High Precision Leaf Instance Segmentation for Phenotyping in Point Clouds Obtained Under Real Field Conditions

Measuring plant traits with high throughput allows breeders to monitor and select the best cultivars for subsequent breeding generations. This can enable farmers to improve yield to produce more food, feed, and fiber. Current breeding practices involve extracting leaf parameters on a small subset of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 8; H. 8; S. 4791 - 4798
Hauptverfasser: Marks, Elias, Sodano, Matteo, Magistri, Federico, Wiesmann, Louis, Desai, Dhagash, Marcuzzi, Rodrigo, Behley, Jens, Stachniss, Cyrill
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Measuring plant traits with high throughput allows breeders to monitor and select the best cultivars for subsequent breeding generations. This can enable farmers to improve yield to produce more food, feed, and fiber. Current breeding practices involve extracting leaf parameters on a small subset of the leaves present in the breeding plots, while still requiring substantial manual labor. To automate this process, an important step is the precise distinction between separate leaves, which is the problem we address in this letter. We exploit recent advancements in 3D deep learning to build a convolutional neural network that learns to segment individual leaves. As done in current breeding practices, we select a subset of leaves to be used for phenotypic trait evaluation as this allows us to alleviate the influence of segmentation errors on the phenotypic trait estimation. To this extent we propose to use an additional neural network to predict the quality of each segmented leaf and discard inaccurate leaf instances. The experiments show that our network yields higher segmentation accuracy on sugar beet breeding plots planted under the supervision of the German Federal Office for Plant Varieties. Furthermore, we show that our neural network helps in filtering out leaves with lower segmentation accuracy.
AbstractList Measuring plant traits with high throughput allows breeders to monitor and select the best cultivars for subsequent breeding generations. This can enable farmers to improve yield to produce more food, feed, and fiber. Current breeding practices involve extracting leaf parameters on a small subset of the leaves present in the breeding plots, while still requiring substantial manual labor. To automate this process, an important step is the precise distinction between separate leaves, which is the problem we address in this letter. We exploit recent advancements in 3D deep learning to build a convolutional neural network that learns to segment individual leaves. As done in current breeding practices, we select a subset of leaves to be used for phenotypic trait evaluation as this allows us to alleviate the influence of segmentation errors on the phenotypic trait estimation. To this extent we propose to use an additional neural network to predict the quality of each segmented leaf and discard inaccurate leaf instances. The experiments show that our network yields higher segmentation accuracy on sugar beet breeding plots planted under the supervision of the German Federal Office for Plant Varieties. Furthermore, we show that our neural network helps in filtering out leaves with lower segmentation accuracy.
Author Sodano, Matteo
Behley, Jens
Magistri, Federico
Wiesmann, Louis
Desai, Dhagash
Marks, Elias
Stachniss, Cyrill
Marcuzzi, Rodrigo
Author_xml – sequence: 1
  givenname: Elias
  orcidid: 0000-0003-1322-9317
  surname: Marks
  fullname: Marks, Elias
  email: elias.marks@uni-bonn.de
  organization: University of Bonn, Bonn, Germany
– sequence: 2
  givenname: Matteo
  orcidid: 0000-0003-3358-6979
  surname: Sodano
  fullname: Sodano, Matteo
  email: matteo.sodano7@gmail.com
  organization: University of Bonn, Bonn, Germany
– sequence: 3
  givenname: Federico
  orcidid: 0000-0003-2815-5760
  surname: Magistri
  fullname: Magistri, Federico
  email: federico.magistri@igg.uni-bonn.de
  organization: University of Bonn, Bonn, Germany
– sequence: 4
  givenname: Louis
  orcidid: 0000-0003-0985-7433
  surname: Wiesmann
  fullname: Wiesmann, Louis
  email: louis.wiesmann@igg.uni-bonn.de
  organization: University of Bonn, Bonn, Germany
– sequence: 5
  givenname: Dhagash
  orcidid: 0009-0006-5475-4934
  surname: Desai
  fullname: Desai, Dhagash
  email: desaidhagash@gmail.com
  organization: University of Bonn, Bonn, Germany
– sequence: 6
  givenname: Rodrigo
  orcidid: 0000-0001-8076-0293
  surname: Marcuzzi
  fullname: Marcuzzi, Rodrigo
  email: rodrigomarcuzzi@gmail.com
  organization: University of Bonn, Bonn, Germany
– sequence: 7
  givenname: Jens
  orcidid: 0000-0001-6483-0319
  surname: Behley
  fullname: Behley, Jens
  email: jens.behley@igg.uni-bonn.de
  organization: University of Bonn, Bonn, Germany
– sequence: 8
  givenname: Cyrill
  orcidid: 0000-0003-1173-6972
  surname: Stachniss
  fullname: Stachniss, Cyrill
  email: cyrill.stachniss@igg.uni-bonn.de
  organization: University of Bonn, Bonn, Germany
BookMark eNp9kL1vwjAQxa2qlUope4cOljpD_ZHE8YhQKUhIIFrmyIkvYBRsapuB_76JYEAdOt1J937v7t4TurfOAkIvlIwoJfJ9sR6PGGF8xFme85zfoR7jQgy5yLL7m_4RDULYE0JoygSXaQ_Zmdnu8MpDZYJxFi9A1XhuQ1S2AvwF2wPYqGI3qp3Hqx1YF89HY7fYWLxyxkY8adxJB7wsozIWNN5YDR6vQTV4aqDReOKsNp1HeEYPtWoCDK61jzbTj-_JbLhYfs4n48WwYpLFYQ1cViBKrZkusySlEojM29NoVjKag0gk1CXoVLJE1jTNOOOU1EmpSMqU1ryP3i6-R-9-ThBisXcnb9uVBcs5ZyIRImtV2UVVeReCh7qozOXZ6JVpCkqKLt6ijbfo4i2u8bYg-QMevTkof_4Peb0gBgBu5DTNheT8F2x-iAw
CODEN IRALC6
CitedBy_id crossref_primary_10_1016_j_jafr_2025_102343
crossref_primary_10_1016_j_plaphe_2025_100071
crossref_primary_10_1016_j_aei_2025_103199
crossref_primary_10_1016_j_plaphe_2025_100107
crossref_primary_10_1109_LRA_2023_3320018
crossref_primary_10_1109_JSTARS_2023_3312815
crossref_primary_10_1109_TRO_2025_3567544
crossref_primary_10_1016_j_biosystemseng_2025_01_016
Cites_doi 10.1109/CVPR42600.2020.00492
10.1109/ICCV.2019.00939
10.1007/978-3-030-89177-0_4
10.1109/CVPR52688.2022.00273
10.1109/ICRA48506.2021.9561356
10.1109/LRA.2022.3147462
10.1109/ICCV.2019.00651
10.1111/nph.15817
10.1146/annurev-arplant-050312-120137
10.1109/CVPR.2019.00963
10.1109/CVPR.2019.00319
10.1109/ICCVW54120.2021.00145
10.1109/LRA.2022.3193239
10.1016/j.biosystemseng.2019.08.014
10.1371/journal.pone.0256340
10.1109/CVPR42600.2020.01249
10.1109/ICCV.2015.114
10.1109/CVPR.2017.261
10.1109/ICCV.2017.322
10.1109/ICDMW.2017.12
10.1109/BHI.2018.8333411
10.1109/LRA.2023.3236568
10.1109/ICRA46639.2022.9811358
10.1109/WACV51458.2022.00302
10.1109/CVPR.2016.170
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2023.3288383
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 4798
ExternalDocumentID 10_1109_LRA_2023_3288383
10158793
Genre orig-research
GrantInformation_xml – fundername: Bundesministerium für Ernährung und Landwirtschaft; Federal Ministry of Food and Agriculture
  grantid: 28DK108B20
  funderid: 10.13039/501100005908
– fundername: Deutsche Forschungsgemeinschaft; German Research Foundation
  grantid: EXC-2070 – 390732324
  funderid: 10.13039/501100001659
– fundername: Deutsche Forschungsgemeinschaft
  funderid: 10.13039/501100001659
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-fe39ce7bdd2db64519e098eaf16b218e749efbed59249f15632310f4ba052add3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001024186200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Nov 30 04:40:36 EST 2025
Sat Nov 29 06:03:25 EST 2025
Tue Nov 18 21:00:09 EST 2025
Wed Aug 27 02:14:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-fe39ce7bdd2db64519e098eaf16b218e749efbed59249f15632310f4ba052add3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1322-9317
0000-0003-3358-6979
0000-0003-1173-6972
0000-0001-6483-0319
0000-0003-2815-5760
0009-0006-5475-4934
0000-0001-8076-0293
0000-0003-0985-7433
PQID 2833274776
PQPubID 4437225
PageCount 8
ParticipantIDs proquest_journals_2833274776
ieee_primary_10158793
crossref_primary_10_1109_LRA_2023_3288383
crossref_citationtrail_10_1109_LRA_2023_3288383
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
roggiolani (ref23) 0
ref19
roggiolani (ref21) 0
ref18
schult (ref24) 0
ref26
ref25
roggiolani (ref22) 0
ref28
ref27
commission (ref6) 2018
ref29
ref8
ref7
ref9
ref4
ref3
ref5
qi (ref20) 0
References_xml – ident: ref13
  doi: 10.1109/CVPR42600.2020.00492
– ident: ref2
  doi: 10.1109/ICCV.2019.00939
– year: 0
  ident: ref23
  article-title: Unsupervised pre-training for leaf instance segmentation in 3D
  publication-title: Under Review
– ident: ref12
  doi: 10.1007/978-3-030-89177-0_4
– ident: ref29
  doi: 10.1109/CVPR52688.2022.00273
– ident: ref15
  doi: 10.1109/ICRA48506.2021.9561356
– ident: ref31
  doi: 10.1109/LRA.2022.3147462
– ident: ref28
  doi: 10.1109/ICCV.2019.00651
– year: 2018
  ident: ref6
  article-title: Protocol for tests on distinctness, uniformity and stability
  publication-title: Beta Vulgaris l ssp Vulgaris var Altissima Döll
– ident: ref9
  doi: 10.1111/nph.15817
– ident: ref8
  doi: 10.1146/annurev-arplant-050312-120137
– ident: ref14
  doi: 10.1109/CVPR.2019.00963
– start-page: 652
  year: 0
  ident: ref20
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref5
  doi: 10.1109/CVPR.2019.00319
– ident: ref10
  doi: 10.1109/ICCVW54120.2021.00145
– year: 0
  ident: ref24
  article-title: Mask3D for 3D semantic instance segmentation
  publication-title: Proc IEEE Int Conf Robot Automat
– year: 0
  ident: ref21
  article-title: On domain-specific pre-training for effective semantic perception in agricultural robotics
  publication-title: Proc IEEE Int Conf Robot Automat
– ident: ref16
  doi: 10.1109/LRA.2022.3193239
– ident: ref26
  doi: 10.1016/j.biosystemseng.2019.08.014
– year: 0
  ident: ref22
  article-title: Hierarchical approach for joint semantic, plant instance, and leaf instance segmentation in the agricultural domain
  publication-title: Proc IEEE Int Conf Robot Automat
– ident: ref25
  doi: 10.1371/journal.pone.0256340
– ident: ref4
  doi: 10.1109/CVPR42600.2020.01249
– ident: ref27
  doi: 10.1109/ICCV.2015.114
– ident: ref7
  doi: 10.1109/CVPR.2017.261
– ident: ref11
  doi: 10.1109/ICCV.2017.322
– ident: ref19
  doi: 10.1109/ICDMW.2017.12
– ident: ref3
  doi: 10.1109/BHI.2018.8333411
– ident: ref17
  doi: 10.1109/LRA.2023.3236568
– ident: ref18
  doi: 10.1109/ICRA46639.2022.9811358
– ident: ref30
  doi: 10.1109/WACV51458.2022.00302
– ident: ref1
  doi: 10.1109/CVPR.2016.170
SSID ssj0001527395
Score 2.3254468
Snippet Measuring plant traits with high throughput allows breeders to monitor and select the best cultivars for subsequent breeding generations. This can enable...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4791
SubjectTerms Agricultural automation
Artificial neural networks
Crops
Deep learning
deep learning for visual perception
Encoding
Image segmentation
Instance segmentation
Neural networks
Physical work
Point cloud compression
robotics and automation in agriculture and forestry
Task analysis
Title High Precision Leaf Instance Segmentation for Phenotyping in Point Clouds Obtained Under Real Field Conditions
URI https://ieeexplore.ieee.org/document/10158793
https://www.proquest.com/docview/2833274776
Volume 8
WOSCitedRecordID wos001024186200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5RxAADb0ShIA8sDCkhL8cjqlqBVKDiJbYosc9QqSSoTZFY-O34nJSHEEhsGezI8ne2v7Pv7gM4wEy7GGrPCXiUOkGqUydGqR0MpIyFUqm0Mp13fX5xEd_fi0GdrG5zYRDRBp9hmz7tW74q5JSuyswKPw5jY1ANaHDOq2StzwsVKiUmwtlTpCuO-lcnbVIHb_skqRv7344eq6XyYwO2p0pv5Z_jWYXlmj6ykwrvNZjDfB2WvhQV3ICcQjfYYFyL57A-ppqdWRYokV3jw1OdbpQzQ1jZ4BHzonyltCk2zNmgGOYl64yKqZqwy4wuDlAxq47ErgypZD0KeWOdgp66yWQ34bbXvemcOrWqgiM94ZWORl9I5JlSnsoiqi6DrojNUI6jzJz3yAOBOkMVkmemjXvnEwXUQZa6oWd2Q38L5vMix21goSE_qdkxA-PDBDrgWRQqM9fSeB2GWMRpE45mE57IuuQ4KV-MEut6uCIxECUEUVJD1ITDjx7PVbmNP9puEiRf2lVoNKE1AzWpF-QkMSzKJwecRzu_dNuFRfp7FdzXgvlyPMU9WJAv5XAy3ofG-Vt331rcOx1r1P8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4tD4nlwLMrCiz4wIVDSpo4Dx9RRQXaUCpe4hYl9hgqQYLaFGn__XqclIcQSHvLwVYsf2P7G3tmPoADzLWLgfYcHoWZwzOdOTFK7SCXMhZKZdLKdN4m0WAQ392JYZOsbnNhENEGn2GHPu1bvirllK7KzArvBrExqDlYCDj3unW61tuVChUTE8HsMdIVR8nlcYf0wTs-ierG_ofDx6qpfNqC7bnSX_3PEa3BSkMg2XGN-Dr8wGIDlt-VFdyEgoI32HDcyOewBDPNziwPlMiu8P6pSTgqmKGsbPiARVn9pcQpNirYsBwVFes9llM1YRc5XR2gYlYfiV0aWsn6FPTGeiU9dpPRtuCmf3LdO3UaXQVHesKrHI2-kBjlSnkqD6m-DLoiNkPphrk58THiAnWOKiDfTBsHzycSqHmeuYFn9kP_F8wXZYFbwAJDfzKzZxo0Yq55lIeBMnMtjd9hqEWcteFoNuGpbIqOk_bFY2qdD1ekBqKUIEobiNpw-NrjuS648U3bFkHyrl2NRht2Z6CmzZKcpIZH-eSCR-H2F932Yen0-jxJk7PBnx34SX-qQ_12Yb4aT_E3LMqXajQZ71m7-wdO-dcV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Precision+Leaf+Instance+Segmentation+for+Phenotyping+in+Point+Clouds+Obtained+Under+Real+Field+Conditions&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Marks%2C+Elias&rft.au=Sodano%2C+Matteo&rft.au=Magistri%2C+Federico&rft.au=Wiesmann%2C+Louis&rft.date=2023-08-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=8&rft.issue=8&rft.spage=4791&rft.epage=4798&rft_id=info:doi/10.1109%2FLRA.2023.3288383&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2023_3288383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon