  start-page: 17
  issue: 1
  year: 2010
  end-page: 19
  article-title: Neural network—a novel technique for software effort estimation
  publication-title: Int J Comput Theory Eng
– start-page: 261
  year: 2007
  end-page: 266
  article-title: Neural network‐based effort estimation using class points for OO systems
– volume: 36
  start-page: 1678
  issue: 5
  year: 2020
  end-page: 1707
  article-title: Software reliability prediction and management: a multiple change‐point model approach
  publication-title: Qual Reliab Eng Int
– volume: 42
  start-page: 246
  issue: 1
  year: 2018
  end-page: 252
  article-title: Bayesian neural networks with weight sharing using Dirichlet processes
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 29
  start-page: 3084
  issue: 7
  year: 2017
  end-page: 3096
  article-title: Learning deep generative models with doubly stochastic gradient MCMC
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 299
  year: 1996
  end-page: 307
  article-title: Unification of finite failure non‐homogeneous Poisson process models through test coverage
– volume: 230
  start-page: 579
  issue: 6
  year: 2016
  end-page: 597
  article-title: Change point–based software reliability model under imperfect debugging with revised concept of fault dependency
  publication-title: Proc Inst Mech Eng Part O: J Risk Reliab
– volume: 89
  start-page: 359
  year: 2016
  end-page: 368
  article-title: Fuzzy logic‐based software reliability quantification framework: early‐stage perspective (FLSRQF)
  publication-title: Proc Comput Sci
– volume: 28
  issue: 5
  year: 2018
  article-title: Neural network for software reliability analysis of dynamically weighted NHPP growth models with imperfect debugging
  publication-title: Softw Test Verif Reliab
– volume: 6
  start-page: 5427
  year: 2017
  end-page: 5437
  article-title: An empirical study on modeling and prediction of bitcoin prices with bayesian neural networks based on blockchain information
  publication-title: IEEE Access
– start-page: 1674
  year: 2017
  end-page: 1703
  article-title: Non‐convex learning via stochastic gradient langevin dynamics: a nonasymptotic analysis
– year: 2008
  article-title: An algorithm for software reliability growth model selection
– volume: 31
  start-page: 369
  issue: 3
  year: 2019
  end-page: 391
  article-title: A fuzzy rule‐based generation algorithm in interval type‐2 fuzzy logic system for fault prediction in the early phase of software development
  publication-title: J Exp Theor Artif Intell
– start-page: 65
  year: 2015
  end-page: 70
  article-title: Rnndrop: a novel dropout for rnns in asr
– start-page: 853
  year: 1991
  end-page: 859
– volume: 47
  start-page: 268
  issue: 3
  year: 1998
  end-page: 278
  article-title: Software reliability modeling: an approach to early reliability prediction
  publication-title: IEEE Trans Reliab
– volume: 3
  start-page: 177
  issue: 3
  year: 2015
  end-page: 182
  article-title: A fuzzy inference model for reliability estimation of component‐based software system
  publication-title: Int J Comput Sci Technol
– year: 2019
– start-page: 221
  year: 2019
  end-page: 235
  article-title: Revisiting software reliability
  publication-title: Data Manag Analy Innov
– volume: 29
  start-page: 69
  issue: 11
  year: 1996
  end-page: 77
  article-title: Predicting software reliability
  publication-title: IEEE Comput
– year: 2007
  article-title: Comparison of artificial neural network and regression models in software effort estimation
– volume: 25
  start-page: 57
  issue: 1
  year: 2020
  end-page: 64
  article-title: Reliability analysis of cloud service‐based applications through SRGM and NMSPN
  publication-title: J Shanghai Jiaotong Univ (Sci)
– start-page: 1050
  year: 2016
  end-page: 1059
  article-title: Dropout as a Bayesian approximation: representing model uncertainty in deep learning
– volume: 28
  start-page: 181
  issue: 3
  year: 1979
  end-page: 191
  article-title: Validity of execution‐time theory of software reliability
  publication-title: IEEE Trans Reliab
– year: 2007
– volume: 80
  start-page: 606
  issue: 4
  year: 2007
  end-page: 615
  article-title: Neural‐network‐based approaches for software reliability estimation using dynamic weighted combinational models
  publication-title: J Syst Softw
– start-page: 1612
  year: 2006
  end-page: 1617
  article-title: An experiment on the design of radial basis function neural networks for software cost estimation
  publication-title: IEEE Inform Commun Technol ICTTA
– volume: 87
  start-page: 45
  issue: 1
  year: 2005
  end-page: 51
  article-title: Evolutionary neural network modeling for software cumulative failure time prediction
  publication-title: Reliab Eng Syst Saf
– volume: 9
  start-page: 230
  issue: 1
  year: 2018
  end-page: 244
  article-title: Software reliability prediction using machine learning techniques
  publication-title: Int J Syst Assur Eng Manag
– volume: 4
  start-page: 402
  issue: 5
  year: 2014
  end-page: 411
  article-title: One‐sample Bayesian predictive analyses for an exponential non‐homogeneous poisson process in software reliability
  publication-title: Open J Stat
– volume: 45
  start-page: 98
  issue: 5
  year: 2017
  article-title: A survey of software reliability models
  publication-title: Int J Res Appl Sci Eng Technol (IJRASET)
– volume: 13
  start-page: 19
  year: 2000
  end-page: 40
  article-title: Application of Bayesian network learning methods to waste water treatment plants
  publication-title: Appl Intell
– volume: 40
  start-page: 6324
  issue: 13–14
  year: 2016
  end-page: 6339
  article-title: An optimized method for software reliability model based on nonhomogeneous poisson process
  publication-title: Appl Math Modell
– volume: 17
  start-page: 334
  issue: 4
  year: 1991
  article-title: A method for software reliability analysis and prediction application to the TROPICO‐R switching system
  publication-title: IEEE Trans Softw Eng
– year: 1995
– volume: 86
  start-page: 1923
  issue: 7
  year: 2013
  end-page: 1932
  article-title: An approach to software reliability prediction based on time series modeling
  publication-title: J Syst Softw
– volume: 17
  start-page: 1
  issue: 3
  year: 2017
  end-page: 11
  article-title: SFTA‐based approach for safety/reliability analysis of operational use‐cases in cyber‐physical systems
  publication-title: J Comput Inf Sci Eng
– volume: 4
  issue: 1
  year: 2014
  article-title: Software reliability growth model
  publication-title: Int J Adv Res Comput Sci Softw Eng
– volume: 6
  start-page: 171
  issue: 3
  year: 2020
  end-page: 180
  article-title: Design software failure mode and effect analysis using Fuzzy TOPSIS based on Fuzzy entropy
  publication-title: J Adv Comput Eng Technol
– volume: 24
  start-page: 82
  issue: 6
  year: 2007
  end-page: 88
  article-title: Using software reliability growth models in practice
  publication-title: IEEE Softw
– volume: 112
  start-page: 85
  year: 2019
  end-page: 104
  article-title: Eliminating overfitting of probabilistic topic models on short and noisy text: the role of dropout
  publication-title: Int J Approx Reason
– start-page: 177
  year: 2010
  end-page: 186
  article-title: Large‐scale machine learning with stochastic gradient descent
– volume: 21
  start-page: 1
  issue: 2
  year: 2019
  end-page: 20
  article-title: Modelling fault detection using SRGM in Agile environment and ranking of models
  publication-title: J Cases Inform Technol (JCIT)
– year: 2013
– year: 2009
– start-page: 285
  year: 2014
  end-page: 290
  article-title: Dropout improves recurrent neural networks for handwriting recognition
– volume: 25
  start-page: 2854
  issue: 4A
  year: 2019
  end-page: 2882
  article-title: High‐dimensional Bayesian inference via the unadjusted Langevin algorithm
  publication-title: Bernoulli
– volume: 4
  start-page: 395
  year: 2017
  end-page: 421
  article-title: Bayesian computing with INLA: a review
  publication-title: Annu Rev Stat Appl
– volume: 5
  issue: 08
  year: 2018
  article-title: Bayesian predictive analyses for logarithmic non‐homogeneous Poisson process in software reliability
  publication-title: Open Access Library J
– volume: 92
  start-page: 332
  issue: 3
  year: 2007
  end-page: 340
  article-title: Robust recurrent neural network modeling for software fault detection and correction prediction
  publication-title: Reliab Eng Syst Saf
– start-page: 5666
  year: 2016
  end-page: 5675
  article-title: Learning weight uncertainty with stochastic gradient mcmc for shape classification
– volume: 77
  start-page: 173
  issue: 2
  year: 2005
  end-page: 180
  article-title: On‐line prediction of software reliability using an evolutionary connectionist model
  publication-title: J Syst Softw
– volume: 37
  start-page: 16
  issue: 4
  year: 2009
  end-page: 22
  article-title: Bayesian estimation for inflection S‐shaped software reliability growth model
  publication-title: J Korean Soc Qual Manag
– volume: 2
  start-page: 234
  year: 2006
  end-page: 239
  article-title: Early software reliability prediction with extended ANN model
– year: 2021
– year: 2011
  article-title: Customer‐perceived software reliability: measurement, prediction, application, keynote talk
– volume: 28
  year: 1984
  article-title: Software reliability analysis models
  publication-title: lBM J Res Develop
– start-page: 148
  year: 1988 1988
  end-page: 153
  article-title: Experimental evaluation of software reliability growth models
– start-page: 213
  year: 2019
  end-page: 220
– volume: 4
  start-page: 354
  year: 1982
  end-page: 371
  article-title: Software reliability—Status and perspectives
  publication-title: IEEE Trans Software Eng
– volume: 24
  year: 2011
  article-title: Practical variational inference for neural networks
  publication-title: Adv Neural Inform Process Syst
– volume: 28
  start-page: 211
  issue: 2
  year: 1997
  end-page: 216
  article-title: Prediction of software reliability using an auto regressive process
  publication-title: Int J Syst Sci
– volume: 170
  start-page: 73
  year: 2018
  end-page: 82
  article-title: Software reliability prediction using a deep learning model based on the RNN encoder–decoder
  publication-title: Reliab Eng Syst Saf
– volume: 46
  start-page: 76
  issue: 1
  year: 1997
  end-page: 80
  article-title: Bayes inference for S‐shaped software reliability growth models
  publication-title: IEEE Trans Reliab
– volume: 79
  start-page: 747
  year: 2006b
  end-page: 755
  article-title: Software reliability forecasting by support vector machines with simulated vector machines with simulated annealing algorithms
  publication-title: J Syst Softw
– volume: 12
  start-page: 77
  issue: 1
  year: 2019
  end-page: 91
  article-title: A new approach to promote safety in the software life cycle
  publication-title: J Comput Robot
– volume: 29
  issue: 6‐7
  year: 2019
  article-title: An improved software reliability prediction model by using high precision error iterative analysis method
  publication-title: Softw Test Verif Reliab
– volume: 34
  start-page: 4910
  issue: 6
  year: 2019
  end-page: 4920
  article-title: Bayesian state estimation for unobservable distribution systems via deep learning
  publication-title: IEEE Trans Power Syst
– year: 2015
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 12
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Sci Rep
– start-page: 580
  year: 2018
  end-page: 589
  article-title: Autoregressive convolutional neural networks for asynchronous time series
– volume: 81
  start-page: 356
  issue: 3
  year: 2008
  end-page: 367
  article-title: An investigation of artificial neural networks‐based prediction systems in software project management
  publication-title: J Syst Softw
– volume: 6
  start-page: 479
  issue: 6
  year: 2012
  end-page: 487
  article-title: Artificial neural network‐based metric selection for software fault‐prone prediction model
  publication-title: IET Softw
– volume: 112
  start-page: 859
  issue: 518
  year: 2017
  end-page: 877
  article-title: Variational inference: a review for statisticians
  publication-title: J Am Stat Assoc
– volume: 90
  start-page: 11
  issue: 1
  year: 2020
  end-page: 26
  article-title: NHPP‐Based software reliability growth modeling and optimal release policy for N‐Version programming system with increasing fault detection rate under imperfect debugging
  publication-title: Proc Natl Acad Sci India Sec A: Phys Sci
– volume: 32
  start-page: 2717
  issue: 8
  year: 2016
  end-page: 2738
  article-title: A hybrid model based on singular spectrum analysis and support vector machines regression for failure time series prediction
  publication-title: Qual Reliab Eng Int
– volume: 6
  start-page: 349
  issue: 7
  year: 2011
  end-page: 357
  article-title: Improved neural network based on dynamic predication model of software reliability
  publication-title: J Converg Inform Technol
– year: 1996
– volume: 34
  issue: 03
  year: 2017
  article-title: An ideal software release policy for an improved software reliability growth model incorporating imperfect debugging with fault removal efficiency and change point
  publication-title: Asia‐Pac J Oper Res
– volume: 2
  start-page: 403
  year: 1989
  end-page: 409
  article-title: Consistent inference of probabilities in layered networks: predictions and generalization
– volume: 39
  start-page: 281
  issue: 3
  year: 1997
  end-page: 289
  article-title: A comparison of software effort estimation techniques: using function points with neural networks, case‐based reasoning and regression models
  publication-title: J Syst Softw
– start-page: 199
  year: 2020
  end-page: 207
  article-title: Second‐order optimization for non‐convex machine learning: an empirical study
– volume: 18
  start-page: 539
  issue: 5
  year: 2012
  end-page: 551
  article-title: Effect of change point and imperfect debugging in software reliability and its optimal release policy
  publication-title: Math Comput Modell Dyn Syst
– volume: 70
  start-page: 1621
  issue: 4
  year: 2021
  end-page: 1640
  article-title: A study of incorporation of deep learning into software reliability modeling and assessment
  publication-title: IEEE Trans Reliab
– year: 1980
– start-page: 197
  year: 2007
  end-page: 222
– volume: 26
  start-page: 293
  issue: 1
  year: 2013
  end-page: 301
  article-title: A hybrid algorithm for artificial neural network training
  publication-title: Eng Appl Artif Intell
– volume: 29
  issue: 8
  year: 2019
  article-title: A heterogeneous single changepoint software reliability growth model framework
  publication-title: Softw Test Verif Reliab
– volume: 4
  start-page: 1016
  issue: 4
  year: 2016
  article-title: Software reliability assessment using neural networks of computational intelligence based on software failure data
  publication-title: Bal J Mod Comput
– volume: 5
  start-page: 11
  issue: 5
  year: 2018
  end-page: 25
  article-title: Survey in software reliability growth models: parameter estimation and models ranking
  publication-title: Int J Comput Syst
– start-page: 116
  year: 2017
  end-page: 119
  article-title: On Bayesian inference of software reliability measurement
– volume: 15
  start-page: 345
  issue: 3
  year: 1989
  end-page: 355
  article-title: Structural approach to the estimation of the number of residual software faults based on the hyper‐geometric distribution
  publication-title: IEEE Trans Softw Eng
– volume: 1
  start-page: 65
  issue: 1
  year: 1985
  end-page: 77
  article-title: Discrete software reliability growth models
  publication-title: Appl Stoch Models Data Anal
– volume: 49
  start-page: 32
  year: 2007
  end-page: 43
  article-title: Predicting software defects in varying development lifecycles using Bayesian nets
  publication-title: Inf Softw Technol
– year: 2011
– year: 2010
  article-title: Proposing a new software cost estimation model based on artificial neural networks
– year: 1981
– volume: 60
  start-page: 498
  issue: 2
  year: 2011
  end-page: 514
  article-title: Estimation and analysis of some generalized multiple change‐point software reliability models
  publication-title: IEEE Trans Reliab
– start-page: 678
  year: 2017
  end-page: 689
  article-title: Further and stronger analogy between sampling and optimization: langevin Monte Carlo and gradient descent
– volume: 71
  start-page: 747
  year: 2018
  end-page: 782
  article-title: A dynamic metaheuristic optimization model inspired by biological nervous systems: neural network algorithm
  publication-title: Appl Soft Comput
– volume: 168
  start-page: 215
  year: 1998
  end-page: 238
  article-title: Ensemble learning in Bayesian neural networks
  publication-title: Nato ASI Series F Comput Syst Sci
– start-page: 81
  year: 2020
  end-page: 89
– volume: 20
  start-page: 4023
  issue: 10
  year: 2016
  end-page: 4035
  article-title: A new fuzzy rule based algorithm for estimating software faults in early phase of development
  publication-title: Soft Comput
– volume: 45
  start-page: 2721
  issue: 4
  year: 2020
  end-page: 2741
  article-title: Optimal release time determination in intuitionistic fuzzy environment involving randomized cost budget for SDE‐based software reliability growth model
  publication-title: Arab J Sci Eng
– volume: 25
  start-page: 3545
  issue: 5
  year: 2021
  end-page: 3564
  article-title: Optimal release time determination via fuzzy goal programming approach for SDE‐based software reliability growth model
  publication-title: Soft Comput
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 77
  start-page: 696
  year: 2019
  end-page: 713
  article-title: A fuzzy‐filtered neuro‐fuzzy framework for software fault prediction for inter‐version and inter‐project evaluation
  publication-title: Appl Soft Comput
– volume: 12
  start-page: 1308
  year: 2021
  end-page: 1321
  article-title: Software reliability prediction by recurrent artificial chemical link network
  publication-title: Int J Syst Assur Eng Manag
– year: 1998
– start-page: 1
  year: 2005
  end-page: 6
  article-title: An artificial neural‐network‐based approach to software reliability assessment
– volume: 29
  start-page: 449
  issue: 3
  year: 2019
  end-page: 482
  article-title: Informed sub‐sampling MCMC: approximate Bayesian inference for large datasets
  publication-title: Stat Comput
– year: 1992a
– volume: 36
  start-page: 10727
  issue: 7
  year: 2009
  end-page: 10734
  article-title: An early software‐quality classification based on improved grey relational classifier
  publication-title: Expert Syst Appl
– volume: 12
  start-page: 3177
  issue: 2
  year: 2021
  end-page: 3188
  article-title: An efficient parameter optimization of software reliability growth model by using chaotic grey wolf optimization algorithm
  publication-title: J Ambient Intell Humaniz Comput
– volume: 2
  start-page: 87
  issue: 5
  year: 2010
  end-page: 92
  article-title: Software effort estimation using radial basis and generalized regression neural networks
  publication-title: J Comput
– volume: R‐32
  issue: 5
  year: 1983
  article-title: S‐shaped software reliability growth modelling for software error detection
  publication-title: IEEE Trans Reliabi
– volume: 32
  start-page: 1253
  issue: 3
  year: 2016
  end-page: 1263
  article-title: Computing transition probability in Markov chain for early prediction of software reliability
  publication-title: Qual Reliab Eng Int
– volume: 28
  start-page: 205
  year: 2019
  end-page: 219
  article-title: Improving approximate Bayesian computation via quasi‐Monte Carlo
  publication-title: J Comput Graph Stat
– start-page: 2671
  year: 2021
  end-page: 2676
  article-title: MaxDropout: deep neural network regularization based on maximum output values
– start-page: 465
  year: 1972
  end-page: 484
– volume: 12
  start-page: 1411
  year: 1985
  end-page: 1423
  article-title: Software reliability models: assumptions, limitations, and applicability
  publication-title: IEEE Trans Softw Eng
– volume: 6
  start-page: 2088
  issue: 4
  year: 2016
  end-page: 8708
  article-title: Software reliability prediction using fuzzy min‐max algorithm and recurrent neural network approach
  publication-title: Int J Electr Comput Eng
– volume: 17
  start-page: 3989
  issue: 6
  year: 2015
  end-page: 4027
  article-title: Entropy, information theory, information geometry and Bayesian inference in data, signal and image processing and inverse problems
  publication-title: Entropy
– volume: 11
  start-page: 1456
  issue: 12
  year: 1985
  end-page: 1464
  article-title: Assessing (Software) reliability growth using a random coefficient autoregressive process and its ramifications
  publication-title: IEEE Trans Software Eng
– start-page: 300
  year: 2018
  end-page: 323
  article-title: Underdamped Langevin MCMC: a non‐asymptotic analysis
– volume: 92
  start-page: 33
  issue: 1
  year: 2011
  end-page: 48
  article-title: Transfer function modelling in software reliability
  publication-title: Computing
– year: 1987
– volume: 37
  start-page: 4435
  year: 2010
  end-page: 4440
  article-title: Probabilistic estimation of software size and effort
  publication-title: Expert Syst Appl
– volume: 44
  start-page: 911
  year: 2002
  end-page: 992
  article-title: Comparison of artificial neural network and regression models for estimating software development effort
  publication-title: Inf Softw Technol
– volume: 1
  start-page: 877
  issue: 5
  year: 1987
  end-page: 922
  article-title: Large automatic learning, rule extraction, and generalization
  publication-title: Complex Syst
– start-page: 10
  year: 2017
  end-page: 708
– start-page: 485
  year: 1972
  end-page: 502
– volume: 62
  start-page: 289
  year: 1994
  end-page: 317
  article-title: Software reliability modeling
  publication-title: Int Stat Rev
– year: 1993
  article-title: Software cost estimation using artificial neural networks
– volume: 57
  start-page: 695
  year: 2015
  end-page: 702
  article-title: An artificial neural‐network approach to software reliability growth modeling
  publication-title: Proc Comput Sci
– volume: 33
  start-page: 246
  issue: 2
  year: 2019
  end-page: 256
  article-title: Modeling and analysis of software fault detectability and removability with time variant fault exposure ratio, fault removal efficiency, and change point
  publication-title: Proc Inst Mech Eng Part O: J Risk Reliab
– start-page: 681
  year: 2015
  end-page: 685
  article-title: Where to apply dropout in recurrent neural networks for handwriting recognition?
– start-page: 5
  year: 1993
  end-page: 13
  article-title: Keeping the neural networks simple by minimizing the description length of the weights
– volume: 36
  start-page: 2116
  issue: 2
  year: 2009
  end-page: 2122
  article-title: Predicting software reliability with neural network ensembles
  publication-title: Expert Syst Appl
– volume: 22
  start-page: 629
  year: 2014
  end-page: 637
  article-title: Robust feedforward and recurrent neural network based dynamic weighted combination models for software reliability prediction
  publication-title: Appl Soft Comput
– volume: 39
  start-page: 55
  year: 1997
  end-page: 60
  article-title: Software cost estimation using an Albus perceptron (CMAC)
  publication-title: Inf Softw Technol
– volume: 60
  start-page: 331
  issue: 1
  year: 2011
  end-page: 340
  article-title: A unified approach for developing software reliability growth models in the presence of imperfect debugging and error generation
  publication-title: IEEE Trans Reliab
– start-page: 395
  year: 1983
  end-page: 423
– start-page: 1861
  year: 2015
  end-page: 1869
  article-title: Probabilistic backpropagation for scalable learning of bayesian neural networks
– year: 2021
  article-title: LSTM encoder‐decoder dropout model in software reliability prediction
  publication-title: Int J Reliab Risk Saf: Theory Appl
– volume: 34
  start-page: 1
  year: 1998
  end-page: 9
  article-title: Software development cost estimation: integrating neural network with cluster analysis
  publication-title: Inf Manag
– volume: 48
  start-page: 2214
  issue: 8
  year: 2018
  end-page: 2228
  article-title: A Bayesian belief network based model for predicting software faults in early phase of software development process
  publication-title: Appl Intell
– volume: 6
  start-page: 1540
  issue: 4
  year: 2017
  end-page: 1548
  article-title: Analysis of software reliability growth models for quantitative evaluation of software reliability and goodness of fitness metrics
  publication-title: Int J Sci Res
– volume: 46
  start-page: 513
  issue: 3
  year: 2015
  end-page: 525
  article-title: A structure‐based software reliability allocation using fuzzy analytic hierarchy process
  publication-title: Int J Syst Sci
– year: 2001
– volume: 28
  start-page: 904
  issue: 9
  year: 2002
  end-page: 912
  article-title: An enhanced neural network technique for software risk analysis
  publication-title: IEEE Trans Softw Eng
– volume: 9
  issue: 2
  year: 2018
  article-title: Software bug prediction using machine learning approach
  publication-title: Int J Adv Comput Sci Appl
– year: 2010
  article-title: Entropic Inference
– volume: 70
  start-page: 764
  year: 2018
  end-page: 772
  article-title: A Mahalanobis distance based algorithm for assigning rank to the predicted fault prone software modules
  publication-title: Appl Soft Comput
– year: 2018
– volume: 45
  start-page: 2660
  year: 2021
  end-page: 2665
  article-title: Reliability prediction analysis of aspect‐oriented application using soft computing techniques
  publication-title: Mater Today: Proc
– volume: 10
  issue: 6
  year: 1975
  article-title: Analysis of error process in computer software
  publication-title: Sigplan Notices
– volume: 18
  start-page: 87
  year: 2002
  end-page: 99
  article-title: Calibrating software reliability models when the test environment does not match the user environment
  publication-title: Appl Stoch Models Bus Ind
– start-page: 386
  year: 2016
  end-page: 397
  article-title: Software reliability analysis of NASA space flight software: a practical experience
– start-page: 13
  year: 1998
  end-page: 22
  article-title: Variational learning in graphical models and neural networks
– start-page: 3104
  year: 2014
  end-page: 3112
– volume: 13
  start-page: 189
  issue: 1
  year: 2013
  end-page: 200
  article-title: Hybrid intelligent systems for predicting software reliability
  publication-title: Appl Soft Comput
– volume: 4
  start-page: 31
  year: 1994
  end-page: 52
  article-title: Fuzzy systems and neural networks in software engineering project management
  publication-title: Appl Intell
– start-page: 28
  year: 1991
  end-page: 29
  article-title: Parameter estimation of the hyper‐geometric distribution model for real test/debug data
– volume: 15
  year: 2021
  article-title: A modified whale optimization algorithm for parameter estimation of software reliability growth models
  publication-title: J Algorithms & Comput Technol
– volume: 37
  start-page: 121
  issue: 1
  year: 2012
  end-page: 129
  article-title: Software fault prediction using Nonlinear Autoregressive with eXogenous Inputs (NARX) network
  publication-title: Appl Intell
– volume: 159
  start-page: 132
  year: 2018
  end-page: 147
  article-title: Online reliability time series prediction via convolutional neural network and long short term memory for service‐oriented systems
  publication-title: Knowl‐Based Syst
– volume: 31
  issue: 3
  year: 2019
  article-title: A unified approach of testing coverage‐based software reliability growth modelling with fault detection probability, imperfect debugging, and change point
  publication-title: J Softw: Evol Process
– volume: 36
  start-page: 178
  year: 2012
  end-page: 189
  article-title: On the practice of artificial intelligence based predictive control scheme: a case study
  publication-title: Appl Intell
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  end-page: 86
  article-title: On information and sufficiency
  publication-title: Ann Math Stat
– start-page: 303
  year: 1996
  end-page: 358
– volume: 2
  start-page: 253
  year: 2010
  end-page: 256
  article-title: Research of software reliability combination model based on neural net
– year: 2012
– volume: 36
  start-page: 153
  issue: 2
  year: 2011
  end-page: 162
  article-title: An optimizing BP neural network algorithm based on genetic algorithm
  publication-title: Artif Intell Rev
– volume: 49
  start-page: 43
  issue: 1
  year: 1999
  end-page: 48
  article-title: Software reliability prediction incorporating information from a similar project
  publication-title: J Syst Softw
– volume: 91
  start-page: 763
  issue: 434
  year: 1996
  end-page: 773
  article-title: Bayesian computation for nonhomogeneous poisson processes in software reliability
  publication-title: J Am Stat Assoc
– volume: 495
  issue: 1
  year: 2019
  article-title: Review of second‐order optimization techniques in artificial neural networks backpropagation
– volume: 30
  start-page: 453
  issue: 6
  year: 2004
  end-page: 463
  article-title: N‐version programming with imperfect debugging
  publication-title: Comput Electr Eng
– year: 2006
– start-page: 2575
  year: 2015
  end-page: 2583
– year: 2021
  article-title: Software effort estimation accuracy prediction of machine learning techniques: a systematic performance evaluation
  publication-title: Softw: Pract Exp
– volume: 8
  start-page: 338
  issue: 3
  year: 1956
  end-page: 353
  article-title: Fuzzy sets
  publication-title: Inform Control
– start-page: 1
  year: 2013
  end-page: 8
  article-title: Software reliability prediction via two different implementations of Bayesian model averaging
– year: 2017
– volume: 63
  start-page: 44
  year: 2015
  end-page: 57
  article-title: A fuzzy logic based approach for phase‐wise software defects prediction using software metrics
  publication-title: Inf Softw Tech
– year: 2006
  article-title: Updating probabilities with data and moments
– year: 1999
– ident: e_1_2_8_220_1
  doi: 10.1109/TSE.1985.231889
– ident: e_1_2_8_56_1
  doi: 10.1007/s12204-019-2151-x
– ident: e_1_2_8_59_1
  doi: 10.1016/j.matpr.2020.11.518
– volume: 6
  start-page: 171
  issue: 3
  year: 2020
  ident: e_1_2_8_6_1
  article-title: Design software failure mode and effect analysis using Fuzzy TOPSIS based on Fuzzy entropy
  publication-title: J Adv Comput Eng Technol
– ident: e_1_2_8_22_1
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jss.2013.03.045
– volume: 2
  start-page: 87
  issue: 5
  year: 2010
  ident: e_1_2_8_153_1
  article-title: Software effort estimation using radial basis and generalized regression neural networks
  publication-title: J Comput
– volume-title: Software Engineering Economics
  year: 1981
  ident: e_1_2_8_217_1
– volume: 9
  issue: 2
  year: 2018
  ident: e_1_2_8_222_1
  article-title: Software bug prediction using machine learning approach
  publication-title: Int J Adv Comput Sci Appl
– volume-title: Software Reliability Assurance through Fault Prediction Models. Ph.D. Thesis
  year: 2011
  ident: e_1_2_8_11_1
– ident: e_1_2_8_142_1
– ident: e_1_2_8_207_1
  doi: 10.1109/ISSRE.1991.145350
– ident: e_1_2_8_162_1
  doi: 10.1109/ICPR48806.2021.9412733
– ident: e_1_2_8_32_1
  doi: 10.1007/s40010-018-0551-1
– volume: 37
  start-page: 16
  issue: 4
  year: 2009
  ident: e_1_2_8_61_1
  article-title: Bayesian estimation for inflection S‐shaped software reliability growth model
  publication-title: J Korean Soc Qual Manag
– ident: e_1_2_8_193_1
  doi: 10.3390/e17063989
– ident: e_1_2_8_94_1
  doi: 10.1109/TPWRS.2019.2919157
– ident: e_1_2_8_86_1
– volume: 29
  start-page: 3084
  issue: 7
  year: 2017
  ident: e_1_2_8_97_1
  article-title: Learning deep generative models with doubly stochastic gradient MCMC
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: e_1_2_8_103_1
  doi: 10.1007/BF00872054
– ident: e_1_2_8_130_1
  doi: 10.1016/j.asoc.2019.02.008
– ident: e_1_2_8_160_1
  doi: 10.1016/j.eswa.2007.12.029
– ident: e_1_2_8_211_1
  doi: 10.1109/COMPSAC.2006.130
– ident: e_1_2_8_135_1
  doi: 10.1002/qre.2098
– ident: e_1_2_8_161_1
  doi: 10.1080/00207729708929380
– volume-title: Learning in Graphical Models
  year: 1998
  ident: e_1_2_8_187_1
– ident: e_1_2_8_99_1
  doi: 10.1109/WCSE.2010.51
– ident: e_1_2_8_114_1
  doi: 10.1109/TR.2010.2103590
– ident: e_1_2_8_48_1
– ident: e_1_2_8_186_1
  doi: 10.1146/annurev-statistics-060116-054045
– volume: 4
  issue: 1
  year: 2014
  ident: e_1_2_8_33_1
  article-title: Software reliability growth model
  publication-title: Int J Adv Res Comput Sci Softw Eng
– volume: 12
  start-page: 77
  issue: 1
  year: 2019
  ident: e_1_2_8_5_1
  article-title: A new approach to promote safety in the software life cycle
  publication-title: J Comput Robot
– ident: e_1_2_8_179_1
  doi: 10.1609/aaai.v30i1.10199
– ident: e_1_2_8_214_1
– ident: e_1_2_8_69_1
  doi: 10.1016/j.ress.2006.04.007
– ident: e_1_2_8_199_1
– ident: e_1_2_8_82_1
– volume: 4
  start-page: 1016
  issue: 4
  year: 2016
  ident: e_1_2_8_57_1
  article-title: Software reliability assessment using neural networks of computational intelligence based on software failure data
  publication-title: Bal J Mod Comput
– ident: e_1_2_8_168_1
– start-page: 853
  volume-title: Transforming Neural‐Net Output Levels to Probability Distributions
  year: 1991
  ident: e_1_2_8_75_1
– ident: e_1_2_8_121_1
  doi: 10.1002/asm.3150010108
– ident: e_1_2_8_52_1
  doi: 10.1109/TSE.1985.232177
– ident: e_1_2_8_35_1
  doi: 10.1007/978-981-13-1402-5_17
– start-page: 1612
  year: 2006
  ident: e_1_2_8_147_1
  article-title: An experiment on the design of radial basis function neural networks for software cost estimation
  publication-title: IEEE Inform Commun Technol ICTTA
– ident: e_1_2_8_177_1
– ident: e_1_2_8_196_1
  doi: 10.1063/1.2423258
– ident: e_1_2_8_171_1
  doi: 10.1088/1757-899X/495/1/012003
– ident: e_1_2_8_38_1
– ident: e_1_2_8_113_1
  doi: 10.1016/j.procs.2016.06.083
– ident: e_1_2_8_191_1
  doi: 10.1214/aoms/1177729694
– ident: e_1_2_8_190_1
– ident: e_1_2_8_202_1
– ident: e_1_2_8_98_1
– ident: e_1_2_8_40_1
  doi: 10.1016/j.knosys.2018.07.006
– volume-title: Statistical Methods for Reliability Data
  year: 2021
  ident: e_1_2_8_185_1
– ident: e_1_2_8_203_1
– ident: e_1_2_8_77_1
  doi: 10.1145/168304.168306
– start-page: 395
  volume-title: Software Reliability Models: Concepts, Classification, Comparisons and Practice
  year: 1983
  ident: e_1_2_8_45_1
– volume: 1
  start-page: 877
  issue: 5
  year: 1987
  ident: e_1_2_8_73_1
  article-title: Large automatic learning, rule extraction, and generalization
  publication-title: Complex Syst
– ident: e_1_2_8_16_1
  doi: 10.1109/ICTUS.2017.8285989
– ident: e_1_2_8_163_1
  doi: 10.1016/j.engappai.2012.01.023
– ident: e_1_2_8_145_1
  doi: 10.1016/S0378-7206(98)00041-X
– ident: e_1_2_8_26_1
  doi: 10.1002/stvr.1710
– ident: e_1_2_8_93_1
– ident: e_1_2_8_149_1
– ident: e_1_2_8_204_1
– volume-title: Early Software Reliability and Quality Prediction. Ph.D. Thesis
  year: 2009
  ident: e_1_2_8_12_1
– volume-title: PROMISE Repository of Empirical Software Engineering Data
  year: 2009
  ident: e_1_2_8_216_1
– ident: e_1_2_8_87_1
  doi: 10.1109/ICFHR.2014.55
– ident: e_1_2_8_178_1
  doi: 10.1609/aaai.v30i1.10200
– volume: 33
  start-page: 246
  issue: 2
  year: 2019
  ident: e_1_2_8_28_1
  article-title: Modeling and analysis of software fault detectability and removability with time variant fault exposure ratio, fault removal efficiency, and change point
  publication-title: Proc Inst Mech Eng Part O: J Risk Reliab
– ident: e_1_2_8_50_1
  doi: 10.1109/MS.2007.182
– ident: e_1_2_8_53_1
  doi: 10.1142/4011
– ident: e_1_2_8_58_1
  doi: 10.1109/TR.2021.3105531
– ident: e_1_2_8_146_1
  doi: 10.1016/S0950-5849(02)00128-3
– ident: e_1_2_8_183_1
– ident: e_1_2_8_170_1
  doi: 10.1137/1.9781611976236.23
– ident: e_1_2_8_155_1
  doi: 10.1109/ICCET.2010.5485840
– ident: e_1_2_8_64_1
– volume-title: Software Reliability‐Measurement, Prediction, Applications
  year: 1987
  ident: e_1_2_8_119_1
– ident: e_1_2_8_34_1
  doi: 10.1109/TENCON.2005.301242
– ident: e_1_2_8_208_1
  doi: 10.1109/32.21762
– year: 2021
  ident: e_1_2_8_136_1
  article-title: Software effort estimation accuracy prediction of machine learning techniques: a systematic performance evaluation
  publication-title: Softw: Pract Exp
– ident: e_1_2_8_36_1
  doi: 10.1007/s13198-016-0543-y
– volume: 5
  start-page: 11
  issue: 5
  year: 2018
  ident: e_1_2_8_127_1
  article-title: Survey in software reliability growth models: parameter estimation and models ranking
  publication-title: Int J Comput Syst
– ident: e_1_2_8_109_1
  doi: 10.1109/24.740500
– ident: e_1_2_8_144_1
  doi: 10.1016/0950-5849(96)01124-X
– ident: e_1_2_8_181_1
  doi: 10.1080/10618600.2018.1497511
– ident: e_1_2_8_165_1
  doi: 10.1016/j.ijar.2019.05.010
– ident: e_1_2_8_41_1
  doi: 10.30699/IJRRS.4.2.1
– ident: e_1_2_8_192_1
– ident: e_1_2_8_169_1
– ident: e_1_2_8_83_1
  doi: 10.1109/CVPR.2016.611
– ident: e_1_2_8_166_1
  doi: 10.1088/1742-6596/1168/2/022022
– ident: e_1_2_8_197_1
  doi: 10.1007/s11222-018-9817-3
– ident: e_1_2_8_95_1
  doi: 10.1109/TPAMI.2018.2884905
– volume: 168
  start-page: 215
  year: 1998
  ident: e_1_2_8_79_1
  article-title: Ensemble learning in Bayesian neural networks
  publication-title: Nato ASI Series F Comput Syst Sci
– ident: e_1_2_8_7_1
  doi: 10.1007/1-84628-295-0
– ident: e_1_2_8_108_1
  doi: 10.1016/S0164-1212(99)00065-5
– ident: e_1_2_8_49_1
  doi: 10.1145/390016.808456
– volume: 5
  issue: 08
  year: 2018
  ident: e_1_2_8_63_1
  article-title: Bayesian predictive analyses for logarithmic non‐homogeneous Poisson process in software reliability
  publication-title: Open Access Library J
– ident: e_1_2_8_8_1
  doi: 10.1080/00207721.2013.791001
– ident: e_1_2_8_60_1
  doi: 10.1177/17483026211034442
– ident: e_1_2_8_102_1
  doi: 10.1016/j.asoc.2014.04.012
– ident: e_1_2_8_124_1
  doi: 10.4236/ojs.2014.45039
– volume-title: Bayesian Learning for Neural Networks
  year: 2012
  ident: e_1_2_8_78_1
– ident: e_1_2_8_20_1
  doi: 10.1007/s10489-017-1078-x
– ident: e_1_2_8_4_1
  doi: 10.1109/QRS.2016.50
– ident: e_1_2_8_156_1
  doi: 10.1016/j.eswa.2008.10.027
– volume-title: Bayesian Predictive Analyses for an Exponential Non‐Homogeneous Poisson Process in Software Reliability
  year: 2015
  ident: e_1_2_8_126_1
– ident: e_1_2_8_85_1
– ident: e_1_2_8_157_1
  doi: 10.1016/j.eswa.2009.02.064
– start-page: 2575
  volume-title: Variational Dropout and the Local Reparameterization Trick
  year: 2015
  ident: e_1_2_8_176_1
– ident: e_1_2_8_27_1
  doi: 10.1007/s12652-020-02476-z
– ident: e_1_2_8_24_1
  doi: 10.1002/stvr.1663
– ident: e_1_2_8_43_1
  doi: 10.2307/1403763
– ident: e_1_2_8_71_1
– ident: e_1_2_8_47_1
  doi: 10.1109/ISSRE.1996.558886
– ident: e_1_2_8_112_1
  doi: 10.52866/ijcsm.2021.02.02.003
– ident: e_1_2_8_66_1
– ident: e_1_2_8_120_1
  doi: 10.1002/qre.1793
– ident: e_1_2_8_148_1
  doi: 10.1109/ICCTA.2007.89
– volume: 28
  start-page: 428443
  year: 1984
  ident: e_1_2_8_205_1
  article-title: Software reliability analysis models
  publication-title: lBM J Res Develop
– ident: e_1_2_8_215_1
  doi: 10.1002/qre.2653
– ident: e_1_2_8_14_1
  doi: 10.1177/1748006X16673767
– start-page: 81
  volume-title: NHPP‐Based SRGM using Time‐Dependent Fault Reduction Factors (FRF) and Gompertz TEF
  year: 2020
  ident: e_1_2_8_117_1
– ident: e_1_2_8_172_1
  doi: 10.1016/j.asoc.2018.07.039
– ident: e_1_2_8_18_1
– ident: e_1_2_8_141_1
  doi: 10.1016/S0019-9958(65)90241-X
– ident: e_1_2_8_25_1
  doi: 10.1002/stvr.1717
– ident: e_1_2_8_212_1
  doi: 10.1002/asmb.453
– ident: e_1_2_8_30_1
  doi: 10.1016/S0045-7906(04)00025-4
– volume: 45
  start-page: 98
  issue: 5
  year: 2017
  ident: e_1_2_8_115_1
  article-title: A survey of software reliability models
  publication-title: Int J Res Appl Sci Eng Technol (IJRASET)
– ident: e_1_2_8_139_1
  doi: 10.1016/j.ress.2004.03.028
– ident: e_1_2_8_189_1
  doi: 10.1007/978-1-4471-1599-1_2
– ident: e_1_2_8_39_1
  doi: 10.1038/s41598-018-24271-9
– ident: e_1_2_8_51_1
  doi: 10.1109/TR.1983.5221735
– ident: e_1_2_8_133_1
  doi: 10.1002/9781119223931
– ident: e_1_2_8_143_1
  doi: 10.1016/S0164-1212(97)00055-1
– ident: e_1_2_8_140_1
  doi: 10.1007/s13198‐021‐01276‐8
– ident: e_1_2_8_17_1
  doi: 10.1115/1.4037228
– ident: e_1_2_8_72_1
  doi: 10.1016/j.asoc.2012.08.015
– ident: e_1_2_8_90_1
  doi: 10.1109/ASRU.2015.7404775
– ident: e_1_2_8_122_1
  doi: 10.1109/2.544240
– ident: e_1_2_8_154_1
  doi: 10.1016/j.eswa.2009.11.085
– ident: e_1_2_8_137_1
  doi: 10.4156/jcit.vol6.issue7.43
– volume-title: Bayesian Methods for Adaptive Models. PhD Thesis
  year: 1992
  ident: e_1_2_8_76_1
– ident: e_1_2_8_29_1
  doi: 10.1007/s13369-019-04128-7
– ident: e_1_2_8_101_1
  doi: 10.1016/j.procs.2015.07.450
– start-page: 465
  volume-title: Software Reliability Research
  year: 1972
  ident: e_1_2_8_46_1
– ident: e_1_2_8_89_1
  doi: 10.1109/ICDAR.2015.7333848
– ident: e_1_2_8_219_1
  doi: 10.1016/j.infsof.2006.09.001
– ident: e_1_2_8_67_1
  doi: 10.3115/v1/D14-1179
– ident: e_1_2_8_150_1
  doi: 10.1016/j.jss.2007.05.011
– start-page: 303
  volume-title: Handbook of Software Reliability Engineering
  year: 1996
  ident: e_1_2_8_210_1
– start-page: 213
  volume-title: Improving Software Reliability Prediction Accuracy using CRO‐based FLANN
  year: 2019
  ident: e_1_2_8_15_1
– ident: e_1_2_8_158_1
  doi: 10.1049/iet-sen.2011.0138
– ident: e_1_2_8_182_1
  doi: 10.2307/3318418
– ident: e_1_2_8_74_1
  doi: 10.1109/IJCNN.1989.118274
– ident: e_1_2_8_68_1
  doi: 10.1016/j.apm.2016.01.016
– ident: e_1_2_8_159_1
  doi: 10.1109/TSE.2002.1033229
– ident: e_1_2_8_129_1
  doi: 10.1109/24.589931
– ident: e_1_2_8_174_1
– start-page: 197
  volume-title: Software Reliability Predictions using Artificial Neural Networks
  year: 2007
  ident: e_1_2_8_223_1
– ident: e_1_2_8_42_1
  doi: 10.1007/s10489-011-0316-x
– ident: e_1_2_8_188_1
  doi: 10.1007/978-94-011-5014-9_5
– ident: e_1_2_8_23_1
  doi: 10.1002/smr.2150
– ident: e_1_2_8_92_1
– ident: e_1_2_8_100_1
  doi: 10.1016/j.jss.2006.06.017
– volume-title: Data Repository Release 10
  year: 2007
  ident: e_1_2_8_218_1
– ident: e_1_2_8_152_1
  doi: 10.7763/IJCTE.2010.V2.109
– ident: e_1_2_8_151_1
  doi: 10.1109/SNPD.2009.49
– ident: e_1_2_8_116_1
  doi: 10.4018/JCIT.2019040101
– ident: e_1_2_8_107_1
  doi: 10.1016/j.infsof.2015.03.001
– ident: e_1_2_8_31_1
  doi: 10.1080/13873954.2012.678011
– ident: e_1_2_8_96_1
  doi: 10.1109/ACCESS.2017.2779181
– ident: e_1_2_8_62_1
– volume-title: Bayesian Predictive Analyses for Non‐Homogeneous Poisson Process in Software Reliability with Musa‐okumoto Intensity Function. Doctoral Dissertation
  year: 2019
  ident: e_1_2_8_123_1
– ident: e_1_2_8_110_1
  doi: 10.1080/0952813X.2018.1552315
– start-page: 485
  volume-title: Probabilistic Models for Software Reliability Prediction
  year: 1972
  ident: e_1_2_8_206_1
– ident: e_1_2_8_173_1
  doi: 10.1007/s10462-011-9208-z
– ident: e_1_2_8_195_1
– ident: e_1_2_8_37_1
  doi: 10.1016/j.ress.2017.10.019
– ident: e_1_2_8_21_1
  doi: 10.1016/j.asoc.2018.06.032
– ident: e_1_2_8_19_1
  doi: 10.1142/S0217595917400176
– ident: e_1_2_8_44_1
  doi: 10.1109/TSE.1982.235728
– ident: e_1_2_8_2_1
  doi: 10.1007/s00607-010-0128-6
– volume-title: Software Reliability Prediction, Center for Software Reliability
  year: 2001
  ident: e_1_2_8_9_1
– ident: e_1_2_8_54_1
  doi: 10.1109/24.326435
– volume-title: Bayesian Methods in Reliability
  year: 2012
  ident: e_1_2_8_125_1
– ident: e_1_2_8_132_1
– ident: e_1_2_8_88_1
– ident: e_1_2_8_180_1
– ident: e_1_2_8_91_1
– ident: e_1_2_8_213_1
  doi: 10.1109/32.90433
– volume: 24
  year: 2011
  ident: e_1_2_8_80_1
  article-title: Practical variational inference for neural networks
  publication-title: Adv Neural Inform Process Syst
– ident: e_1_2_8_134_1
  doi: 10.1016/j.jss.2005.02.025
– volume-title: A Study of the Musa Reliability Model. M. S. Thesis
  year: 1980
  ident: e_1_2_8_209_1
– ident: e_1_2_8_200_1
– ident: e_1_2_8_167_1
  doi: 10.1007/978-3-7908-2604-3_16
– ident: e_1_2_8_81_1
– volume: 3
  start-page: 177
  issue: 3
  year: 2015
  ident: e_1_2_8_111_1
  article-title: A fuzzy inference model for reliability estimation of component‐based software system
  publication-title: Int J Comput Sci Technol
– volume-title: Software Reliability Prediction using Neural Networks. Ph.D. Dissertation
  year: 2006
  ident: e_1_2_8_13_1
– ident: e_1_2_8_198_1
  doi: 10.1080/01621459.2017.1285773
– ident: e_1_2_8_201_1
– volume: 6
  start-page: 2088
  issue: 4
  year: 2016
  ident: e_1_2_8_70_1
  article-title: Software reliability prediction using fuzzy min‐max algorithm and recurrent neural network approach
  publication-title: Int J Electr Comput Eng
– ident: e_1_2_8_104_1
  doi: 10.1007/s10489-010-0253-0
– ident: e_1_2_8_128_1
  doi: 10.1080/01621459.1996.10476944
– start-page: 3104
  volume-title: Sequence to Sequence Learning with Neural Networks
  year: 2014
  ident: e_1_2_8_65_1
– ident: e_1_2_8_3_1
  doi: 10.1007/s00500-020-05385-7
– ident: e_1_2_8_131_1
– ident: e_1_2_8_105_1
  doi: 10.1023/A:1008375228885
– ident: e_1_2_8_138_1
  doi: 10.1016/j.jss.2004.08.023
– volume: 6
  start-page: 1540
  issue: 4
  year: 2017
  ident: e_1_2_8_55_1
  article-title: Analysis of software reliability growth models for quantitative evaluation of software reliability and goodness of fitness metrics
  publication-title: Int J Sci Res
– ident: e_1_2_8_118_1
  doi: 10.1109/TR.1979.5220561
– ident: e_1_2_8_175_1
  doi: 10.5772/3409
– ident: e_1_2_8_221_1
  doi: 10.1109/TR.2011.2134350
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: e_1_2_8_84_1
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: e_1_2_8_106_1
  doi: 10.1007/s00500-015-1738-x
– ident: e_1_2_8_194_1
  doi: 10.1007/978-1-4612-4024-2
– ident: e_1_2_8_164_1
  doi: 10.1007/978-3-030-37599-7_1
– ident: e_1_2_8_184_1
  doi: 10.3150/18-BEJ1073
SSID ssj0010098
Score 2.4106834
SecondaryResourceType review_article
Snippet Softwares play an important role in controlling complex systems. Monitoring the proper functioning of the components of such systems is the principal role of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 412
SubjectTerms Bayesian analysis
Bayesian methods
Complex systems
fuzzy logic inference systems
neural network algorithms
Prediction models
Software reliability
SRGM
Subsystems
supervised algorithms
Title Software reliability prediction: A survey
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqre.3220
https://www.proquest.com/docview/2764890068
Volume 39
WOSCitedRecordID wos000932973100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010098
  issn: 0748-8017
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMAfsnnQg9_idEoFUTzUpelHGm9DNzyModPBbiVtEhBkznab7L83r-0-BAXBS3tJ2iZ97-W9fPwewAUnMhAuFTah2rU9nzk21x5eXO2TBJFkedaSDut2w8GAP5a7KvEsTMGHWEy4oWbk9hoVXMRZYwkN_UjVjZFGE65XqRFbrwLV-16731msISAqs4BwhmiH2Rw9S2hjXvf7YLT0MFf91HygaW__5xN3YKt0L61mIQ-7sKaGe7C5Ah3ch-tnY3k_Raqs1Dy-wHTPrFGKKzb4l26tppVN0qmaHUC_3Xq5e7DLhAl2YkZtYjuB4poxZdwobfTSDQmNfRILxeKQ60BRyXzpSUcmwhFEG9cjNgGU8ANtwsCACvcQKsP3oToCS0oeSJUg7ot6yuWCUd8YTo9LJVmsRA2u5j0XJSVNHJNavEUFB5lGpvERNr4G54uSo4Kg8UOZ-rzzo1KHsoia14Ucz7DU4DLv5l_rR0-9Ft6P_1rwBDYwb3yx_boOlXE6UaewnkzHr1l6VkrSF0uOynU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFIAPYxPUB-_idGoFUXyoS9NLGn0a6pg4h84N9lbSJgFB5uwusn9v0ss2QUHwpX1J2iY95-ScXL4DcEoR95iNmYmwtE3HJZZJpaMvtnRRpJFkSdaSJmm1_F6PPhXgOj8Lk_IhZhNuWjMSe60VXE9IV-fU0I9YXCpxVPF6yVFS5BahdNuud5uzRQTNykwpnL42xCRnzyJczet-H43mLuaio5qMNPX1f33jBqxlDqZRSyViEwqivwWrC9jBbbh4Ubb3k8XCiNXzU1D31BjEes1G_6cro2YMx_FETHegW7_r3DTMLGWCGalxG5mWJ6gkRChHSirNtH2EQxeFTJDQp9ITmBOXO9ziEbMYksr5CFUIxVxPqkDQw8zehWL_vS_2wOCcelxEGviFHWFTRrCrTKdDueAkFKwM53nXBVHGE9dpLd6ClISMA9X4QDe-DCezkoOUofFDmUre-0GmRcMAq9f5VJ9iKcNZ0s-_1g-e23f6vv_Xgsew3Og8NoPmfevhAFZ0Fvl0M3YFiqN4LA5hKZqMXofxUSZWX3kmzmU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFIAPYxPRB-_idGoFUXyoy9JLGn0abkVxjDkd7K2kTQKCzNldZP_epJdtgoLgS_ty0jZpzq1pvgNwThF3mYWZibC0TNshNZNKWx8s6aBII8mSqiUt0m57_T7tFOA23wuT8iHmH9y0ZiT2Wiu4GHJZXVBDP2JxraajytdLtkNdpZWlRtfvteaLCJqVmVI4PW2ISc6eRbiat_3ujRYh5nKgmngaf_Nfz7gFG1mAadTTGbENBTHYgfUl7OAuXD0r2_vJYmHE6vopqHtmDGO9ZqPf041RN0aTeCpme9Dzmy9392ZWMsGMlN9GZs0VVBIiVCAllWZaHsKhg0ImSOhR6QrMicNtXuMRqzEkVfARqhSKOa5UiaCLmbUPxcH7QByAwTl1uYg08AvbwqKMYEeZTptywUkoWBku86ELoownrstavAUpCRkHqvOB7nwZzuaSw5Sh8YNMJR_9INOiUYDV7Tyqd7GU4SIZ51_bB0_dpj4f_lXwFFY7DT9oPbQfj2BNF5FP_8WuQHEcT8QxrETT8esoPslm1RdMmc3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Software+reliability+prediction%3A+A+survey&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Oveisi%2C+Shahrzad&rft.au=Moeini%2C+Ali&rft.au=Mirzaei%2C+Sayeh&rft.au=Mohammad+Ali+Farsi&rft.date=2023-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=39&rft.issue=1&rft.spage=412&rft.epage=453&rft_id=info:doi/10.1002%2Fqre.3220&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon