STARS Enabled Integrated Sensing and Communications
A simultaneously transmitting and reflecting surface (STARS) enabled integrated sensing and communications (ISAC) framework is proposed, where the entire space is partitioned by STARS into a sensing space and a communication space. A novel sensing-at-STARS structure is proposed, where dedicated sens...
Uloženo v:
| Vydáno v: | IEEE transactions on wireless communications Ročník 22; číslo 10; s. 1 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1536-1276, 1558-2248 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A simultaneously transmitting and reflecting surface (STARS) enabled integrated sensing and communications (ISAC) framework is proposed, where the entire space is partitioned by STARS into a sensing space and a communication space. A novel sensing-at-STARS structure is proposed, where dedicated sensors are mounted at STARS to address the significant path loss and clutter interference of sensing. The Cramér-Rao bound (CRB) of the two-dimensional (2D) direction-of-arrivals (DOAs) estimation of the sensing target is derived, which is then minimized subject to the minimum communication requirement. A novel approach is proposed to transform the complicated CRB minimization problem into a trackable modified Fisher information matrix (FIM) optimization problem. Both independent and coupled phase-shift models of STARS are investigated: 1) For the independent phase-shift model, to address the coupling problem of ISAC waveform and STARS coefficient, an efficient double-loop iterative algorithm based on the penalty dual decomposition (PDD) framework is conceived; 2) For the coupled phase-shift model, based on the PDD framework, a low complexity alternating optimization algorithm is proposed to tackle the coupled phase-shift constraint by alternately optimizing the amplitude and phase-shift coefficients of STARS with closed-form expressions. Finally, the numerical results demonstrate that: 1) STARS significantly outperforms conventional RIS in terms of CRB under the communication constraints; 2) The coupled phase-shift model achieves comparable performance to the independent one for low communication requirements or sufficient STARS elements; 3) It is more efficient to increase the number of passive elements of STARS than the active elements of the sensor; 4) Higher sensing accuracy can be achieved by STARS using the practical 2D maximum likelihood estimator compared with the conventional RIS. |
|---|---|
| AbstractList | A simultaneously transmitting and reflecting surface (STARS) enabled integrated sensing and communications (ISAC) framework is proposed, where the entire space is partitioned by STARS into a sensing space and a communication space. A novel sensing-at-STARS structure is proposed, where dedicated sensors are mounted at STARS to address the significant path loss and clutter interference of sensing. The Cramér-Rao bound (CRB) of the two-dimensional (2D) direction-of-arrivals (DOAs) estimation of the sensing target is derived, which is then minimized subject to the minimum communication requirement. A novel approach is proposed to transform the complicated CRB minimization problem into a trackable modified Fisher information matrix (FIM) optimization problem. Both independent and coupled phase-shift models of STARS are investigated: 1) For the independent phase-shift model, to address the coupling problem of ISAC waveform and STARS coefficient, an efficient double-loop iterative algorithm based on the penalty dual decomposition (PDD) framework is conceived; 2) For the coupled phase-shift model, based on the PDD framework, a low complexity alternating optimization algorithm is proposed to tackle the coupled phase-shift constraint by alternately optimizing the amplitude and phase-shift coefficients of STARS with closed-form expressions. Finally, the numerical results demonstrate that: 1) STARS significantly outperforms conventional RIS in terms of CRB under the communication constraints; 2) coupled phase-shift model achieves comparable performance to the independent one for low communication requirements or sufficient STARS elements; 3) it is more efficient to increase the number of passive elements of STARS than the active elements of the sensor; 4) higher sensing accuracy can be achieved by STARS using the practical 2D maximum likelihood estimator compared with the conventional RIS. A simultaneously transmitting and reflecting surface (STARS) enabled integrated sensing and communications (ISAC) framework is proposed, where the entire space is partitioned by STARS into a sensing space and a communication space. A novel sensing-at-STARS structure is proposed, where dedicated sensors are mounted at STARS to address the significant path loss and clutter interference of sensing. The Cramér-Rao bound (CRB) of the two-dimensional (2D) direction-of-arrivals (DOAs) estimation of the sensing target is derived, which is then minimized subject to the minimum communication requirement. A novel approach is proposed to transform the complicated CRB minimization problem into a trackable modified Fisher information matrix (FIM) optimization problem. Both independent and coupled phase-shift models of STARS are investigated: 1) For the independent phase-shift model, to address the coupling problem of ISAC waveform and STARS coefficient, an efficient double-loop iterative algorithm based on the penalty dual decomposition (PDD) framework is conceived; 2) For the coupled phase-shift model, based on the PDD framework, a low complexity alternating optimization algorithm is proposed to tackle the coupled phase-shift constraint by alternately optimizing the amplitude and phase-shift coefficients of STARS with closed-form expressions. Finally, the numerical results demonstrate that: 1) STARS significantly outperforms conventional RIS in terms of CRB under the communication constraints; 2) The coupled phase-shift model achieves comparable performance to the independent one for low communication requirements or sufficient STARS elements; 3) It is more efficient to increase the number of passive elements of STARS than the active elements of the sensor; 4) Higher sensing accuracy can be achieved by STARS using the practical 2D maximum likelihood estimator compared with the conventional RIS. |
| Author | Liu, Yuanwei Wang, Zhaolin Mu, Xidong |
| Author_xml | – sequence: 1 givenname: Zhaolin orcidid: 0000-0003-4614-0175 surname: Wang fullname: Wang, Zhaolin organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K – sequence: 2 givenname: Xidong orcidid: 0000-0001-8351-360X surname: Mu fullname: Mu, Xidong organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K – sequence: 3 givenname: Yuanwei orcidid: 0000-0002-6389-8941 surname: Liu fullname: Liu, Yuanwei organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K |
| BookMark | eNp9kLFPAjEYxRuDiYDuDg6XOB-2vfva3kguiCQkJoJxbHrXlpRAD9sy-N97CINxcPre8H7v5XsjNPCdNwjdEzwhBFdP6496QjEtJgUtgVb8Cg0JgMgpLcXgpAuWE8rZDRrFuMWYcAYwRMVqPX1bZTOvmp3R2cInswkq9XJlfHR-kymvs7rb74_etSq5zsdbdG3VLpq7yx2j9-fZun7Jl6_zRT1d5i2taMotA8YI10IDcE21xqBLrhrDGytK05jWKjCqgkYIq2llKwYlKEW0UGBJU4zR4zn3ELrPo4lJbrtj8H2lpIL3oVSQqnfhs6sNXYzBWHkIbq_ClyRYnqaR_TTyNI28TNMj7A_SuvTzWwrK7f4DH86gM8b86sGAS8yKb32HckI |
| CODEN | ITWCAX |
| CitedBy_id | crossref_primary_10_1109_TVT_2023_3347527 crossref_primary_10_1109_COMST_2023_3340099 crossref_primary_10_1109_JIOT_2024_3411695 crossref_primary_10_1109_TWC_2024_3505918 crossref_primary_10_1109_TWC_2024_3516375 crossref_primary_10_1109_TVT_2024_3364761 crossref_primary_10_1109_TWC_2024_3357349 crossref_primary_10_1109_JIOT_2024_3502669 crossref_primary_10_1109_TCOMM_2024_3522041 crossref_primary_10_1109_TCOMM_2023_3345007 crossref_primary_10_1109_TWC_2025_3561006 crossref_primary_10_1109_TWC_2024_3374728 crossref_primary_10_1109_TWC_2024_3498105 crossref_primary_10_1109_TVT_2023_3272036 crossref_primary_10_1109_TCOMM_2023_3332856 crossref_primary_10_1109_TWC_2024_3362069 crossref_primary_10_1109_LWC_2024_3399263 crossref_primary_10_1109_TWC_2025_3555005 crossref_primary_10_1049_rsn2_12623 crossref_primary_10_1109_TCOMM_2024_3374351 crossref_primary_10_1109_TWC_2024_3436932 crossref_primary_10_1109_TWC_2023_3341429 crossref_primary_10_1109_LCOMM_2025_3562748 crossref_primary_10_1109_JIOT_2024_3361939 crossref_primary_10_1109_JSAC_2024_3413956 crossref_primary_10_1109_TGCN_2024_3462491 crossref_primary_10_1016_j_dsp_2025_105146 crossref_primary_10_1109_TVT_2024_3409730 crossref_primary_10_1109_LCOMM_2024_3503754 crossref_primary_10_1109_MNET_2024_3486352 crossref_primary_10_1109_TWC_2024_3413089 crossref_primary_10_1109_TWC_2024_3434963 crossref_primary_10_1109_JIOT_2024_3416951 crossref_primary_10_1109_TWC_2024_3496516 crossref_primary_10_1109_TWC_2024_3432790 crossref_primary_10_1109_TWC_2024_3459036 crossref_primary_10_1109_TWC_2024_3428493 crossref_primary_10_1109_JPROC_2024_3405351 crossref_primary_10_1109_TNSE_2025_3571278 crossref_primary_10_1109_JSTSP_2024_3394970 crossref_primary_10_1109_JSAC_2025_3536557 crossref_primary_10_1109_TWC_2025_3530083 crossref_primary_10_1109_TCOMM_2024_3447917 crossref_primary_10_1109_JIOT_2025_3555001 crossref_primary_10_1109_TWC_2024_3387021 crossref_primary_10_1109_TIFS_2023_3297452 crossref_primary_10_1109_MSP_2024_3471069 crossref_primary_10_1109_MNET_2024_3481293 crossref_primary_10_1109_TVT_2025_3537323 crossref_primary_10_1109_JSAC_2025_3531531 crossref_primary_10_1109_TWC_2025_3542780 crossref_primary_10_3390_s25082358 crossref_primary_10_1109_TWC_2023_3328872 crossref_primary_10_1109_TWC_2024_3521014 crossref_primary_10_1109_TVT_2025_3554624 crossref_primary_10_1038_s41598_025_04173_3 crossref_primary_10_1109_TCOMM_2024_3439446 crossref_primary_10_1631_FITEE_2300490 crossref_primary_10_1109_MNET_2024_3381783 crossref_primary_10_1109_TVT_2024_3394521 crossref_primary_10_1109_TVT_2024_3453389 crossref_primary_10_1109_ACCESS_2025_3542607 crossref_primary_10_1109_JSAC_2024_3413972 crossref_primary_10_26599_TST_2024_9010086 crossref_primary_10_1109_LCOMM_2023_3280132 crossref_primary_10_1007_s11432_024_4345_5 crossref_primary_10_1109_LWC_2024_3439398 crossref_primary_10_1109_TVT_2025_3544752 crossref_primary_10_1109_TWC_2023_3344229 crossref_primary_10_1109_TWC_2025_3525631 crossref_primary_10_1109_TWC_2025_3556301 crossref_primary_10_1109_OJCOMS_2025_3594049 crossref_primary_10_1109_TCOMM_2024_3381725 crossref_primary_10_1109_TWC_2024_3364913 crossref_primary_10_1109_TVT_2025_3534287 |
| Cites_doi | 10.1109/LWC.2022.3184409 10.1109/COMST.2021.3077737 10.1007/b105056 10.1109/MWC.001.2100191 10.1109/MSP.2010.936019 10.1109/TWC.2022.3153792 10.1109/GLOBECOM48099.2022.10000676 10.1142/p309 10.1109/LSP.2022.3224681 10.1109/TVT.2021.3122889 10.1109/TSP.2020.3004739 10.1109/COMST.2021.3122519 10.1109/TCOMM.2021.3087794 10.1109/JSAC.2022.3155515 10.1007/s10107-006-0088-y 10.1109/JSAC.2022.3155548 10.1109/JSAC.2022.3155546 10.1109/JSTSP.2022.3175030 10.1109/TSP.2006.879267 10.1017/CBO9780511804441 10.1109/TWC.2018.2803045 10.1109/TWC.2021.3118225 10.1109/JSAC.2022.3156632 10.1109/LCOMM.2021.3139198 10.1109/TWC.2019.2936025 10.1109/VTC2022-Fall57202.2022.10013032 10.1109/TWC.2019.2922609 10.1137/120891009 10.1109/TSP.2021.3135692 10.1109/GCWkshps56602.2022.10008725 10.1109/JSTSP.2022.3172788 10.1109/TSP.2020.3001906 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TWC.2023.3245297 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2248 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TWC_2023_3245297 10050406 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX AETIX AIBXA CITATION EJD H~9 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-f656617d8d557d2dd05d47abe7bf84ebecfa5ea95b88fd29f96545aa1d8a5f1b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001101787000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1276 |
| IngestDate | Fri Jul 25 10:31:24 EDT 2025 Sat Nov 29 06:23:56 EST 2025 Tue Nov 18 22:10:12 EST 2025 Wed Aug 27 02:14:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-f656617d8d557d2dd05d47abe7bf84ebecfa5ea95b88fd29f96545aa1d8a5f1b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6389-8941 0000-0003-4614-0175 0000-0001-8351-360X |
| PQID | 2875572819 |
| PQPubID | 105736 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TWC_2023_3245297 ieee_primary_10050406 crossref_citationtrail_10_1109_TWC_2023_3245297 proquest_journals_2875572819 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on wireless communications |
| PublicationTitleAbbrev | TWC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref30 ref11 ref33 ref32 ref2 ref1 ref17 ref16 ref19 ref18 xu (ref4) 2022 pritzker (ref10) 2022 prasobh sankar (ref23) 2022 kay (ref31) 1993 xing (ref25) 2022 ref24 ref26 ref20 ref22 ref21 grant (ref38) 2014 ref28 ref27 ref29 ref8 ref7 ref9 ref3 ref6 ref5 |
| References_xml | – year: 2022 ident: ref10 article-title: Transmit precoder design approaches for dual-function radar-communication systems publication-title: arXiv 2203 09571 – ident: ref13 doi: 10.1109/LWC.2022.3184409 – ident: ref5 doi: 10.1109/COMST.2021.3077737 – year: 2014 ident: ref38 publication-title: CVX Matlab Software for Disciplined Convex Programming Version 2 1 – year: 1993 ident: ref31 publication-title: Fundamentals of Statistical Signal Processing Estimation Theory – ident: ref33 doi: 10.1007/b105056 – ident: ref6 doi: 10.1109/MWC.001.2100191 – ident: ref35 doi: 10.1109/MSP.2010.936019 – ident: ref19 doi: 10.1109/TWC.2022.3153792 – year: 2022 ident: ref4 article-title: A full dive into realizing the edge-enabled metaverse: Visions, enabling technologies, and challenges publication-title: IEEE Commun Surveys Tuts – ident: ref15 doi: 10.1109/GLOBECOM48099.2022.10000676 – ident: ref28 doi: 10.1142/p309 – ident: ref22 doi: 10.1109/LSP.2022.3224681 – ident: ref26 doi: 10.1109/TVT.2021.3122889 – ident: ref9 doi: 10.1109/TSP.2020.3004739 – ident: ref3 doi: 10.1109/COMST.2021.3122519 – ident: ref18 doi: 10.1109/TCOMM.2021.3087794 – ident: ref12 doi: 10.1109/JSAC.2022.3155515 – ident: ref37 doi: 10.1007/s10107-006-0088-y – ident: ref11 doi: 10.1109/JSAC.2022.3155548 – ident: ref20 doi: 10.1109/JSAC.2022.3155546 – ident: ref27 doi: 10.1109/JSTSP.2022.3175030 – ident: ref29 doi: 10.1109/TSP.2006.879267 – ident: ref32 doi: 10.1017/CBO9780511804441 – ident: ref8 doi: 10.1109/TWC.2018.2803045 – ident: ref7 doi: 10.1109/TWC.2021.3118225 – ident: ref2 doi: 10.1109/JSAC.2022.3156632 – year: 2022 ident: ref23 article-title: Beamforming in integrated sensing and communication systems with reconfigurable intelligent surfaces publication-title: arXiv 2206 07679 – ident: ref30 doi: 10.1109/LCOMM.2021.3139198 – ident: ref17 doi: 10.1109/TWC.2019.2936025 – ident: ref1 doi: 10.1109/VTC2022-Fall57202.2022.10013032 – ident: ref16 doi: 10.1109/TWC.2019.2922609 – ident: ref36 doi: 10.1137/120891009 – ident: ref14 doi: 10.1109/TSP.2021.3135692 – year: 2022 ident: ref25 article-title: Joint active and passive beamforming design for reconfigurable intelligent surface enabled integrated sensing and communication publication-title: arXiv 2206 00525 – ident: ref21 doi: 10.1109/GCWkshps56602.2022.10008725 – ident: ref24 doi: 10.1109/JSTSP.2022.3172788 – ident: ref34 doi: 10.1109/TSP.2020.3001906 |
| SSID | ssj0017655 |
| Score | 2.7098882 |
| Snippet | A simultaneously transmitting and reflecting surface (STARS) enabled integrated sensing and communications (ISAC) framework is proposed, where the entire space... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Array signal processing Clutter Communication Constraint modelling Cramer-Rao bounds Cramér-Rao bound Direction-of-arrival estimation Estimation Fisher information integrated sensing and communication (ISAC) Iterative algorithms Iterative methods Maximum likelihood estimators Optimization Phase shift Sensors Signal to noise ratio simultaneously transmitting and reflecting intelligent surface (STARS) Stars Waveforms |
| Title | STARS Enabled Integrated Sensing and Communications |
| URI | https://ieeexplore.ieee.org/document/10050406 https://www.proquest.com/docview/2875572819 |
| Volume | 22 |
| WOSCitedRecordID | wos001101787000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 1558-2248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017655 issn: 1536-1276 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5s8aAHnxWrVfbgxcO2-0g2ybGUFgUpYqv2FpJNIoJspQ9_v0l2W1pEwdsekiX5JrMz2Xl8ADfWiuZCJTRMKdUhYtaHYxjFoTEEZUhaj9dzEbw8kOGQTibssSpW97UwWmuffKbb7tHH8tU0X7pfZVbDI2wPXVaDGiGkLNZahwxI5ilOrQY7YhmyjklGrDN-7bUdTXg79XFGsmWDPKnKjy-xNy-Dw38u7AgOKj8y6JaCP4YdXZzA_kZ3wVNIR-Pu0yjo--ooFdyvGkOoYOSy1ou3QBQq2KoQmTfgedAf9-7CiiMhzBOWLELj_LGYKKowJipRKsIKESE1kYYiJyEjsBYMS0qNSphhmfWZhIgVFdjEMj2DejEt9DkEGuvUwSVElqPYcXIoRiWSAjOaplI2obNCjedVA3HHY_HB_UUiYtzizB3OvMK5CbfrGZ9l84w_xjYcrhvjSkib0FpJhlfqNef2mme362KAF79Mu4Q99_Yy7a4F9cVsqa9gN_9avM9n1_7kfAMBQb5Z |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oFNSDnxOnU3vw4qGzH0mTHMfY2HAOcVV3K0mTiiCd7MO_3yTtxoYoeOshocnv5fW99H38AG60FU25DKgbUqpcxLQPxzDy3SwjKEJCe7yWi-ClTwYDOhqxx7JY3dbCKKVs8plqmEcby5fjdG5-lWkN97A-dNEmbGGEAr8o11oGDUhkSU61DhtqGbKMSnrsLn5tNQxReCO0kUayZoUsrcqPb7E1MJ2Dfy7tEPZLT9JpFqI_gg2VH8PeSn_BEwiHcfNp6LRtfZR0eovWENIZmrz1_M3huXTWakSmVXjutONW1y1ZEtw0YMHMzYxH5hNJJcZEBlJ6WCLChSIio8jIKONYcYYFpZkMWMYi7TVx7kvKceaL8BQq-ThXZ-AorEIDF-dRinzDyiEZFUhwzGgYClGDuwVqSVq2EDdMFh-JvUp4LNE4JwbnpMS5BrfLGZ9F-4w_xlYNrivjCkhrUF9IJikVbJroi57erokCnv8y7Rp2uvFDP-n3BvcXsGveVCTh1aEym8zVJWynX7P36eTKnqJvFgnBoA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STARS+Enabled+Integrated+Sensing+and+Communications&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Wang%2C+Zhaolin&rft.au=Mu%2C+Xidong&rft.au=Liu%2C+Yuanwei&rft.date=2023-10-01&rft.pub=IEEE&rft.issn=1536-1276&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTWC.2023.3245297&rft.externalDocID=10050406 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |