Event-Triggered Proximal Online Gradient Descent Algorithm for Parameter Estimation
The constrained composite-convex parameter estimation problem on the networked system, where the composite-convex function consists of a sum of node-specific smooth loss functions and a nonsmooth regularizer, is investigated in this paper. To reduce the communication burden, the event-triggered mech...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 72; s. 2594 - 2606 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The constrained composite-convex parameter estimation problem on the networked system, where the composite-convex function consists of a sum of node-specific smooth loss functions and a nonsmooth regularizer, is investigated in this paper. To reduce the communication burden, the event-triggered mechanism is introduced and the novel event-triggered proximal online gradient descent algorithm (EPOGDA) is proposed. The analysis shows that if the event-triggered threshold converges to zero as time tends to infinity and the cumulative difference between consecutive optimal values is sublinear, the dynamic regret of EPOGDA is sublinear. Further, we extend the proposed EPOGDA to the gradient-free scenarios, where the gradients are estimated using the Gaussian smoothed gradient estimator (GSGE). The GSGE-EPOGDA is presented and analyzed, which does not lead to performance degradation as compared to EPOGDA. Finally, the advantages of EPOGDA and GSGE-EPOGDA are verified on a distributed multi-sensor network. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2024.3400453 |