Software reliability prediction: A survey
Softwares play an important role in controlling complex systems. Monitoring the proper functioning of the components of such systems is the principal role of softwares. Often, a petite fault in one of the subsystems may cause irreparable damages; therefore, it is of great importance to be able to pr...
Saved in:
| Published in: | Quality and reliability engineering international Vol. 39; no. 1; pp. 412 - 453 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bognor Regis
Wiley Subscription Services, Inc
01.02.2023
|
| Subjects: | |
| ISSN: | 0748-8017, 1099-1638 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Softwares play an important role in controlling complex systems. Monitoring the proper functioning of the components of such systems is the principal role of softwares. Often, a petite fault in one of the subsystems may cause irreparable damages; therefore, it is of great importance to be able to predict software faults and estimate the reliability of softwares. In this survey, we present a classification of various methods proposed in the literature to predict software reliability. This study summarizes the results of more than 200 research papers in the field. We also discuss the challenges involved in prediction methods along with proposed partial solutions (i.e., Bayesian methods) to improve the accuracy of such predictions. Moreover, we review numerous evaluation measures introduced so far to assess the performance of prediction models, the datasets they are based on, and also the results they yield. |
|---|---|
| AbstractList | Softwares play an important role in controlling complex systems. Monitoring the proper functioning of the components of such systems is the principal role of softwares. Often, a petite fault in one of the subsystems may cause irreparable damages; therefore, it is of great importance to be able to predict software faults and estimate the reliability of softwares. In this survey, we present a classification of various methods proposed in the literature to predict software reliability. This study summarizes the results of more than 200 research papers in the field. We also discuss the challenges involved in prediction methods along with proposed partial solutions (i.e., Bayesian methods) to improve the accuracy of such predictions. Moreover, we review numerous evaluation measures introduced so far to assess the performance of prediction models, the datasets they are based on, and also the results they yield. |
| Author | Mirzaei, Sayeh Moeini, Ali Farsi, Mohammad Ali Oveisi, Shahrzad |
| Author_xml | – sequence: 1 givenname: Shahrzad surname: Oveisi fullname: Oveisi, Shahrzad organization: University of Tehran – sequence: 2 givenname: Ali surname: Moeini fullname: Moeini, Ali email: moeini@ut.ac.ir organization: University of Tehran – sequence: 3 givenname: Sayeh surname: Mirzaei fullname: Mirzaei, Sayeh organization: University of Tehran – sequence: 4 givenname: Mohammad Ali surname: Farsi fullname: Farsi, Mohammad Ali organization: (Ministry of Science, Research and Technology) |
| BookMark | eNp10E1Lw0AQBuBFKthWwZ8Q8KKH1NlNsh_eSqkfUBC_zssmmYUtMWl3E0v-fVPrSfQ0l2fmHd4JGdVNjYRcUphRAHa79ThLGIMTMqagVEx5IkdkDCKVsQQqzsgkhDXAgJUck5u3xrY74zHyWDmTu8q1fbTxWLqidU19F82j0Pkv7M_JqTVVwIufOSUf98v3xWO8en54WsxXccFUAkMeKisEgsyslJBIYHkGuUGRS2U5slJkZVrSsjDUgJUpzxmnJuOWUcqZSabk6nh345tth6HV66bz9RCpmeCpVABcDmp2VIVvQvBodeFac_i49cZVmoI-1KGHOvShjmHh-tfCxrtP4_u_aHykO1dh_6_TL6_Lb78Hx7Zuog |
| CitedBy_id | crossref_primary_10_1007_s12065_024_00940_9 crossref_primary_10_1016_j_eswa_2025_127359 crossref_primary_10_1016_j_ress_2025_111262 crossref_primary_10_1016_j_ast_2024_109101 crossref_primary_10_1016_j_jksuci_2024_102132 crossref_primary_10_1080_02286203_2023_2201905 crossref_primary_10_1007_s11227_024_06046_4 crossref_primary_10_26599_TST_2024_9010101 crossref_primary_10_1002_qre_3616 crossref_primary_10_1007_s10791_025_09597_z |
| Cites_doi | 10.1109/TSE.1985.231889 10.1007/s12204-019-2151-x 10.1016/j.matpr.2020.11.518 10.1016/j.jss.2013.03.045 10.1109/ISSRE.1991.145350 10.1109/ICPR48806.2021.9412733 10.1007/s40010-018-0551-1 10.3390/e17063989 10.1109/TPWRS.2019.2919157 10.1007/BF00872054 10.1016/j.asoc.2019.02.008 10.1016/j.eswa.2007.12.029 10.1109/COMPSAC.2006.130 10.1002/qre.2098 10.1080/00207729708929380 10.1109/WCSE.2010.51 10.1109/TR.2010.2103590 10.1146/annurev-statistics-060116-054045 10.1609/aaai.v30i1.10199 10.1016/j.ress.2006.04.007 10.1002/asm.3150010108 10.1109/TSE.1985.232177 10.1007/978-981-13-1402-5_17 10.1063/1.2423258 10.1088/1757-899X/495/1/012003 10.1016/j.procs.2016.06.083 10.1214/aoms/1177729694 10.1016/j.knosys.2018.07.006 10.1145/168304.168306 10.1109/ICTUS.2017.8285989 10.1016/j.engappai.2012.01.023 10.1016/S0378-7206(98)00041-X 10.1002/stvr.1710 10.1109/ICFHR.2014.55 10.1609/aaai.v30i1.10200 10.1109/MS.2007.182 10.1142/4011 10.1109/TR.2021.3105531 10.1016/S0950-5849(02)00128-3 10.1137/1.9781611976236.23 10.1109/ICCET.2010.5485840 10.1109/TENCON.2005.301242 10.1109/32.21762 10.1007/s13198-016-0543-y 10.1109/24.740500 10.1016/0950-5849(96)01124-X 10.1080/10618600.2018.1497511 10.1016/j.ijar.2019.05.010 10.30699/IJRRS.4.2.1 10.1109/CVPR.2016.611 10.1088/1742-6596/1168/2/022022 10.1007/s11222-018-9817-3 10.1109/TPAMI.2018.2884905 10.1007/1-84628-295-0 10.1016/S0164-1212(99)00065-5 10.1145/390016.808456 10.1080/00207721.2013.791001 10.1177/17483026211034442 10.1016/j.asoc.2014.04.012 10.4236/ojs.2014.45039 10.1007/s10489-017-1078-x 10.1109/QRS.2016.50 10.1016/j.eswa.2008.10.027 10.1016/j.eswa.2009.02.064 10.1007/s12652-020-02476-z 10.1002/stvr.1663 10.2307/1403763 10.1109/ISSRE.1996.558886 10.52866/ijcsm.2021.02.02.003 10.1002/qre.1793 10.1109/ICCTA.2007.89 10.1002/qre.2653 10.1177/1748006X16673767 10.1016/j.asoc.2018.07.039 10.1016/S0019-9958(65)90241-X 10.1002/stvr.1717 10.1002/asmb.453 10.1016/S0045-7906(04)00025-4 10.1016/j.ress.2004.03.028 10.1007/978-1-4471-1599-1_2 10.1038/s41598-018-24271-9 10.1109/TR.1983.5221735 10.1002/9781119223931 10.1016/S0164-1212(97)00055-1 10.1007/s13198‐021‐01276‐8 10.1115/1.4037228 10.1016/j.asoc.2012.08.015 10.1109/ASRU.2015.7404775 10.1109/2.544240 10.1016/j.eswa.2009.11.085 10.4156/jcit.vol6.issue7.43 10.1007/s13369-019-04128-7 10.1016/j.procs.2015.07.450 10.1109/ICDAR.2015.7333848 10.1016/j.infsof.2006.09.001 10.3115/v1/D14-1179 10.1016/j.jss.2007.05.011 10.1049/iet-sen.2011.0138 10.2307/3318418 10.1109/IJCNN.1989.118274 10.1016/j.apm.2016.01.016 10.1109/TSE.2002.1033229 10.1109/24.589931 10.1007/s10489-011-0316-x 10.1007/978-94-011-5014-9_5 10.1002/smr.2150 10.1016/j.jss.2006.06.017 10.7763/IJCTE.2010.V2.109 10.1109/SNPD.2009.49 10.4018/JCIT.2019040101 10.1016/j.infsof.2015.03.001 10.1080/13873954.2012.678011 10.1109/ACCESS.2017.2779181 10.1080/0952813X.2018.1552315 10.1007/s10462-011-9208-z 10.1016/j.ress.2017.10.019 10.1016/j.asoc.2018.06.032 10.1142/S0217595917400176 10.1109/TSE.1982.235728 10.1007/s00607-010-0128-6 10.1109/24.326435 10.1109/32.90433 10.1016/j.jss.2005.02.025 10.1007/978-3-7908-2604-3_16 10.1080/01621459.2017.1285773 10.1007/s10489-010-0253-0 10.1080/01621459.1996.10476944 10.1007/s00500-020-05385-7 10.1023/A:1008375228885 10.1016/j.jss.2004.08.023 10.1109/TR.1979.5220561 10.5772/3409 10.1109/TR.2011.2134350 10.1007/s00500-015-1738-x 10.1007/978-1-4612-4024-2 10.1007/978-3-030-37599-7_1 10.3150/18-BEJ1073 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons Ltd. 2023 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7TB 8FD FR3 |
| DOI | 10.1002/qre.3220 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1638 |
| EndPage | 453 |
| ExternalDocumentID | 10_1002_qre_3220 QRE3220 |
| Genre | reviewArticle |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADOZA ADXAS AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7TB 8FD FR3 |
| ID | FETCH-LOGICAL-c2930-16e9f77e085f8803802b50bae7b89f6e2d75d4d1dca1a0f846b261a56f21162a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932973100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0748-8017 |
| IngestDate | Fri Jul 25 12:14:09 EDT 2025 Sat Nov 29 02:33:17 EST 2025 Tue Nov 18 22:37:49 EST 2025 Wed Jan 22 16:20:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2930-16e9f77e085f8803802b50bae7b89f6e2d75d4d1dca1a0f846b261a56f21162a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2764890068 |
| PQPubID | 1016437 |
| PageCount | 42 |
| ParticipantIDs | proquest_journals_2764890068 crossref_citationtrail_10_1002_qre_3220 crossref_primary_10_1002_qre_3220 wiley_primary_10_1002_qre_3220_QRE3220 |
| PublicationCentury | 2000 |
| PublicationDate | February 2023 2023-02-00 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | Quality and reliability engineering international |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1991; 17 2002; 18 2011; 60 2019; 12 1999; 49 1997; 46 2016; 32 2012; 18 1972 1975; 10 2018; 42 2018; 48 1994; 62 2014; 22 2021; 70 1979; 28 2004; 30 2018; 9 1988 1988 2018; 8 2018; 170 2018; 5 2000; 13 2019; 21 2020; 90 2019; 25 1987 2019; 28 2014; 15 2019; 29 2016; 40 1983 1981 1980 1985; 11 1985; 12 2010; 2 1998; 168 2005; 77 2015; 57 1989; 2 2018; 28 2010; 37 2021; 45 2019; 31 2019; 33 2019; 34 2013; 86 1998 1996 1997; 28 2007; 92 2005; 87 1995 2020; 36 1993 2012; 37 1991 1996; 91 2012; 36 2011; 6 1999 2016; 4 2016; 6 2006b; 79 2011; 92 2015; 63 2016; 20 2007; 80 1997; 39 2020; 25 1956; 8 2021; 25 2017; 6 1987; 1 2013; 26 2017; 4 1984; 28 1992a 2017; 45 1951; 22 2017; 112 1998; 47 2015; 46 2020; 6 1996; 29 2014; 4 2001 2013; 13 2017; 34 1982; 4 2002; 44 2018; 70 2011; 24 2020; 45 2018; 71 2016; 230 2007; 24 2019; 112 2016; 89 1985; 1 2015; 17 2015; 3 2021; 2 2012 2011 2019; 77 2010 2009 2008 2007 2006 2005 2017; 29 2011; 36 2006; 2 1994; 43 2002; 28 2009; 36 2021; 15 2021; 12 2017; 17 2021 2020 2018; 159 2019 2018 2017 2016 2015 2014 2013 2012; 6 1989; 15 2008; 81 1983; R‐32 1998; 34 2009; 37 1994; 4 2019; 495 2007; 49 e_1_2_8_26_1 e_1_2_8_49_1 Sutskever I (e_1_2_8_65_1) 2014 Hudaib A (e_1_2_8_127_1) 2018; 5 e_1_2_8_203_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_38_1 e_1_2_8_215_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_30_1 Mahmood Y (e_1_2_8_136_1) 2021 Bhuyan MK (e_1_2_8_70_1) 2016; 6 MacKay D (e_1_2_8_76_1) 1992 Boehm BW (e_1_2_8_217_1) 1981 e_1_2_8_25_1 e_1_2_8_48_1 Meeker WQ (e_1_2_8_185_1) 2021 Iyer RK (e_1_2_8_210_1) 1996 e_1_2_8_204_1 Musa JD (e_1_2_8_119_1) 1987 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_14_1 Cheruiyot N (e_1_2_8_63_1) 2018; 5 Ohba M (e_1_2_8_205_1) 1984; 28 e_1_2_8_37_1 Viswanath SPK (e_1_2_8_13_1) 2006 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_220_1 ISBSG (e_1_2_8_218_1) 2007 Barber D (e_1_2_8_79_1) 1998; 168 Bhuyan MK (e_1_2_8_57_1) 2016; 4 e_1_2_8_81_1 e_1_2_8_7_1 Ideri A (e_1_2_8_147_1) 2006 Dhami HS (e_1_2_8_55_1) 2017; 6 Shelbi J (e_1_2_8_115_1) 2017; 45 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 Jain M (e_1_2_8_117_1) 2020 e_1_2_8_17_1 e_1_2_8_122_1 Du C (e_1_2_8_97_1) 2017; 29 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 Musa JD (e_1_2_8_45_1) 1983 e_1_2_8_221_1 e_1_2_8_27_1 Kingma DP (e_1_2_8_176_1) 2015 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_173_1 Behera AK (e_1_2_8_15_1) 2019 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_16_1 e_1_2_8_92_1 Graves (e_1_2_8_80_1) 2011; 24 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_169_1 e_1_2_8_146_1 Srivastava N (e_1_2_8_84_1) 2014; 15 e_1_2_8_68_1 Jaakkola T (e_1_2_8_187_1) 1998 e_1_2_8_207_1 Anna‐Mary BM (e_1_2_8_209_1) 1980 e_1_2_8_151_1 Oveisi S (e_1_2_8_5_1) 2019; 12 e_1_2_8_22_1 e_1_2_8_113_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_211_1 Kumar A (e_1_2_8_11_1) 2011 Chatterjee S (e_1_2_8_28_1) 2019; 33 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_72_1 e_1_2_8_29_1 Akuno AO (e_1_2_8_126_1) 2015 e_1_2_8_200_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_212_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 Wright D (e_1_2_8_9_1) 2001 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 Denker J (e_1_2_8_73_1) 1987; 1 e_1_2_8_71_1 Cheruiyot N (e_1_2_8_123_1) 2019 Sander P (e_1_2_8_125_1) 2012 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_201_1 Denker JS (e_1_2_8_75_1) 1991 e_1_2_8_3_1 e_1_2_8_130_1 Hu QP (e_1_2_8_223_1) 2007 Oveisi S (e_1_2_8_6_1) 2020; 6 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_199_1 e_1_2_8_36_1 e_1_2_8_59_1 Reddy PV (e_1_2_8_153_1) 2010; 2 Boetticher G (e_1_2_8_216_1) 2009 e_1_2_8_190_1 Jelinski Z (e_1_2_8_46_1) 1972 e_1_2_8_213_1 Neal RM (e_1_2_8_78_1) 2012 e_1_2_8_141_1 e_1_2_8_164_1 Jaiswal GP (e_1_2_8_111_1) 2015; 3 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 Hammouri A (e_1_2_8_222_1) 2018; 9 e_1_2_8_103_1 Aggarwal G (e_1_2_8_33_1) 2014; 4 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 Shooman ML (e_1_2_8_206_1) 1972 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 Kim HS (e_1_2_8_61_1) 2009; 37 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 Kumar KS (e_1_2_8_12_1) 2009 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
| References_xml | – start-page: 341 year: 1996 end-page: 363 article-title: Exponential convergence of Langevin distributions and their discrete approximations publication-title: Bernoulli – start-page: 1 year: 2019 end-page: 12 article-title: Deep neural network ensembles – start-page: 275 year: 2009 end-page: 280 article-title: Using an artificial neural network for predicting embedded software development effort – volume: 43 start-page: 408 issue: 3 year: 1994 end-page: 413 article-title: Software‐reliability growth model: primary‐failures generate secondary‐faults under imperfect debugging publication-title: IEEE Trans Reliab – volume: 2 start-page: 18 issue: 2 year: 2021 end-page: 24 article-title: Investigating the use of an adaptive neuro‐fuzzy inference system in software development effort estimation publication-title: Iraqi J Comput Sci Math – volume: 36 start-page: 7346 issue: 4 year: 2009 end-page: 7354 article-title: A systematic review of software fault predictions studies publication-title: Expert Syst Appl – volume: 2 start-page: 17 issue: 1 year: 2010 end-page: 19 article-title: Neural network—a novel technique for software effort estimation publication-title: Int J Comput Theory Eng – start-page: 261 year: 2007 end-page: 266 article-title: Neural network‐based effort estimation using class points for OO systems – volume: 36 start-page: 1678 issue: 5 year: 2020 end-page: 1707 article-title: Software reliability prediction and management: a multiple change‐point model approach publication-title: Qual Reliab Eng Int – volume: 42 start-page: 246 issue: 1 year: 2018 end-page: 252 article-title: Bayesian neural networks with weight sharing using Dirichlet processes publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 29 start-page: 3084 issue: 7 year: 2017 end-page: 3096 article-title: Learning deep generative models with doubly stochastic gradient MCMC publication-title: IEEE Trans Neural Netw Learn Syst – start-page: 299 year: 1996 end-page: 307 article-title: Unification of finite failure non‐homogeneous Poisson process models through test coverage – volume: 230 start-page: 579 issue: 6 year: 2016 end-page: 597 article-title: Change point–based software reliability model under imperfect debugging with revised concept of fault dependency publication-title: Proc Inst Mech Eng Part O: J Risk Reliab – volume: 89 start-page: 359 year: 2016 end-page: 368 article-title: Fuzzy logic‐based software reliability quantification framework: early‐stage perspective (FLSRQF) publication-title: Proc Comput Sci – volume: 28 issue: 5 year: 2018 article-title: Neural network for software reliability analysis of dynamically weighted NHPP growth models with imperfect debugging publication-title: Softw Test Verif Reliab – volume: 6 start-page: 5427 year: 2017 end-page: 5437 article-title: An empirical study on modeling and prediction of bitcoin prices with bayesian neural networks based on blockchain information publication-title: IEEE Access – start-page: 1674 year: 2017 end-page: 1703 article-title: Non‐convex learning via stochastic gradient langevin dynamics: a nonasymptotic analysis – year: 2008 article-title: An algorithm for software reliability growth model selection – volume: 31 start-page: 369 issue: 3 year: 2019 end-page: 391 article-title: A fuzzy rule‐based generation algorithm in interval type‐2 fuzzy logic system for fault prediction in the early phase of software development publication-title: J Exp Theor Artif Intell – start-page: 65 year: 2015 end-page: 70 article-title: Rnndrop: a novel dropout for rnns in asr – start-page: 853 year: 1991 end-page: 859 – volume: 47 start-page: 268 issue: 3 year: 1998 end-page: 278 article-title: Software reliability modeling: an approach to early reliability prediction publication-title: IEEE Trans Reliab – volume: 3 start-page: 177 issue: 3 year: 2015 end-page: 182 article-title: A fuzzy inference model for reliability estimation of component‐based software system publication-title: Int J Comput Sci Technol – year: 2019 – start-page: 221 year: 2019 end-page: 235 article-title: Revisiting software reliability publication-title: Data Manag Analy Innov – volume: 29 start-page: 69 issue: 11 year: 1996 end-page: 77 article-title: Predicting software reliability publication-title: IEEE Comput – year: 2007 article-title: Comparison of artificial neural network and regression models in software effort estimation – volume: 25 start-page: 57 issue: 1 year: 2020 end-page: 64 article-title: Reliability analysis of cloud service‐based applications through SRGM and NMSPN publication-title: J Shanghai Jiaotong Univ (Sci) – start-page: 1050 year: 2016 end-page: 1059 article-title: Dropout as a Bayesian approximation: representing model uncertainty in deep learning – volume: 28 start-page: 181 issue: 3 year: 1979 end-page: 191 article-title: Validity of execution‐time theory of software reliability publication-title: IEEE Trans Reliab – year: 2007 – volume: 80 start-page: 606 issue: 4 year: 2007 end-page: 615 article-title: Neural‐network‐based approaches for software reliability estimation using dynamic weighted combinational models publication-title: J Syst Softw – start-page: 1612 year: 2006 end-page: 1617 article-title: An experiment on the design of radial basis function neural networks for software cost estimation publication-title: IEEE Inform Commun Technol ICTTA – volume: 87 start-page: 45 issue: 1 year: 2005 end-page: 51 article-title: Evolutionary neural network modeling for software cumulative failure time prediction publication-title: Reliab Eng Syst Saf – volume: 9 start-page: 230 issue: 1 year: 2018 end-page: 244 article-title: Software reliability prediction using machine learning techniques publication-title: Int J Syst Assur Eng Manag – volume: 4 start-page: 402 issue: 5 year: 2014 end-page: 411 article-title: One‐sample Bayesian predictive analyses for an exponential non‐homogeneous poisson process in software reliability publication-title: Open J Stat – volume: 45 start-page: 98 issue: 5 year: 2017 article-title: A survey of software reliability models publication-title: Int J Res Appl Sci Eng Technol (IJRASET) – volume: 13 start-page: 19 year: 2000 end-page: 40 article-title: Application of Bayesian network learning methods to waste water treatment plants publication-title: Appl Intell – volume: 40 start-page: 6324 issue: 13–14 year: 2016 end-page: 6339 article-title: An optimized method for software reliability model based on nonhomogeneous poisson process publication-title: Appl Math Modell – volume: 17 start-page: 334 issue: 4 year: 1991 article-title: A method for software reliability analysis and prediction application to the TROPICO‐R switching system publication-title: IEEE Trans Softw Eng – year: 1995 – volume: 86 start-page: 1923 issue: 7 year: 2013 end-page: 1932 article-title: An approach to software reliability prediction based on time series modeling publication-title: J Syst Softw – volume: 17 start-page: 1 issue: 3 year: 2017 end-page: 11 article-title: SFTA‐based approach for safety/reliability analysis of operational use‐cases in cyber‐physical systems publication-title: J Comput Inf Sci Eng – volume: 4 issue: 1 year: 2014 article-title: Software reliability growth model publication-title: Int J Adv Res Comput Sci Softw Eng – volume: 6 start-page: 171 issue: 3 year: 2020 end-page: 180 article-title: Design software failure mode and effect analysis using Fuzzy TOPSIS based on Fuzzy entropy publication-title: J Adv Comput Eng Technol – volume: 24 start-page: 82 issue: 6 year: 2007 end-page: 88 article-title: Using software reliability growth models in practice publication-title: IEEE Softw – volume: 112 start-page: 85 year: 2019 end-page: 104 article-title: Eliminating overfitting of probabilistic topic models on short and noisy text: the role of dropout publication-title: Int J Approx Reason – start-page: 177 year: 2010 end-page: 186 article-title: Large‐scale machine learning with stochastic gradient descent – volume: 21 start-page: 1 issue: 2 year: 2019 end-page: 20 article-title: Modelling fault detection using SRGM in Agile environment and ranking of models publication-title: J Cases Inform Technol (JCIT) – year: 2013 – year: 2009 – start-page: 285 year: 2014 end-page: 290 article-title: Dropout improves recurrent neural networks for handwriting recognition – volume: 25 start-page: 2854 issue: 4A year: 2019 end-page: 2882 article-title: High‐dimensional Bayesian inference via the unadjusted Langevin algorithm publication-title: Bernoulli – volume: 4 start-page: 395 year: 2017 end-page: 421 article-title: Bayesian computing with INLA: a review publication-title: Annu Rev Stat Appl – volume: 5 issue: 08 year: 2018 article-title: Bayesian predictive analyses for logarithmic non‐homogeneous Poisson process in software reliability publication-title: Open Access Library J – volume: 92 start-page: 332 issue: 3 year: 2007 end-page: 340 article-title: Robust recurrent neural network modeling for software fault detection and correction prediction publication-title: Reliab Eng Syst Saf – start-page: 5666 year: 2016 end-page: 5675 article-title: Learning weight uncertainty with stochastic gradient mcmc for shape classification – volume: 77 start-page: 173 issue: 2 year: 2005 end-page: 180 article-title: On‐line prediction of software reliability using an evolutionary connectionist model publication-title: J Syst Softw – volume: 37 start-page: 16 issue: 4 year: 2009 end-page: 22 article-title: Bayesian estimation for inflection S‐shaped software reliability growth model publication-title: J Korean Soc Qual Manag – volume: 2 start-page: 234 year: 2006 end-page: 239 article-title: Early software reliability prediction with extended ANN model – year: 2021 – year: 2011 article-title: Customer‐perceived software reliability: measurement, prediction, application, keynote talk – volume: 28 year: 1984 article-title: Software reliability analysis models publication-title: lBM J Res Develop – start-page: 148 year: 1988 1988 end-page: 153 article-title: Experimental evaluation of software reliability growth models – start-page: 213 year: 2019 end-page: 220 – volume: 4 start-page: 354 year: 1982 end-page: 371 article-title: Software reliability—Status and perspectives publication-title: IEEE Trans Software Eng – volume: 24 year: 2011 article-title: Practical variational inference for neural networks publication-title: Adv Neural Inform Process Syst – volume: 28 start-page: 211 issue: 2 year: 1997 end-page: 216 article-title: Prediction of software reliability using an auto regressive process publication-title: Int J Syst Sci – volume: 170 start-page: 73 year: 2018 end-page: 82 article-title: Software reliability prediction using a deep learning model based on the RNN encoder–decoder publication-title: Reliab Eng Syst Saf – volume: 46 start-page: 76 issue: 1 year: 1997 end-page: 80 article-title: Bayes inference for S‐shaped software reliability growth models publication-title: IEEE Trans Reliab – volume: 79 start-page: 747 year: 2006b end-page: 755 article-title: Software reliability forecasting by support vector machines with simulated vector machines with simulated annealing algorithms publication-title: J Syst Softw – volume: 12 start-page: 77 issue: 1 year: 2019 end-page: 91 article-title: A new approach to promote safety in the software life cycle publication-title: J Comput Robot – volume: 29 issue: 6‐7 year: 2019 article-title: An improved software reliability prediction model by using high precision error iterative analysis method publication-title: Softw Test Verif Reliab – volume: 34 start-page: 4910 issue: 6 year: 2019 end-page: 4920 article-title: Bayesian state estimation for unobservable distribution systems via deep learning publication-title: IEEE Trans Power Syst – year: 2015 – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 12 article-title: Recurrent neural networks for multivariate time series with missing values publication-title: Sci Rep – start-page: 580 year: 2018 end-page: 589 article-title: Autoregressive convolutional neural networks for asynchronous time series – volume: 81 start-page: 356 issue: 3 year: 2008 end-page: 367 article-title: An investigation of artificial neural networks‐based prediction systems in software project management publication-title: J Syst Softw – volume: 6 start-page: 479 issue: 6 year: 2012 end-page: 487 article-title: Artificial neural network‐based metric selection for software fault‐prone prediction model publication-title: IET Softw – volume: 112 start-page: 859 issue: 518 year: 2017 end-page: 877 article-title: Variational inference: a review for statisticians publication-title: J Am Stat Assoc – volume: 90 start-page: 11 issue: 1 year: 2020 end-page: 26 article-title: NHPP‐Based software reliability growth modeling and optimal release policy for N‐Version programming system with increasing fault detection rate under imperfect debugging publication-title: Proc Natl Acad Sci India Sec A: Phys Sci – volume: 32 start-page: 2717 issue: 8 year: 2016 end-page: 2738 article-title: A hybrid model based on singular spectrum analysis and support vector machines regression for failure time series prediction publication-title: Qual Reliab Eng Int – volume: 6 start-page: 349 issue: 7 year: 2011 end-page: 357 article-title: Improved neural network based on dynamic predication model of software reliability publication-title: J Converg Inform Technol – year: 1996 – volume: 34 issue: 03 year: 2017 article-title: An ideal software release policy for an improved software reliability growth model incorporating imperfect debugging with fault removal efficiency and change point publication-title: Asia‐Pac J Oper Res – volume: 2 start-page: 403 year: 1989 end-page: 409 article-title: Consistent inference of probabilities in layered networks: predictions and generalization – volume: 39 start-page: 281 issue: 3 year: 1997 end-page: 289 article-title: A comparison of software effort estimation techniques: using function points with neural networks, case‐based reasoning and regression models publication-title: J Syst Softw – start-page: 199 year: 2020 end-page: 207 article-title: Second‐order optimization for non‐convex machine learning: an empirical study – volume: 18 start-page: 539 issue: 5 year: 2012 end-page: 551 article-title: Effect of change point and imperfect debugging in software reliability and its optimal release policy publication-title: Math Comput Modell Dyn Syst – volume: 70 start-page: 1621 issue: 4 year: 2021 end-page: 1640 article-title: A study of incorporation of deep learning into software reliability modeling and assessment publication-title: IEEE Trans Reliab – year: 1980 – start-page: 197 year: 2007 end-page: 222 – volume: 26 start-page: 293 issue: 1 year: 2013 end-page: 301 article-title: A hybrid algorithm for artificial neural network training publication-title: Eng Appl Artif Intell – volume: 29 issue: 8 year: 2019 article-title: A heterogeneous single changepoint software reliability growth model framework publication-title: Softw Test Verif Reliab – volume: 4 start-page: 1016 issue: 4 year: 2016 article-title: Software reliability assessment using neural networks of computational intelligence based on software failure data publication-title: Bal J Mod Comput – volume: 5 start-page: 11 issue: 5 year: 2018 end-page: 25 article-title: Survey in software reliability growth models: parameter estimation and models ranking publication-title: Int J Comput Syst – start-page: 116 year: 2017 end-page: 119 article-title: On Bayesian inference of software reliability measurement – volume: 15 start-page: 345 issue: 3 year: 1989 end-page: 355 article-title: Structural approach to the estimation of the number of residual software faults based on the hyper‐geometric distribution publication-title: IEEE Trans Softw Eng – volume: 1 start-page: 65 issue: 1 year: 1985 end-page: 77 article-title: Discrete software reliability growth models publication-title: Appl Stoch Models Data Anal – volume: 49 start-page: 32 year: 2007 end-page: 43 article-title: Predicting software defects in varying development lifecycles using Bayesian nets publication-title: Inf Softw Technol – year: 2011 – year: 2010 article-title: Proposing a new software cost estimation model based on artificial neural networks – year: 1981 – volume: 60 start-page: 498 issue: 2 year: 2011 end-page: 514 article-title: Estimation and analysis of some generalized multiple change‐point software reliability models publication-title: IEEE Trans Reliab – start-page: 678 year: 2017 end-page: 689 article-title: Further and stronger analogy between sampling and optimization: langevin Monte Carlo and gradient descent – volume: 71 start-page: 747 year: 2018 end-page: 782 article-title: A dynamic metaheuristic optimization model inspired by biological nervous systems: neural network algorithm publication-title: Appl Soft Comput – volume: 168 start-page: 215 year: 1998 end-page: 238 article-title: Ensemble learning in Bayesian neural networks publication-title: Nato ASI Series F Comput Syst Sci – start-page: 81 year: 2020 end-page: 89 – volume: 20 start-page: 4023 issue: 10 year: 2016 end-page: 4035 article-title: A new fuzzy rule based algorithm for estimating software faults in early phase of development publication-title: Soft Comput – volume: 45 start-page: 2721 issue: 4 year: 2020 end-page: 2741 article-title: Optimal release time determination in intuitionistic fuzzy environment involving randomized cost budget for SDE‐based software reliability growth model publication-title: Arab J Sci Eng – volume: 25 start-page: 3545 issue: 5 year: 2021 end-page: 3564 article-title: Optimal release time determination via fuzzy goal programming approach for SDE‐based software reliability growth model publication-title: Soft Comput – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – volume: 77 start-page: 696 year: 2019 end-page: 713 article-title: A fuzzy‐filtered neuro‐fuzzy framework for software fault prediction for inter‐version and inter‐project evaluation publication-title: Appl Soft Comput – volume: 12 start-page: 1308 year: 2021 end-page: 1321 article-title: Software reliability prediction by recurrent artificial chemical link network publication-title: Int J Syst Assur Eng Manag – year: 1998 – start-page: 1 year: 2005 end-page: 6 article-title: An artificial neural‐network‐based approach to software reliability assessment – volume: 29 start-page: 449 issue: 3 year: 2019 end-page: 482 article-title: Informed sub‐sampling MCMC: approximate Bayesian inference for large datasets publication-title: Stat Comput – year: 1992a – volume: 36 start-page: 10727 issue: 7 year: 2009 end-page: 10734 article-title: An early software‐quality classification based on improved grey relational classifier publication-title: Expert Syst Appl – volume: 12 start-page: 3177 issue: 2 year: 2021 end-page: 3188 article-title: An efficient parameter optimization of software reliability growth model by using chaotic grey wolf optimization algorithm publication-title: J Ambient Intell Humaniz Comput – volume: 2 start-page: 87 issue: 5 year: 2010 end-page: 92 article-title: Software effort estimation using radial basis and generalized regression neural networks publication-title: J Comput – volume: R‐32 issue: 5 year: 1983 article-title: S‐shaped software reliability growth modelling for software error detection publication-title: IEEE Trans Reliabi – volume: 32 start-page: 1253 issue: 3 year: 2016 end-page: 1263 article-title: Computing transition probability in Markov chain for early prediction of software reliability publication-title: Qual Reliab Eng Int – volume: 28 start-page: 205 year: 2019 end-page: 219 article-title: Improving approximate Bayesian computation via quasi‐Monte Carlo publication-title: J Comput Graph Stat – start-page: 2671 year: 2021 end-page: 2676 article-title: MaxDropout: deep neural network regularization based on maximum output values – start-page: 465 year: 1972 end-page: 484 – volume: 12 start-page: 1411 year: 1985 end-page: 1423 article-title: Software reliability models: assumptions, limitations, and applicability publication-title: IEEE Trans Softw Eng – volume: 6 start-page: 2088 issue: 4 year: 2016 end-page: 8708 article-title: Software reliability prediction using fuzzy min‐max algorithm and recurrent neural network approach publication-title: Int J Electr Comput Eng – volume: 17 start-page: 3989 issue: 6 year: 2015 end-page: 4027 article-title: Entropy, information theory, information geometry and Bayesian inference in data, signal and image processing and inverse problems publication-title: Entropy – volume: 11 start-page: 1456 issue: 12 year: 1985 end-page: 1464 article-title: Assessing (Software) reliability growth using a random coefficient autoregressive process and its ramifications publication-title: IEEE Trans Software Eng – start-page: 300 year: 2018 end-page: 323 article-title: Underdamped Langevin MCMC: a non‐asymptotic analysis – volume: 92 start-page: 33 issue: 1 year: 2011 end-page: 48 article-title: Transfer function modelling in software reliability publication-title: Computing – year: 1987 – volume: 37 start-page: 4435 year: 2010 end-page: 4440 article-title: Probabilistic estimation of software size and effort publication-title: Expert Syst Appl – volume: 44 start-page: 911 year: 2002 end-page: 992 article-title: Comparison of artificial neural network and regression models for estimating software development effort publication-title: Inf Softw Technol – volume: 1 start-page: 877 issue: 5 year: 1987 end-page: 922 article-title: Large automatic learning, rule extraction, and generalization publication-title: Complex Syst – start-page: 10 year: 2017 end-page: 708 – start-page: 485 year: 1972 end-page: 502 – volume: 62 start-page: 289 year: 1994 end-page: 317 article-title: Software reliability modeling publication-title: Int Stat Rev – year: 1993 article-title: Software cost estimation using artificial neural networks – volume: 57 start-page: 695 year: 2015 end-page: 702 article-title: An artificial neural‐network approach to software reliability growth modeling publication-title: Proc Comput Sci – volume: 33 start-page: 246 issue: 2 year: 2019 end-page: 256 article-title: Modeling and analysis of software fault detectability and removability with time variant fault exposure ratio, fault removal efficiency, and change point publication-title: Proc Inst Mech Eng Part O: J Risk Reliab – start-page: 681 year: 2015 end-page: 685 article-title: Where to apply dropout in recurrent neural networks for handwriting recognition? – start-page: 5 year: 1993 end-page: 13 article-title: Keeping the neural networks simple by minimizing the description length of the weights – volume: 36 start-page: 2116 issue: 2 year: 2009 end-page: 2122 article-title: Predicting software reliability with neural network ensembles publication-title: Expert Syst Appl – volume: 22 start-page: 629 year: 2014 end-page: 637 article-title: Robust feedforward and recurrent neural network based dynamic weighted combination models for software reliability prediction publication-title: Appl Soft Comput – volume: 39 start-page: 55 year: 1997 end-page: 60 article-title: Software cost estimation using an Albus perceptron (CMAC) publication-title: Inf Softw Technol – volume: 60 start-page: 331 issue: 1 year: 2011 end-page: 340 article-title: A unified approach for developing software reliability growth models in the presence of imperfect debugging and error generation publication-title: IEEE Trans Reliab – start-page: 395 year: 1983 end-page: 423 – start-page: 1861 year: 2015 end-page: 1869 article-title: Probabilistic backpropagation for scalable learning of bayesian neural networks – year: 2021 article-title: LSTM encoder‐decoder dropout model in software reliability prediction publication-title: Int J Reliab Risk Saf: Theory Appl – volume: 34 start-page: 1 year: 1998 end-page: 9 article-title: Software development cost estimation: integrating neural network with cluster analysis publication-title: Inf Manag – volume: 48 start-page: 2214 issue: 8 year: 2018 end-page: 2228 article-title: A Bayesian belief network based model for predicting software faults in early phase of software development process publication-title: Appl Intell – volume: 6 start-page: 1540 issue: 4 year: 2017 end-page: 1548 article-title: Analysis of software reliability growth models for quantitative evaluation of software reliability and goodness of fitness metrics publication-title: Int J Sci Res – volume: 46 start-page: 513 issue: 3 year: 2015 end-page: 525 article-title: A structure‐based software reliability allocation using fuzzy analytic hierarchy process publication-title: Int J Syst Sci – year: 2001 – volume: 28 start-page: 904 issue: 9 year: 2002 end-page: 912 article-title: An enhanced neural network technique for software risk analysis publication-title: IEEE Trans Softw Eng – volume: 9 issue: 2 year: 2018 article-title: Software bug prediction using machine learning approach publication-title: Int J Adv Comput Sci Appl – year: 2010 article-title: Entropic Inference – volume: 70 start-page: 764 year: 2018 end-page: 772 article-title: A Mahalanobis distance based algorithm for assigning rank to the predicted fault prone software modules publication-title: Appl Soft Comput – year: 2018 – volume: 45 start-page: 2660 year: 2021 end-page: 2665 article-title: Reliability prediction analysis of aspect‐oriented application using soft computing techniques publication-title: Mater Today: Proc – volume: 10 issue: 6 year: 1975 article-title: Analysis of error process in computer software publication-title: Sigplan Notices – volume: 18 start-page: 87 year: 2002 end-page: 99 article-title: Calibrating software reliability models when the test environment does not match the user environment publication-title: Appl Stoch Models Bus Ind – start-page: 386 year: 2016 end-page: 397 article-title: Software reliability analysis of NASA space flight software: a practical experience – start-page: 13 year: 1998 end-page: 22 article-title: Variational learning in graphical models and neural networks – start-page: 3104 year: 2014 end-page: 3112 – volume: 13 start-page: 189 issue: 1 year: 2013 end-page: 200 article-title: Hybrid intelligent systems for predicting software reliability publication-title: Appl Soft Comput – volume: 4 start-page: 31 year: 1994 end-page: 52 article-title: Fuzzy systems and neural networks in software engineering project management publication-title: Appl Intell – start-page: 28 year: 1991 end-page: 29 article-title: Parameter estimation of the hyper‐geometric distribution model for real test/debug data – volume: 15 year: 2021 article-title: A modified whale optimization algorithm for parameter estimation of software reliability growth models publication-title: J Algorithms & Comput Technol – volume: 37 start-page: 121 issue: 1 year: 2012 end-page: 129 article-title: Software fault prediction using Nonlinear Autoregressive with eXogenous Inputs (NARX) network publication-title: Appl Intell – volume: 159 start-page: 132 year: 2018 end-page: 147 article-title: Online reliability time series prediction via convolutional neural network and long short term memory for service‐oriented systems publication-title: Knowl‐Based Syst – volume: 31 issue: 3 year: 2019 article-title: A unified approach of testing coverage‐based software reliability growth modelling with fault detection probability, imperfect debugging, and change point publication-title: J Softw: Evol Process – volume: 36 start-page: 178 year: 2012 end-page: 189 article-title: On the practice of artificial intelligence based predictive control scheme: a case study publication-title: Appl Intell – volume: 22 start-page: 79 issue: 1 year: 1951 end-page: 86 article-title: On information and sufficiency publication-title: Ann Math Stat – start-page: 303 year: 1996 end-page: 358 – volume: 2 start-page: 253 year: 2010 end-page: 256 article-title: Research of software reliability combination model based on neural net – year: 2012 – volume: 36 start-page: 153 issue: 2 year: 2011 end-page: 162 article-title: An optimizing BP neural network algorithm based on genetic algorithm publication-title: Artif Intell Rev – volume: 49 start-page: 43 issue: 1 year: 1999 end-page: 48 article-title: Software reliability prediction incorporating information from a similar project publication-title: J Syst Softw – volume: 91 start-page: 763 issue: 434 year: 1996 end-page: 773 article-title: Bayesian computation for nonhomogeneous poisson processes in software reliability publication-title: J Am Stat Assoc – volume: 495 issue: 1 year: 2019 article-title: Review of second‐order optimization techniques in artificial neural networks backpropagation – volume: 30 start-page: 453 issue: 6 year: 2004 end-page: 463 article-title: N‐version programming with imperfect debugging publication-title: Comput Electr Eng – year: 2006 – start-page: 2575 year: 2015 end-page: 2583 – year: 2021 article-title: Software effort estimation accuracy prediction of machine learning techniques: a systematic performance evaluation publication-title: Softw: Pract Exp – volume: 8 start-page: 338 issue: 3 year: 1956 end-page: 353 article-title: Fuzzy sets publication-title: Inform Control – start-page: 1 year: 2013 end-page: 8 article-title: Software reliability prediction via two different implementations of Bayesian model averaging – year: 2017 – volume: 63 start-page: 44 year: 2015 end-page: 57 article-title: A fuzzy logic based approach for phase‐wise software defects prediction using software metrics publication-title: Inf Softw Tech – year: 2006 article-title: Updating probabilities with data and moments – year: 1999 – ident: e_1_2_8_220_1 doi: 10.1109/TSE.1985.231889 – ident: e_1_2_8_56_1 doi: 10.1007/s12204-019-2151-x – ident: e_1_2_8_59_1 doi: 10.1016/j.matpr.2020.11.518 – volume: 6 start-page: 171 issue: 3 year: 2020 ident: e_1_2_8_6_1 article-title: Design software failure mode and effect analysis using Fuzzy TOPSIS based on Fuzzy entropy publication-title: J Adv Comput Eng Technol – ident: e_1_2_8_22_1 – ident: e_1_2_8_10_1 doi: 10.1016/j.jss.2013.03.045 – volume: 2 start-page: 87 issue: 5 year: 2010 ident: e_1_2_8_153_1 article-title: Software effort estimation using radial basis and generalized regression neural networks publication-title: J Comput – volume-title: Software Engineering Economics year: 1981 ident: e_1_2_8_217_1 – volume: 9 issue: 2 year: 2018 ident: e_1_2_8_222_1 article-title: Software bug prediction using machine learning approach publication-title: Int J Adv Comput Sci Appl – volume-title: Software Reliability Assurance through Fault Prediction Models. Ph.D. Thesis year: 2011 ident: e_1_2_8_11_1 – ident: e_1_2_8_142_1 – ident: e_1_2_8_207_1 doi: 10.1109/ISSRE.1991.145350 – ident: e_1_2_8_162_1 doi: 10.1109/ICPR48806.2021.9412733 – ident: e_1_2_8_32_1 doi: 10.1007/s40010-018-0551-1 – volume: 37 start-page: 16 issue: 4 year: 2009 ident: e_1_2_8_61_1 article-title: Bayesian estimation for inflection S‐shaped software reliability growth model publication-title: J Korean Soc Qual Manag – ident: e_1_2_8_193_1 doi: 10.3390/e17063989 – ident: e_1_2_8_94_1 doi: 10.1109/TPWRS.2019.2919157 – ident: e_1_2_8_86_1 – volume: 29 start-page: 3084 issue: 7 year: 2017 ident: e_1_2_8_97_1 article-title: Learning deep generative models with doubly stochastic gradient MCMC publication-title: IEEE Trans Neural Netw Learn Syst – ident: e_1_2_8_103_1 doi: 10.1007/BF00872054 – ident: e_1_2_8_130_1 doi: 10.1016/j.asoc.2019.02.008 – ident: e_1_2_8_160_1 doi: 10.1016/j.eswa.2007.12.029 – ident: e_1_2_8_211_1 doi: 10.1109/COMPSAC.2006.130 – ident: e_1_2_8_135_1 doi: 10.1002/qre.2098 – ident: e_1_2_8_161_1 doi: 10.1080/00207729708929380 – volume-title: Learning in Graphical Models year: 1998 ident: e_1_2_8_187_1 – ident: e_1_2_8_99_1 doi: 10.1109/WCSE.2010.51 – ident: e_1_2_8_114_1 doi: 10.1109/TR.2010.2103590 – ident: e_1_2_8_48_1 – ident: e_1_2_8_186_1 doi: 10.1146/annurev-statistics-060116-054045 – volume: 4 issue: 1 year: 2014 ident: e_1_2_8_33_1 article-title: Software reliability growth model publication-title: Int J Adv Res Comput Sci Softw Eng – volume: 12 start-page: 77 issue: 1 year: 2019 ident: e_1_2_8_5_1 article-title: A new approach to promote safety in the software life cycle publication-title: J Comput Robot – ident: e_1_2_8_179_1 doi: 10.1609/aaai.v30i1.10199 – ident: e_1_2_8_214_1 – ident: e_1_2_8_69_1 doi: 10.1016/j.ress.2006.04.007 – ident: e_1_2_8_199_1 – ident: e_1_2_8_82_1 – volume: 4 start-page: 1016 issue: 4 year: 2016 ident: e_1_2_8_57_1 article-title: Software reliability assessment using neural networks of computational intelligence based on software failure data publication-title: Bal J Mod Comput – ident: e_1_2_8_168_1 – start-page: 853 volume-title: Transforming Neural‐Net Output Levels to Probability Distributions year: 1991 ident: e_1_2_8_75_1 – ident: e_1_2_8_121_1 doi: 10.1002/asm.3150010108 – ident: e_1_2_8_52_1 doi: 10.1109/TSE.1985.232177 – ident: e_1_2_8_35_1 doi: 10.1007/978-981-13-1402-5_17 – start-page: 1612 year: 2006 ident: e_1_2_8_147_1 article-title: An experiment on the design of radial basis function neural networks for software cost estimation publication-title: IEEE Inform Commun Technol ICTTA – ident: e_1_2_8_177_1 – ident: e_1_2_8_196_1 doi: 10.1063/1.2423258 – ident: e_1_2_8_171_1 doi: 10.1088/1757-899X/495/1/012003 – ident: e_1_2_8_38_1 – ident: e_1_2_8_113_1 doi: 10.1016/j.procs.2016.06.083 – ident: e_1_2_8_191_1 doi: 10.1214/aoms/1177729694 – ident: e_1_2_8_190_1 – ident: e_1_2_8_202_1 – ident: e_1_2_8_98_1 – ident: e_1_2_8_40_1 doi: 10.1016/j.knosys.2018.07.006 – volume-title: Statistical Methods for Reliability Data year: 2021 ident: e_1_2_8_185_1 – ident: e_1_2_8_203_1 – ident: e_1_2_8_77_1 doi: 10.1145/168304.168306 – start-page: 395 volume-title: Software Reliability Models: Concepts, Classification, Comparisons and Practice year: 1983 ident: e_1_2_8_45_1 – volume: 1 start-page: 877 issue: 5 year: 1987 ident: e_1_2_8_73_1 article-title: Large automatic learning, rule extraction, and generalization publication-title: Complex Syst – ident: e_1_2_8_16_1 doi: 10.1109/ICTUS.2017.8285989 – ident: e_1_2_8_163_1 doi: 10.1016/j.engappai.2012.01.023 – ident: e_1_2_8_145_1 doi: 10.1016/S0378-7206(98)00041-X – ident: e_1_2_8_26_1 doi: 10.1002/stvr.1710 – ident: e_1_2_8_93_1 – ident: e_1_2_8_149_1 – ident: e_1_2_8_204_1 – volume-title: Early Software Reliability and Quality Prediction. Ph.D. Thesis year: 2009 ident: e_1_2_8_12_1 – volume-title: PROMISE Repository of Empirical Software Engineering Data year: 2009 ident: e_1_2_8_216_1 – ident: e_1_2_8_87_1 doi: 10.1109/ICFHR.2014.55 – ident: e_1_2_8_178_1 doi: 10.1609/aaai.v30i1.10200 – volume: 33 start-page: 246 issue: 2 year: 2019 ident: e_1_2_8_28_1 article-title: Modeling and analysis of software fault detectability and removability with time variant fault exposure ratio, fault removal efficiency, and change point publication-title: Proc Inst Mech Eng Part O: J Risk Reliab – ident: e_1_2_8_50_1 doi: 10.1109/MS.2007.182 – ident: e_1_2_8_53_1 doi: 10.1142/4011 – ident: e_1_2_8_58_1 doi: 10.1109/TR.2021.3105531 – ident: e_1_2_8_146_1 doi: 10.1016/S0950-5849(02)00128-3 – ident: e_1_2_8_183_1 – ident: e_1_2_8_170_1 doi: 10.1137/1.9781611976236.23 – ident: e_1_2_8_155_1 doi: 10.1109/ICCET.2010.5485840 – ident: e_1_2_8_64_1 – volume-title: Software Reliability‐Measurement, Prediction, Applications year: 1987 ident: e_1_2_8_119_1 – ident: e_1_2_8_34_1 doi: 10.1109/TENCON.2005.301242 – ident: e_1_2_8_208_1 doi: 10.1109/32.21762 – year: 2021 ident: e_1_2_8_136_1 article-title: Software effort estimation accuracy prediction of machine learning techniques: a systematic performance evaluation publication-title: Softw: Pract Exp – ident: e_1_2_8_36_1 doi: 10.1007/s13198-016-0543-y – volume: 5 start-page: 11 issue: 5 year: 2018 ident: e_1_2_8_127_1 article-title: Survey in software reliability growth models: parameter estimation and models ranking publication-title: Int J Comput Syst – ident: e_1_2_8_109_1 doi: 10.1109/24.740500 – ident: e_1_2_8_144_1 doi: 10.1016/0950-5849(96)01124-X – ident: e_1_2_8_181_1 doi: 10.1080/10618600.2018.1497511 – ident: e_1_2_8_165_1 doi: 10.1016/j.ijar.2019.05.010 – ident: e_1_2_8_41_1 doi: 10.30699/IJRRS.4.2.1 – ident: e_1_2_8_192_1 – ident: e_1_2_8_169_1 – ident: e_1_2_8_83_1 doi: 10.1109/CVPR.2016.611 – ident: e_1_2_8_166_1 doi: 10.1088/1742-6596/1168/2/022022 – ident: e_1_2_8_197_1 doi: 10.1007/s11222-018-9817-3 – ident: e_1_2_8_95_1 doi: 10.1109/TPAMI.2018.2884905 – volume: 168 start-page: 215 year: 1998 ident: e_1_2_8_79_1 article-title: Ensemble learning in Bayesian neural networks publication-title: Nato ASI Series F Comput Syst Sci – ident: e_1_2_8_7_1 doi: 10.1007/1-84628-295-0 – ident: e_1_2_8_108_1 doi: 10.1016/S0164-1212(99)00065-5 – ident: e_1_2_8_49_1 doi: 10.1145/390016.808456 – volume: 5 issue: 08 year: 2018 ident: e_1_2_8_63_1 article-title: Bayesian predictive analyses for logarithmic non‐homogeneous Poisson process in software reliability publication-title: Open Access Library J – ident: e_1_2_8_8_1 doi: 10.1080/00207721.2013.791001 – ident: e_1_2_8_60_1 doi: 10.1177/17483026211034442 – ident: e_1_2_8_102_1 doi: 10.1016/j.asoc.2014.04.012 – ident: e_1_2_8_124_1 doi: 10.4236/ojs.2014.45039 – volume-title: Bayesian Learning for Neural Networks year: 2012 ident: e_1_2_8_78_1 – ident: e_1_2_8_20_1 doi: 10.1007/s10489-017-1078-x – ident: e_1_2_8_4_1 doi: 10.1109/QRS.2016.50 – ident: e_1_2_8_156_1 doi: 10.1016/j.eswa.2008.10.027 – volume-title: Bayesian Predictive Analyses for an Exponential Non‐Homogeneous Poisson Process in Software Reliability year: 2015 ident: e_1_2_8_126_1 – ident: e_1_2_8_85_1 – ident: e_1_2_8_157_1 doi: 10.1016/j.eswa.2009.02.064 – start-page: 2575 volume-title: Variational Dropout and the Local Reparameterization Trick year: 2015 ident: e_1_2_8_176_1 – ident: e_1_2_8_27_1 doi: 10.1007/s12652-020-02476-z – ident: e_1_2_8_24_1 doi: 10.1002/stvr.1663 – ident: e_1_2_8_43_1 doi: 10.2307/1403763 – ident: e_1_2_8_71_1 – ident: e_1_2_8_47_1 doi: 10.1109/ISSRE.1996.558886 – ident: e_1_2_8_112_1 doi: 10.52866/ijcsm.2021.02.02.003 – ident: e_1_2_8_66_1 – ident: e_1_2_8_120_1 doi: 10.1002/qre.1793 – ident: e_1_2_8_148_1 doi: 10.1109/ICCTA.2007.89 – volume: 28 start-page: 428443 year: 1984 ident: e_1_2_8_205_1 article-title: Software reliability analysis models publication-title: lBM J Res Develop – ident: e_1_2_8_215_1 doi: 10.1002/qre.2653 – ident: e_1_2_8_14_1 doi: 10.1177/1748006X16673767 – start-page: 81 volume-title: NHPP‐Based SRGM using Time‐Dependent Fault Reduction Factors (FRF) and Gompertz TEF year: 2020 ident: e_1_2_8_117_1 – ident: e_1_2_8_172_1 doi: 10.1016/j.asoc.2018.07.039 – ident: e_1_2_8_18_1 – ident: e_1_2_8_141_1 doi: 10.1016/S0019-9958(65)90241-X – ident: e_1_2_8_25_1 doi: 10.1002/stvr.1717 – ident: e_1_2_8_212_1 doi: 10.1002/asmb.453 – ident: e_1_2_8_30_1 doi: 10.1016/S0045-7906(04)00025-4 – volume: 45 start-page: 98 issue: 5 year: 2017 ident: e_1_2_8_115_1 article-title: A survey of software reliability models publication-title: Int J Res Appl Sci Eng Technol (IJRASET) – ident: e_1_2_8_139_1 doi: 10.1016/j.ress.2004.03.028 – ident: e_1_2_8_189_1 doi: 10.1007/978-1-4471-1599-1_2 – ident: e_1_2_8_39_1 doi: 10.1038/s41598-018-24271-9 – ident: e_1_2_8_51_1 doi: 10.1109/TR.1983.5221735 – ident: e_1_2_8_133_1 doi: 10.1002/9781119223931 – ident: e_1_2_8_143_1 doi: 10.1016/S0164-1212(97)00055-1 – ident: e_1_2_8_140_1 doi: 10.1007/s13198‐021‐01276‐8 – ident: e_1_2_8_17_1 doi: 10.1115/1.4037228 – ident: e_1_2_8_72_1 doi: 10.1016/j.asoc.2012.08.015 – ident: e_1_2_8_90_1 doi: 10.1109/ASRU.2015.7404775 – ident: e_1_2_8_122_1 doi: 10.1109/2.544240 – ident: e_1_2_8_154_1 doi: 10.1016/j.eswa.2009.11.085 – ident: e_1_2_8_137_1 doi: 10.4156/jcit.vol6.issue7.43 – volume-title: Bayesian Methods for Adaptive Models. PhD Thesis year: 1992 ident: e_1_2_8_76_1 – ident: e_1_2_8_29_1 doi: 10.1007/s13369-019-04128-7 – ident: e_1_2_8_101_1 doi: 10.1016/j.procs.2015.07.450 – start-page: 465 volume-title: Software Reliability Research year: 1972 ident: e_1_2_8_46_1 – ident: e_1_2_8_89_1 doi: 10.1109/ICDAR.2015.7333848 – ident: e_1_2_8_219_1 doi: 10.1016/j.infsof.2006.09.001 – ident: e_1_2_8_67_1 doi: 10.3115/v1/D14-1179 – ident: e_1_2_8_150_1 doi: 10.1016/j.jss.2007.05.011 – start-page: 303 volume-title: Handbook of Software Reliability Engineering year: 1996 ident: e_1_2_8_210_1 – start-page: 213 volume-title: Improving Software Reliability Prediction Accuracy using CRO‐based FLANN year: 2019 ident: e_1_2_8_15_1 – ident: e_1_2_8_158_1 doi: 10.1049/iet-sen.2011.0138 – ident: e_1_2_8_182_1 doi: 10.2307/3318418 – ident: e_1_2_8_74_1 doi: 10.1109/IJCNN.1989.118274 – ident: e_1_2_8_68_1 doi: 10.1016/j.apm.2016.01.016 – ident: e_1_2_8_159_1 doi: 10.1109/TSE.2002.1033229 – ident: e_1_2_8_129_1 doi: 10.1109/24.589931 – ident: e_1_2_8_174_1 – start-page: 197 volume-title: Software Reliability Predictions using Artificial Neural Networks year: 2007 ident: e_1_2_8_223_1 – ident: e_1_2_8_42_1 doi: 10.1007/s10489-011-0316-x – ident: e_1_2_8_188_1 doi: 10.1007/978-94-011-5014-9_5 – ident: e_1_2_8_23_1 doi: 10.1002/smr.2150 – ident: e_1_2_8_92_1 – ident: e_1_2_8_100_1 doi: 10.1016/j.jss.2006.06.017 – volume-title: Data Repository Release 10 year: 2007 ident: e_1_2_8_218_1 – ident: e_1_2_8_152_1 doi: 10.7763/IJCTE.2010.V2.109 – ident: e_1_2_8_151_1 doi: 10.1109/SNPD.2009.49 – ident: e_1_2_8_116_1 doi: 10.4018/JCIT.2019040101 – ident: e_1_2_8_107_1 doi: 10.1016/j.infsof.2015.03.001 – ident: e_1_2_8_31_1 doi: 10.1080/13873954.2012.678011 – ident: e_1_2_8_96_1 doi: 10.1109/ACCESS.2017.2779181 – ident: e_1_2_8_62_1 – volume-title: Bayesian Predictive Analyses for Non‐Homogeneous Poisson Process in Software Reliability with Musa‐okumoto Intensity Function. Doctoral Dissertation year: 2019 ident: e_1_2_8_123_1 – ident: e_1_2_8_110_1 doi: 10.1080/0952813X.2018.1552315 – start-page: 485 volume-title: Probabilistic Models for Software Reliability Prediction year: 1972 ident: e_1_2_8_206_1 – ident: e_1_2_8_173_1 doi: 10.1007/s10462-011-9208-z – ident: e_1_2_8_195_1 – ident: e_1_2_8_37_1 doi: 10.1016/j.ress.2017.10.019 – ident: e_1_2_8_21_1 doi: 10.1016/j.asoc.2018.06.032 – ident: e_1_2_8_19_1 doi: 10.1142/S0217595917400176 – ident: e_1_2_8_44_1 doi: 10.1109/TSE.1982.235728 – ident: e_1_2_8_2_1 doi: 10.1007/s00607-010-0128-6 – volume-title: Software Reliability Prediction, Center for Software Reliability year: 2001 ident: e_1_2_8_9_1 – ident: e_1_2_8_54_1 doi: 10.1109/24.326435 – volume-title: Bayesian Methods in Reliability year: 2012 ident: e_1_2_8_125_1 – ident: e_1_2_8_132_1 – ident: e_1_2_8_88_1 – ident: e_1_2_8_180_1 – ident: e_1_2_8_91_1 – ident: e_1_2_8_213_1 doi: 10.1109/32.90433 – volume: 24 year: 2011 ident: e_1_2_8_80_1 article-title: Practical variational inference for neural networks publication-title: Adv Neural Inform Process Syst – ident: e_1_2_8_134_1 doi: 10.1016/j.jss.2005.02.025 – volume-title: A Study of the Musa Reliability Model. M. S. Thesis year: 1980 ident: e_1_2_8_209_1 – ident: e_1_2_8_200_1 – ident: e_1_2_8_167_1 doi: 10.1007/978-3-7908-2604-3_16 – ident: e_1_2_8_81_1 – volume: 3 start-page: 177 issue: 3 year: 2015 ident: e_1_2_8_111_1 article-title: A fuzzy inference model for reliability estimation of component‐based software system publication-title: Int J Comput Sci Technol – volume-title: Software Reliability Prediction using Neural Networks. Ph.D. Dissertation year: 2006 ident: e_1_2_8_13_1 – ident: e_1_2_8_198_1 doi: 10.1080/01621459.2017.1285773 – ident: e_1_2_8_201_1 – volume: 6 start-page: 2088 issue: 4 year: 2016 ident: e_1_2_8_70_1 article-title: Software reliability prediction using fuzzy min‐max algorithm and recurrent neural network approach publication-title: Int J Electr Comput Eng – ident: e_1_2_8_104_1 doi: 10.1007/s10489-010-0253-0 – ident: e_1_2_8_128_1 doi: 10.1080/01621459.1996.10476944 – start-page: 3104 volume-title: Sequence to Sequence Learning with Neural Networks year: 2014 ident: e_1_2_8_65_1 – ident: e_1_2_8_3_1 doi: 10.1007/s00500-020-05385-7 – ident: e_1_2_8_131_1 – ident: e_1_2_8_105_1 doi: 10.1023/A:1008375228885 – ident: e_1_2_8_138_1 doi: 10.1016/j.jss.2004.08.023 – volume: 6 start-page: 1540 issue: 4 year: 2017 ident: e_1_2_8_55_1 article-title: Analysis of software reliability growth models for quantitative evaluation of software reliability and goodness of fitness metrics publication-title: Int J Sci Res – ident: e_1_2_8_118_1 doi: 10.1109/TR.1979.5220561 – ident: e_1_2_8_175_1 doi: 10.5772/3409 – ident: e_1_2_8_221_1 doi: 10.1109/TR.2011.2134350 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: e_1_2_8_84_1 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: e_1_2_8_106_1 doi: 10.1007/s00500-015-1738-x – ident: e_1_2_8_194_1 doi: 10.1007/978-1-4612-4024-2 – ident: e_1_2_8_164_1 doi: 10.1007/978-3-030-37599-7_1 – ident: e_1_2_8_184_1 doi: 10.3150/18-BEJ1073 |
| SSID | ssj0010098 |
| Score | 2.4106834 |
| SecondaryResourceType | review_article |
| Snippet | Softwares play an important role in controlling complex systems. Monitoring the proper functioning of the components of such systems is the principal role of... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 412 |
| SubjectTerms | Bayesian analysis Bayesian methods Complex systems fuzzy logic inference systems neural network algorithms Prediction models Software reliability SRGM Subsystems supervised algorithms |
| Title | Software reliability prediction: A survey |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqre.3220 https://www.proquest.com/docview/2764890068 |
| Volume | 39 |
| WOSCitedRecordID | wos000932973100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010098 issn: 0748-8017 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMAfsnnQg9_idEoFUTzUpelHGm9DNzyModPBbiVtEhBkznab7L83r-0-BAXBS3tJ2iZ97-W9fPwewAUnMhAuFTah2rU9nzk21x5eXO2TBJFkedaSDut2w8GAP5a7KvEsTMGHWEy4oWbk9hoVXMRZYwkN_UjVjZFGE65XqRFbrwLV-16731msISAqs4BwhmiH2Rw9S2hjXvf7YLT0MFf91HygaW__5xN3YKt0L61mIQ-7sKaGe7C5Ah3ch-tnY3k_Raqs1Dy-wHTPrFGKKzb4l26tppVN0qmaHUC_3Xq5e7DLhAl2YkZtYjuB4poxZdwobfTSDQmNfRILxeKQ60BRyXzpSUcmwhFEG9cjNgGU8ANtwsCACvcQKsP3oToCS0oeSJUg7ot6yuWCUd8YTo9LJVmsRA2u5j0XJSVNHJNavEUFB5lGpvERNr4G54uSo4Kg8UOZ-rzzo1KHsoia14Ucz7DU4DLv5l_rR0-9Ft6P_1rwBDYwb3yx_boOlXE6UaewnkzHr1l6VkrSF0uOynU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFIAPYxPUB-_idGoFUXyoS9NLGn0a6pg4h84N9lbSJgFB5uwusn9v0ss2QUHwpX1J2iY95-ScXL4DcEoR95iNmYmwtE3HJZZJpaMvtnRRpJFkSdaSJmm1_F6PPhXgOj8Lk_IhZhNuWjMSe60VXE9IV-fU0I9YXCpxVPF6yVFS5BahdNuud5uzRQTNykwpnL42xCRnzyJczet-H43mLuaio5qMNPX1f33jBqxlDqZRSyViEwqivwWrC9jBbbh4Ubb3k8XCiNXzU1D31BjEes1G_6cro2YMx_FETHegW7_r3DTMLGWCGalxG5mWJ6gkRChHSirNtH2EQxeFTJDQp9ITmBOXO9ziEbMYksr5CFUIxVxPqkDQw8zehWL_vS_2wOCcelxEGviFHWFTRrCrTKdDueAkFKwM53nXBVHGE9dpLd6ClISMA9X4QDe-DCezkoOUofFDmUre-0GmRcMAq9f5VJ9iKcNZ0s-_1g-e23f6vv_Xgsew3Og8NoPmfevhAFZ0Fvl0M3YFiqN4LA5hKZqMXofxUSZWX3kmzmU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFIAPYxPRB-_idGoFUXyoy9JLGn0abkVxjDkd7K2kTQKCzNldZP_epJdtgoLgS_ty0jZpzq1pvgNwThF3mYWZibC0TNshNZNKWx8s6aBII8mSqiUt0m57_T7tFOA23wuT8iHmH9y0ZiT2Wiu4GHJZXVBDP2JxraajytdLtkNdpZWlRtfvteaLCJqVmVI4PW2ISc6eRbiat_3ujRYh5nKgmngaf_Nfz7gFG1mAadTTGbENBTHYgfUl7OAuXD0r2_vJYmHE6vopqHtmDGO9ZqPf041RN0aTeCpme9Dzmy9392ZWMsGMlN9GZs0VVBIiVCAllWZaHsKhg0ImSOhR6QrMicNtXuMRqzEkVfARqhSKOa5UiaCLmbUPxcH7QByAwTl1uYg08AvbwqKMYEeZTptywUkoWBku86ELoownrstavAUpCRkHqvOB7nwZzuaSw5Sh8YNMJR_9INOiUYDV7Tyqd7GU4SIZ51_bB0_dpj4f_lXwFFY7DT9oPbQfj2BNF5FP_8WuQHEcT8QxrETT8esoPslm1RdMmc3g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Software+reliability+prediction%3A+A+survey&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Oveisi%2C+Shahrzad&rft.au=Moeini%2C+Ali&rft.au=Mirzaei%2C+Sayeh&rft.au=Mohammad+Ali+Farsi&rft.date=2023-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=39&rft.issue=1&rft.spage=412&rft.epage=453&rft_id=info:doi/10.1002%2Fqre.3220&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon |