Fuzzy Broad Neuroevolution Networks via Multiobjective Evolutionary Algorithms: Balancing Structural Simplification and Performance

Dynamic fuzzy broad learning system (DFBLS) is a fuzzy neural network based on the TSK fuzzy system and broad learning (BL). DFBLS possesses excellent model interpretability and efficient predictive performance. However, due to the phenomenon of rule explosion and the redundancy of network nodes, ba...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 10
Main Authors: Zhao, Huimin, Wu, Yandong, Deng, Wu
Format: Journal Article
Language:English
Published: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9456, 1557-9662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Dynamic fuzzy broad learning system (DFBLS) is a fuzzy neural network based on the TSK fuzzy system and broad learning (BL). DFBLS possesses excellent model interpretability and efficient predictive performance. However, due to the phenomenon of rule explosion and the redundancy of network nodes, balancing network structure and performance has become a challenge in the construction of the DFBLS. Therefore, for the best balance between model predictive performance and network simplicity, a fuzzy broad neuroevolutionary network via multiobjective evolutionary algorithms (EAs) was developed in this article. First, an effective genetic encoding strategy was designed to represent the feature node building blocks and network connectivity relationships. The incremental mechanism and the randomly connected network relationships in the ILFR structure are replaced by the evolutionary framework. Second, a multiobjective optimization problem model is constructed with the optimization objectives of prediction performance and minimal network structure, and the corresponding objective functions are proposed. Finally, a self-adaptive mutation strategy with scaling genes is proposed for NSGA-II to optimize the accuracy and structure of the neural networks. The experiments demonstrate that SGNSGA-DFBLS achieves the best hypervolume (HV) values in 7 out of 9 public datasets. Its performance on the Air and pm2.5 datasets is either superior to or on par with other recently proposed models. SGNSGA-DFBLS can achieve high test accuracy with fewer fuzzy rules (FRs) and a compact network structure when constructing fuzzy broad network models.
AbstractList Dynamic fuzzy broad learning system (DFBLS) is a fuzzy neural network based on the TSK fuzzy system and broad learning (BL). DFBLS possesses excellent model interpretability and efficient predictive performance. However, due to the phenomenon of rule explosion and the redundancy of network nodes, balancing network structure and performance has become a challenge in the construction of the DFBLS. Therefore, for the best balance between model predictive performance and network simplicity, a fuzzy broad neuroevolutionary network via multiobjective evolutionary algorithms (EAs) was developed in this article. First, an effective genetic encoding strategy was designed to represent the feature node building blocks and network connectivity relationships. The incremental mechanism and the randomly connected network relationships in the ILFR structure are replaced by the evolutionary framework. Second, a multiobjective optimization problem model is constructed with the optimization objectives of prediction performance and minimal network structure, and the corresponding objective functions are proposed. Finally, a self-adaptive mutation strategy with scaling genes is proposed for NSGA-II to optimize the accuracy and structure of the neural networks. The experiments demonstrate that SGNSGA-DFBLS achieves the best hypervolume (HV) values in 7 out of 9 public datasets. Its performance on the Air and pm2.5 datasets is either superior to or on par with other recently proposed models. SGNSGA-DFBLS can achieve high test accuracy with fewer fuzzy rules (FRs) and a compact network structure when constructing fuzzy broad network models.
Author Zhao, Huimin
Wu, Yandong
Deng, Wu
Author_xml – sequence: 1
  givenname: Huimin
  orcidid: 0000-0002-8479-9539
  surname: Zhao
  fullname: Zhao, Huimin
  email: hm_zhao1977@126.com
  organization: College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China
– sequence: 2
  givenname: Yandong
  orcidid: 0009-0005-0774-9414
  surname: Wu
  fullname: Wu, Yandong
  email: 2022022275@cauc.edu.cn
  organization: College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China
– sequence: 3
  givenname: Wu
  orcidid: 0000-0002-4538-2001
  surname: Deng
  fullname: Deng, Wu
  email: wdeng@cauc.edu.cn
  organization: College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China
BookMark eNp9kEtLxDAUhYMoOD72LlwEXHfMo0kTdyrjA3yBui5peqMZO82YpiO69Y9bHQVx4epyL-ecy_k20GobWkBoh5IxpUTv351fjhlh-ZjnSuRcraARFaLItJRsFY0IoSrTuZDraKPrpoSQQubFCL2f9G9vr_goBlPjK-hjgEVo-uRDO6zpJcSnDi-8wZd9MxyrKdjkF4AnPyoTX_Fh8xCiT4-z7gAfmca01rcP-DbF3qY-mgbf-tm88c5b8xVs2hrfQHQhzgYtbKE1Z5oOtr_nJro_mdwdn2UX16fnx4cXmWWapcyZ3BhwjjudG8YVY5xRCoWSzNWmrnjtlDSuElVdQWG1lkJYoSxUFQWlNd9Ee8vceQzPPXSpnIY-tsPLklMpFdVLFVmqbAxdF8GV8-hnQ82SkvITdTmgLj9Rl9-oB4v8Y7E-fVVN0fjmP-Pu0ugB4NefglMtFP8Ab9iShA
CODEN IEIMAO
CitedBy_id crossref_primary_10_1088_1361_6501_adf76a
crossref_primary_10_1080_10589759_2025_2512572
crossref_primary_10_1109_JSTARS_2025_3540001
crossref_primary_10_1177_14613484251322234
crossref_primary_10_1049_ell2_70189
crossref_primary_10_3390_fractalfract8120720
Cites_doi 10.1016/j.eswa.2023.121563
10.1109/tfuzz.2024.3397728
10.1007/s12065-007-0001-5
10.1109/TNNLS.2017.2716952
10.1016/j.ins.2024.120863
10.1109/21.256541
10.1109/jiot.2024.3412925
10.1109/TFUZZ.2022.3207318
10.1016/j.engappai.2024.109237
10.1177/14759217241254121
10.1109/TFUZZ.2020.2972207
10.1109/TIM.2023.3316213
10.1109/TFUZZ.2020.3009757
10.1016/j.asoc.2014.07.019
10.1016/j.engappai.2022.105437
10.1109/TEVC.2020.3024708
10.1109/TCYB.2018.2857815
10.1145/3453474
10.47852/bonviewaia42022549
10.1109/TFUZZ.2012.2201338
10.1016/j.engappai.2024.108638
10.1109/TFUZZ.2022.3141761
10.1016/j.swevo.2020.100650
10.1109/TSMC.1985.6313399
10.1109/ACCESS.2020.2990567
10.47852/bonviewAIA3202441
10.1109/CVPR42600.2020.00190
10.1109/TFUZZ.2021.3112222
10.47852/bonviewAIA3202833
10.1016/j.asoc.2024.112252
10.1109/TFUZZ.2023.3249192
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3485438
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 10
ExternalDocumentID 10_1109_TIM_2024_3485438
10731958
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U2133205
  funderid: 10.13039/501100001809
– fundername: Science and Technology Plan Projects of Tianjin
  grantid: 23JCZDJC00100
– fundername: State Key Laboratory of Rail Transit Vehicle System of Southwest Jiaotong University
  grantid: TPL2203
  funderid: 10.13039/501100019049
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-fa4aaeff3f94a238223211e7862fdadb3df86afb5bdbe7c99655c58cebb1e8993
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001422282800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:21:10 EDT 2025
Sat Nov 29 08:17:26 EST 2025
Tue Nov 18 22:35:35 EST 2025
Wed Aug 27 01:50:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-fa4aaeff3f94a238223211e7862fdadb3df86afb5bdbe7c99655c58cebb1e8993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4538-2001
0000-0002-8479-9539
0009-0005-0774-9414
PQID 3166819899
PQPubID 85462
PageCount 10
ParticipantIDs ieee_primary_10731958
crossref_citationtrail_10_1109_TIM_2024_3485438
crossref_primary_10_1109_TIM_2024_3485438
proquest_journals_3166819899
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
Blake (ref30) 1998
ref11
ref33
ref10
ref32
ref2
ref1
ref17
Real (ref18)
ref16
ref19
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref25
  doi: 10.1016/j.eswa.2023.121563
– ident: ref28
  doi: 10.1109/tfuzz.2024.3397728
– ident: ref14
  doi: 10.1007/s12065-007-0001-5
– ident: ref2
  doi: 10.1109/TNNLS.2017.2716952
– ident: ref24
  doi: 10.1016/j.ins.2024.120863
– ident: ref7
  doi: 10.1109/21.256541
– ident: ref8
  doi: 10.1109/jiot.2024.3412925
– ident: ref12
  doi: 10.1109/TFUZZ.2022.3207318
– ident: ref6
  doi: 10.1016/j.engappai.2024.109237
– ident: ref17
  doi: 10.1177/14759217241254121
– ident: ref26
  doi: 10.1109/TFUZZ.2020.2972207
– ident: ref10
  doi: 10.1109/TIM.2023.3316213
– ident: ref32
  doi: 10.1109/TFUZZ.2020.3009757
– ident: ref33
  doi: 10.1016/j.asoc.2014.07.019
– ident: ref15
  doi: 10.1016/j.engappai.2022.105437
– start-page: 2902
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref18
  article-title: Large-scale evolution of image classifiers
– ident: ref22
  doi: 10.1109/TEVC.2020.3024708
– ident: ref1
  doi: 10.1109/TCYB.2018.2857815
– ident: ref31
  doi: 10.1145/3453474
– ident: ref5
  doi: 10.47852/bonviewaia42022549
– ident: ref11
  doi: 10.1109/TFUZZ.2012.2201338
– ident: ref21
  doi: 10.1016/j.engappai.2024.108638
– ident: ref27
  doi: 10.1109/TFUZZ.2022.3141761
– ident: ref19
  doi: 10.1016/j.swevo.2020.100650
– ident: ref3
  doi: 10.1109/TSMC.1985.6313399
– ident: ref29
  doi: 10.1109/ACCESS.2020.2990567
– volume-title: UCI Repository of Machine Learning Databases
  year: 1998
  ident: ref30
– ident: ref20
  doi: 10.47852/bonviewAIA3202441
– ident: ref23
  doi: 10.1109/CVPR42600.2020.00190
– ident: ref9
  doi: 10.1109/TFUZZ.2021.3112222
– ident: ref16
  doi: 10.47852/bonviewAIA3202833
– ident: ref13
  doi: 10.1016/j.asoc.2024.112252
– ident: ref4
  doi: 10.1109/TFUZZ.2023.3249192
SSID ssj0007647
Score 2.503928
Snippet Dynamic fuzzy broad learning system (DFBLS) is a fuzzy neural network based on the TSK fuzzy system and broad learning (BL). DFBLS possesses excellent model...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Balancing
Complexity-accuracy trade-off
Computational modeling
Datasets
Evolutionary algorithms
Evolutionary computation
Feature extraction
fuzzy broad networks
Fuzzy logic
fuzzy rule (FR)-based classification systems
Fuzzy sets
Genetic algorithms
Learning systems
Linear programming
Machine learning
multiobjective evolutionary network framework
Multiple objective analysis
Neural networks
Optimization
Predictions
Predictive models
Redundancy
Training
Title Fuzzy Broad Neuroevolution Networks via Multiobjective Evolutionary Algorithms: Balancing Structural Simplification and Performance
URI https://ieeexplore.ieee.org/document/10731958
https://www.proquest.com/docview/3166819899
Volume 74
WOSCitedRecordID wos001422282800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4oaAHPyfOL3Lw4qFbmzRt422KQw8OQQVvJZ860U3WOdCr_7hJ2s2BKHhrISGlvyTv_ZL3fg_gSBhFw0TQIFKMBDGPkoCZiAVSEmLNiUiNiH2xibTXy-7v2XWVrO5zYbTWPvhMt9yjv8tXQ_nmjsrsCk-JE0epQS1NkzJZa7btpklcCmRGdgVbt2B6Jxmy9u3llWWCOG6ROKOxS0WZs0G-qMqPndibl-7aPz9sHVYrPxJ1SuA3YEEPNmFlTl1wE5Z8dKcstuCz-_bx8Y4s5eYKeTkOPammnH31ceAFmvQ58um4Q_FU7oLofNqKj95R5_lhOOqPH1-KE3TqAiKlHQXdeP1Zp92BbvouOt1Uh4CIDxS6_k5LaMBd9_z27CKoqi8EEjM8DgyPOdfGEMNibg279SMsWdSppUBGcSWIMlnCjaBCCZ1Ky5solTSTWohIWxZHtqE-GA70DiChcSQZ0dQ5LDjj3GAmeRhKrHhGFW5Ce4pHLitpclch4zn3FCVkuUUwdwjmFYJNOJ71eC1lOf5o23CIzbUrwWrC_hTzvFq4RU6iJMlcHBnb_aXbHixjVwPYH8PsQ93-Zn0Ai3Iy7hejQz8nvwAZCuL2
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4aDDQ4bAOKKGPMBy4cQhP_SOLdOkRVBFRIFIlb5J_QqbSoKZXgyj8-20lZJTSk3RLJlqN8tt_77Pe-B3AgrWZxKlmUaE4iKpI04jbhkVKEOHMiMytpKDaR9Xr5zQ2_rJPVQy6MMSYEn5kj_xju8vVYPfqjMrfCM-LFUZbgI6MUx1W61uvGm6W0kshM3Bp2jsH8VjLmrf7pheOCmB4RmjPqk1EWrFAoq_JmLw4GpvPlPz_tK3yuPUnUrqDfgA9mtAnrC_qCm7Aa4jtVuQUvncfn5yfkSLfQKAhymFk96dxriAQv0WwgUEjIHcvf1T6ITuatxOQJtYe348lgendf_kS_fEikcqOgq6BA69U70NXAx6fb-hgQiZFGl38TExpw3TnpH3ejuv5CpDDH08gKKoSxllhOhTPtzpNwdNFkjgRZLbQk2uapsJJJLU2mHHNiTLFcGSkT43gc2Ybl0XhkdgBJgxPFiWHeZcG5EBZzJeJYYS1ypnETWnM8ClWLk_saGcMikJSYFw7BwiNY1Ag24fC1x0MlzPFO24ZHbKFdBVYT9uaYF_XSLQuSpGnuI8n47j-6_YBP3f7FeXF-2jv7BmvYVwQOhzJ7sOx-ufkOK2o2HZST_TA__wAHvuY9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Broad+Neuroevolution+Networks+via+Multiobjective+Evolutionary+Algorithms%3A+Balancing+Structural+Simplification+and+Performance&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhao%2C+Huimin&rft.au=Wu%2C+Yandong&rft.au=Deng%2C+Wu&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2024.3485438&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3485438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon