Fuzzy Broad Neuroevolution Networks via Multiobjective Evolutionary Algorithms: Balancing Structural Simplification and Performance
Dynamic fuzzy broad learning system (DFBLS) is a fuzzy neural network based on the TSK fuzzy system and broad learning (BL). DFBLS possesses excellent model interpretability and efficient predictive performance. However, due to the phenomenon of rule explosion and the redundancy of network nodes, ba...
Saved in:
| Published in: | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 10 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Dynamic fuzzy broad learning system (DFBLS) is a fuzzy neural network based on the TSK fuzzy system and broad learning (BL). DFBLS possesses excellent model interpretability and efficient predictive performance. However, due to the phenomenon of rule explosion and the redundancy of network nodes, balancing network structure and performance has become a challenge in the construction of the DFBLS. Therefore, for the best balance between model predictive performance and network simplicity, a fuzzy broad neuroevolutionary network via multiobjective evolutionary algorithms (EAs) was developed in this article. First, an effective genetic encoding strategy was designed to represent the feature node building blocks and network connectivity relationships. The incremental mechanism and the randomly connected network relationships in the ILFR structure are replaced by the evolutionary framework. Second, a multiobjective optimization problem model is constructed with the optimization objectives of prediction performance and minimal network structure, and the corresponding objective functions are proposed. Finally, a self-adaptive mutation strategy with scaling genes is proposed for NSGA-II to optimize the accuracy and structure of the neural networks. The experiments demonstrate that SGNSGA-DFBLS achieves the best hypervolume (HV) values in 7 out of 9 public datasets. Its performance on the Air and pm2.5 datasets is either superior to or on par with other recently proposed models. SGNSGA-DFBLS can achieve high test accuracy with fewer fuzzy rules (FRs) and a compact network structure when constructing fuzzy broad network models. |
|---|---|
| AbstractList | Dynamic fuzzy broad learning system (DFBLS) is a fuzzy neural network based on the TSK fuzzy system and broad learning (BL). DFBLS possesses excellent model interpretability and efficient predictive performance. However, due to the phenomenon of rule explosion and the redundancy of network nodes, balancing network structure and performance has become a challenge in the construction of the DFBLS. Therefore, for the best balance between model predictive performance and network simplicity, a fuzzy broad neuroevolutionary network via multiobjective evolutionary algorithms (EAs) was developed in this article. First, an effective genetic encoding strategy was designed to represent the feature node building blocks and network connectivity relationships. The incremental mechanism and the randomly connected network relationships in the ILFR structure are replaced by the evolutionary framework. Second, a multiobjective optimization problem model is constructed with the optimization objectives of prediction performance and minimal network structure, and the corresponding objective functions are proposed. Finally, a self-adaptive mutation strategy with scaling genes is proposed for NSGA-II to optimize the accuracy and structure of the neural networks. The experiments demonstrate that SGNSGA-DFBLS achieves the best hypervolume (HV) values in 7 out of 9 public datasets. Its performance on the Air and pm2.5 datasets is either superior to or on par with other recently proposed models. SGNSGA-DFBLS can achieve high test accuracy with fewer fuzzy rules (FRs) and a compact network structure when constructing fuzzy broad network models. |
| Author | Zhao, Huimin Wu, Yandong Deng, Wu |
| Author_xml | – sequence: 1 givenname: Huimin orcidid: 0000-0002-8479-9539 surname: Zhao fullname: Zhao, Huimin email: hm_zhao1977@126.com organization: College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China – sequence: 2 givenname: Yandong orcidid: 0009-0005-0774-9414 surname: Wu fullname: Wu, Yandong email: 2022022275@cauc.edu.cn organization: College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China – sequence: 3 givenname: Wu orcidid: 0000-0002-4538-2001 surname: Deng fullname: Deng, Wu email: wdeng@cauc.edu.cn organization: College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China |
| BookMark | eNp9kEtLxDAUhYMoOD72LlwEXHfMo0kTdyrjA3yBui5peqMZO82YpiO69Y9bHQVx4epyL-ecy_k20GobWkBoh5IxpUTv351fjhlh-ZjnSuRcraARFaLItJRsFY0IoSrTuZDraKPrpoSQQubFCL2f9G9vr_goBlPjK-hjgEVo-uRDO6zpJcSnDi-8wZd9MxyrKdjkF4AnPyoTX_Fh8xCiT4-z7gAfmca01rcP-DbF3qY-mgbf-tm88c5b8xVs2hrfQHQhzgYtbKE1Z5oOtr_nJro_mdwdn2UX16fnx4cXmWWapcyZ3BhwjjudG8YVY5xRCoWSzNWmrnjtlDSuElVdQWG1lkJYoSxUFQWlNd9Ee8vceQzPPXSpnIY-tsPLklMpFdVLFVmqbAxdF8GV8-hnQ82SkvITdTmgLj9Rl9-oB4v8Y7E-fVVN0fjmP-Pu0ugB4NefglMtFP8Ab9iShA |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1088_1361_6501_adf76a crossref_primary_10_1080_10589759_2025_2512572 crossref_primary_10_1109_JSTARS_2025_3540001 crossref_primary_10_1177_14613484251322234 crossref_primary_10_1049_ell2_70189 crossref_primary_10_3390_fractalfract8120720 |
| Cites_doi | 10.1016/j.eswa.2023.121563 10.1109/tfuzz.2024.3397728 10.1007/s12065-007-0001-5 10.1109/TNNLS.2017.2716952 10.1016/j.ins.2024.120863 10.1109/21.256541 10.1109/jiot.2024.3412925 10.1109/TFUZZ.2022.3207318 10.1016/j.engappai.2024.109237 10.1177/14759217241254121 10.1109/TFUZZ.2020.2972207 10.1109/TIM.2023.3316213 10.1109/TFUZZ.2020.3009757 10.1016/j.asoc.2014.07.019 10.1016/j.engappai.2022.105437 10.1109/TEVC.2020.3024708 10.1109/TCYB.2018.2857815 10.1145/3453474 10.47852/bonviewaia42022549 10.1109/TFUZZ.2012.2201338 10.1016/j.engappai.2024.108638 10.1109/TFUZZ.2022.3141761 10.1016/j.swevo.2020.100650 10.1109/TSMC.1985.6313399 10.1109/ACCESS.2020.2990567 10.47852/bonviewAIA3202441 10.1109/CVPR42600.2020.00190 10.1109/TFUZZ.2021.3112222 10.47852/bonviewAIA3202833 10.1016/j.asoc.2024.112252 10.1109/TFUZZ.2023.3249192 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2024.3485438 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 10 |
| ExternalDocumentID | 10_1109_TIM_2024_3485438 10731958 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U2133205 funderid: 10.13039/501100001809 – fundername: Science and Technology Plan Projects of Tianjin grantid: 23JCZDJC00100 – fundername: State Key Laboratory of Rail Transit Vehicle System of Southwest Jiaotong University grantid: TPL2203 funderid: 10.13039/501100019049 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c292t-fa4aaeff3f94a238223211e7862fdadb3df86afb5bdbe7c99655c58cebb1e8993 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001422282800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:21:10 EDT 2025 Sat Nov 29 08:17:26 EST 2025 Tue Nov 18 22:35:35 EST 2025 Wed Aug 27 01:50:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-fa4aaeff3f94a238223211e7862fdadb3df86afb5bdbe7c99655c58cebb1e8993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4538-2001 0000-0002-8479-9539 0009-0005-0774-9414 |
| PQID | 3166819899 |
| PQPubID | 85462 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_10731958 crossref_citationtrail_10_1109_TIM_2024_3485438 crossref_primary_10_1109_TIM_2024_3485438 proquest_journals_3166819899 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 Blake (ref30) 1998 ref11 ref33 ref10 ref32 ref2 ref1 ref17 Real (ref18) ref16 ref19 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref25 doi: 10.1016/j.eswa.2023.121563 – ident: ref28 doi: 10.1109/tfuzz.2024.3397728 – ident: ref14 doi: 10.1007/s12065-007-0001-5 – ident: ref2 doi: 10.1109/TNNLS.2017.2716952 – ident: ref24 doi: 10.1016/j.ins.2024.120863 – ident: ref7 doi: 10.1109/21.256541 – ident: ref8 doi: 10.1109/jiot.2024.3412925 – ident: ref12 doi: 10.1109/TFUZZ.2022.3207318 – ident: ref6 doi: 10.1016/j.engappai.2024.109237 – ident: ref17 doi: 10.1177/14759217241254121 – ident: ref26 doi: 10.1109/TFUZZ.2020.2972207 – ident: ref10 doi: 10.1109/TIM.2023.3316213 – ident: ref32 doi: 10.1109/TFUZZ.2020.3009757 – ident: ref33 doi: 10.1016/j.asoc.2014.07.019 – ident: ref15 doi: 10.1016/j.engappai.2022.105437 – start-page: 2902 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref18 article-title: Large-scale evolution of image classifiers – ident: ref22 doi: 10.1109/TEVC.2020.3024708 – ident: ref1 doi: 10.1109/TCYB.2018.2857815 – ident: ref31 doi: 10.1145/3453474 – ident: ref5 doi: 10.47852/bonviewaia42022549 – ident: ref11 doi: 10.1109/TFUZZ.2012.2201338 – ident: ref21 doi: 10.1016/j.engappai.2024.108638 – ident: ref27 doi: 10.1109/TFUZZ.2022.3141761 – ident: ref19 doi: 10.1016/j.swevo.2020.100650 – ident: ref3 doi: 10.1109/TSMC.1985.6313399 – ident: ref29 doi: 10.1109/ACCESS.2020.2990567 – volume-title: UCI Repository of Machine Learning Databases year: 1998 ident: ref30 – ident: ref20 doi: 10.47852/bonviewAIA3202441 – ident: ref23 doi: 10.1109/CVPR42600.2020.00190 – ident: ref9 doi: 10.1109/TFUZZ.2021.3112222 – ident: ref16 doi: 10.47852/bonviewAIA3202833 – ident: ref13 doi: 10.1016/j.asoc.2024.112252 – ident: ref4 doi: 10.1109/TFUZZ.2023.3249192 |
| SSID | ssj0007647 |
| Score | 2.503928 |
| Snippet | Dynamic fuzzy broad learning system (DFBLS) is a fuzzy neural network based on the TSK fuzzy system and broad learning (BL). DFBLS possesses excellent model... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Balancing Complexity-accuracy trade-off Computational modeling Datasets Evolutionary algorithms Evolutionary computation Feature extraction fuzzy broad networks Fuzzy logic fuzzy rule (FR)-based classification systems Fuzzy sets Genetic algorithms Learning systems Linear programming Machine learning multiobjective evolutionary network framework Multiple objective analysis Neural networks Optimization Predictions Predictive models Redundancy Training |
| Title | Fuzzy Broad Neuroevolution Networks via Multiobjective Evolutionary Algorithms: Balancing Structural Simplification and Performance |
| URI | https://ieeexplore.ieee.org/document/10731958 https://www.proquest.com/docview/3166819899 |
| Volume | 74 |
| WOSCitedRecordID | wos001422282800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4oaAHPyfOL3Lw4qFbmzRt422KQw8OQQVvJZ860U3WOdCr_7hJ2s2BKHhrISGlvyTv_ZL3fg_gSBhFw0TQIFKMBDGPkoCZiAVSEmLNiUiNiH2xibTXy-7v2XWVrO5zYbTWPvhMt9yjv8tXQ_nmjsrsCk-JE0epQS1NkzJZa7btpklcCmRGdgVbt2B6Jxmy9u3llWWCOG6ROKOxS0WZs0G-qMqPndibl-7aPz9sHVYrPxJ1SuA3YEEPNmFlTl1wE5Z8dKcstuCz-_bx8Y4s5eYKeTkOPammnH31ceAFmvQ58um4Q_FU7oLofNqKj95R5_lhOOqPH1-KE3TqAiKlHQXdeP1Zp92BbvouOt1Uh4CIDxS6_k5LaMBd9_z27CKoqi8EEjM8DgyPOdfGEMNibg279SMsWdSppUBGcSWIMlnCjaBCCZ1Ky5solTSTWohIWxZHtqE-GA70DiChcSQZ0dQ5LDjj3GAmeRhKrHhGFW5Ce4pHLitpclch4zn3FCVkuUUwdwjmFYJNOJ71eC1lOf5o23CIzbUrwWrC_hTzvFq4RU6iJMlcHBnb_aXbHixjVwPYH8PsQ93-Zn0Ai3Iy7hejQz8nvwAZCuL2 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4aDDQ4bAOKKGPMBy4cQhP_SOLdOkRVBFRIFIlb5J_QqbSoKZXgyj8-20lZJTSk3RLJlqN8tt_77Pe-B3AgrWZxKlmUaE4iKpI04jbhkVKEOHMiMytpKDaR9Xr5zQ2_rJPVQy6MMSYEn5kj_xju8vVYPfqjMrfCM-LFUZbgI6MUx1W61uvGm6W0kshM3Bp2jsH8VjLmrf7pheOCmB4RmjPqk1EWrFAoq_JmLw4GpvPlPz_tK3yuPUnUrqDfgA9mtAnrC_qCm7Aa4jtVuQUvncfn5yfkSLfQKAhymFk96dxriAQv0WwgUEjIHcvf1T6ITuatxOQJtYe348lgendf_kS_fEikcqOgq6BA69U70NXAx6fb-hgQiZFGl38TExpw3TnpH3ejuv5CpDDH08gKKoSxllhOhTPtzpNwdNFkjgRZLbQk2uapsJJJLU2mHHNiTLFcGSkT43gc2Ybl0XhkdgBJgxPFiWHeZcG5EBZzJeJYYS1ypnETWnM8ClWLk_saGcMikJSYFw7BwiNY1Ag24fC1x0MlzPFO24ZHbKFdBVYT9uaYF_XSLQuSpGnuI8n47j-6_YBP3f7FeXF-2jv7BmvYVwQOhzJ7sOx-ufkOK2o2HZST_TA__wAHvuY9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Broad+Neuroevolution+Networks+via+Multiobjective+Evolutionary+Algorithms%3A+Balancing+Structural+Simplification+and+Performance&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhao%2C+Huimin&rft.au=Wu%2C+Yandong&rft.au=Deng%2C+Wu&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2024.3485438&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3485438 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |