Event-Triggered Proximal Online Gradient Descent Algorithm for Parameter Estimation

The constrained composite-convex parameter estimation problem on the networked system, where the composite-convex function consists of a sum of node-specific smooth loss functions and a nonsmooth regularizer, is investigated in this paper. To reduce the communication burden, the event-triggered mech...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 72; s. 2594 - 2606
Hlavní autoři: Zhou, Yaoyao, Chen, Gang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The constrained composite-convex parameter estimation problem on the networked system, where the composite-convex function consists of a sum of node-specific smooth loss functions and a nonsmooth regularizer, is investigated in this paper. To reduce the communication burden, the event-triggered mechanism is introduced and the novel event-triggered proximal online gradient descent algorithm (EPOGDA) is proposed. The analysis shows that if the event-triggered threshold converges to zero as time tends to infinity and the cumulative difference between consecutive optimal values is sublinear, the dynamic regret of EPOGDA is sublinear. Further, we extend the proposed EPOGDA to the gradient-free scenarios, where the gradients are estimated using the Gaussian smoothed gradient estimator (GSGE). The GSGE-EPOGDA is presented and analyzed, which does not lead to performance degradation as compared to EPOGDA. Finally, the advantages of EPOGDA and GSGE-EPOGDA are verified on a distributed multi-sensor network.
AbstractList The constrained composite-convex parameter estimation problem on the networked system, where the composite-convex function consists of a sum of node-specific smooth loss functions and a nonsmooth regularizer, is investigated in this paper. To reduce the communication burden, the event-triggered mechanism is introduced and the novel event-triggered proximal online gradient descent algorithm (EPOGDA) is proposed. The analysis shows that if the event-triggered threshold converges to zero as time tends to infinity and the cumulative difference between consecutive optimal values is sublinear, the dynamic regret of EPOGDA is sublinear. Further, we extend the proposed EPOGDA to the gradient-free scenarios, where the gradients are estimated using the Gaussian smoothed gradient estimator (GSGE). The GSGE-EPOGDA is presented and analyzed, which does not lead to performance degradation as compared to EPOGDA. Finally, the advantages of EPOGDA and GSGE-EPOGDA are verified on a distributed multi-sensor network.
Author Zhou, Yaoyao
Chen, Gang
Author_xml – sequence: 1
  givenname: Yaoyao
  orcidid: 0009-0004-9050-8867
  surname: Zhou
  fullname: Zhou, Yaoyao
  email: zhouyaoyao@cqu.edu.cn
  organization: College of Automation, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Gang
  orcidid: 0000-0003-1098-6953
  surname: Chen
  fullname: Chen, Gang
  email: chengang@cqu.edu.cn
  organization: College of Automation, Chongqing University, Chongqing, China
BookMark eNp9kEtPAjEUhRuDiYDuXbiYxPVg3zOzJIhoQiIJmLhrSrmDJcMU22L031uEhXHh6tybnO8-Tg91WtcCQtcEDwjB1d1iPhtQTPmAcYy5YGeoSypOcswL2Uk1FiwXZfF6gXohbDAmnFeyi-bjD2hjvvB2vQYPq2zm3afd6iZ7bhvbQjbxemWTJbuHYA46bNbO2_i2zWrns5n2egsRfDYOMXHRuvYSnde6CXB10j56eRgvRo_59HnyNBpOc0MrGvNaUlaUtSyAML2kpiSGl0CB0ALksi6XTNRCS07MSpQGA9aiqOhKakNolRrWR7fHuTvv3vcQotq4vW_TSsWwrCTFjJXJJY8u410IHmplbPy5M3ptG0WwOgSoUoDqEKA6BZhA_Afc-fSh__oPuTkiFgB-2QXDpBDsG49LfZ8
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TSIPN_2025_3587414
Cites_doi 10.1109/TAC.2019.2916985
10.1109/TNNLS.2017.2691760
10.1109/TAC.2020.3021011
10.1109/TAC.2020.2987379
10.1109/TCYB.2022.3177644
10.1109/TSP.2024.3366437
10.1109/TSP.2020.2991383
10.1016/j.sigpro.2021.108150
10.1109/TSP.2023.3282068
10.1109/TCNS.2015.2505149
10.1109/TII.2023.3334307
10.1016/j.jfranklin.2023.08.026
10.1109/TSP.2021.3051871
10.1137/110844805
10.1109/TSP.2020.3044843
10.1007/s10208-015-9296-2
10.1109/TSP.2015.2481861
10.1109/TSP.2017.2679690
10.1109/TAC.2018.2800760
10.1109/TSP.2021.3122095
10.1016/j.automatica.2015.03.001
10.1109/TSP.2022.3194369
10.1109/IEEECONF53345.2021.9723285
10.1109/TCYB.2020.2990796
10.1109/TSP.2020.3021247
10.1109/TAC.2020.3033712
10.1109/TSP.2018.2890368
10.1109/TAC.2008.2009515
10.1109/TSP.2022.3223214
10.1109/TAC.2017.2743462
10.1109/TCNS.2016.2585305
10.1145/3128572.3140448
10.1109/TAC.2023.3237975
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2024.3400453
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 2606
ExternalDocumentID 10_1109_TSP_2024_3400453
10530175
Genre orig-research
GrantInformation_xml – fundername: Special General Project for Chongqing's Technological Innovation and Application Development
  grantid: CSTB2023TIAD-GPX0002
– fundername: Sichuan Science and Technology Program
  grantid: 2023YFG0034
– fundername: Graduate Research and Innovation Foundation of Chongqing, China
  grantid: CYB21065
– fundername: National Natural Science Foundation of China
  grantid: 62073048
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-f62378f67e13ab2c81c48e2e127e6bf8b35f5a641cd58c0e0a5792d6ac1290a53
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001251151800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:17:12 EDT 2025
Tue Nov 18 20:53:12 EST 2025
Sat Nov 29 04:24:10 EST 2025
Wed Aug 27 02:06:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-f62378f67e13ab2c81c48e2e127e6bf8b35f5a641cd58c0e0a5792d6ac1290a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1098-6953
0009-0004-9050-8867
PQID 3069620338
PQPubID 85478
PageCount 13
ParticipantIDs crossref_primary_10_1109_TSP_2024_3400453
ieee_primary_10530175
crossref_citationtrail_10_1109_TSP_2024_3400453
proquest_journals_3069620338
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref10
ref2
ref1
ref17
ref16
ref38
ref19
Shamir (ref30) 2017; 18
ref18
ref24
ref23
Agarwal (ref33) 2010
ref26
ref25
ref22
ref28
ref27
ref29
ref8
ref7
Schmidt (ref20) 2011
ref9
ref4
ref3
ref6
ref5
Flaxman (ref32) 2005
Salzo (ref21) 2012; 19
References_xml – ident: ref28
  doi: 10.1109/TAC.2019.2916985
– ident: ref9
  doi: 10.1109/TNNLS.2017.2691760
– ident: ref11
  doi: 10.1109/TAC.2020.3021011
– ident: ref34
  doi: 10.1109/TAC.2020.2987379
– ident: ref19
  doi: 10.1109/TCYB.2022.3177644
– volume: 19
  start-page: 1167
  issue: 4
  year: 2012
  ident: ref21
  article-title: Inexact and accelerated proximal point algorithms
  publication-title: J. Convex Anal.
– ident: ref17
  doi: 10.1109/TSP.2024.3366437
– ident: ref5
  doi: 10.1109/TSP.2020.2991383
– start-page: 385
  volume-title: Proc. Annu. ACM-SIAM Symp. Discrete Algorithms
  year: 2005
  ident: ref32
  article-title: Online convex optimization in the bandit setting: Gradient descent without a gradient
– ident: ref37
  doi: 10.1016/j.sigpro.2021.108150
– ident: ref4
  doi: 10.1109/TSP.2023.3282068
– ident: ref10
  doi: 10.1109/TCNS.2015.2505149
– ident: ref2
  doi: 10.1109/TII.2023.3334307
– ident: ref7
  doi: 10.1016/j.jfranklin.2023.08.026
– ident: ref12
  doi: 10.1109/TSP.2021.3051871
– ident: ref22
  doi: 10.1137/110844805
– ident: ref29
  doi: 10.1109/TSP.2020.3044843
– ident: ref36
  doi: 10.1007/s10208-015-9296-2
– ident: ref1
  doi: 10.1109/TSP.2015.2481861
– ident: ref8
  doi: 10.1109/TSP.2017.2679690
– ident: ref27
  doi: 10.1109/TAC.2018.2800760
– ident: ref3
  doi: 10.1109/TSP.2021.3122095
– start-page: 1458
  volume-title: Proc. Adv. Neural Inf. Process. Syst. 24: 25th Annu. Conf. Neural Inf. Process. Syst. (NIPS)
  year: 2011
  ident: ref20
  article-title: Convergence rates of inexact proximal-gradient methods for convex optimization
– ident: ref25
  doi: 10.1016/j.automatica.2015.03.001
– volume: 18
  start-page: 1
  issue: 5
  year: 2017
  ident: ref30
  article-title: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback
  publication-title: J. Mach. Learn. Res.
– ident: ref16
  doi: 10.1109/TSP.2022.3194369
– ident: ref15
  doi: 10.1109/IEEECONF53345.2021.9723285
– ident: ref35
  doi: 10.1109/TCYB.2020.2990796
– ident: ref6
  doi: 10.1109/TSP.2020.3021247
– start-page: 28
  volume-title: Proc. 23rd Conf. Learn. Theory
  year: 2010
  ident: ref33
  article-title: Optimal algorithms for online convex optimization with multi-point bandit feedback
– ident: ref24
  doi: 10.1109/TAC.2020.3033712
– ident: ref23
  doi: 10.1109/TSP.2018.2890368
– ident: ref38
  doi: 10.1109/TAC.2008.2009515
– ident: ref14
  doi: 10.1109/TSP.2022.3223214
– ident: ref13
  doi: 10.1109/TAC.2017.2743462
– ident: ref26
  doi: 10.1109/TCNS.2016.2585305
– ident: ref31
  doi: 10.1145/3128572.3140448
– ident: ref18
  doi: 10.1109/TAC.2023.3237975
SSID ssj0014496
Score 2.4441464
Snippet The constrained composite-convex parameter estimation problem on the networked system, where the composite-convex function consists of a sum of node-specific...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2594
SubjectTerms Algorithms
Convex functions
Distributed parameter estimation
dynamic regret
Dynamic scheduling
Estimation
event-triggered mechanism
Heuristic algorithms
online convex optimization
Parameter estimation
Performance degradation
proximal algorithm
Sensors
Signal processing algorithms
Title Event-Triggered Proximal Online Gradient Descent Algorithm for Parameter Estimation
URI https://ieeexplore.ieee.org/document/10530175
https://www.proquest.com/docview/3069620338
Volume 72
WOSCitedRecordID wos001251151800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSgMxMGjxoAffYn2RgxcPsdlsskmORaseRAqt0tuSZLNa0FbWVfx889iWiih428NMWGYmmfcMAKeqxKlXDAgTrRBlUiOlJEWkpMKQTCUx3vFwy-_uxGgk-02zeuiFsdaG4jN77j9DLr-YmncfKnM3nDl55GwZLHOexWatecqA0rCMy8MgJvholpPEsjMc9J0nSOh56iWWpd90UFiq8uMlDurlauOfP7YJ1hs7EnYj47fAkp1sg7WF6YI7YNDztYxo6PzvR7-RE_ar6ef4xWHF-aLwugr1XjW8jDOdYPf5cVqN66cX6ExZ2Fe-cMvRHfbcOxBbHHfB_VVveHGDmh0KyBBJalQ684aLMuM2SZUmRiSGCktsQrjNdCl0ykqmMpqYggmDLVaMS1JkyvgAlWLpHmhNphO7DyDWVmtstfOBDCVcicyZllgaVnBSFoy3QWdG1dw0A8b9novnPDgaWOaOD7nnQ97woQ3O5hivcbjGH7C7nu4LcJHkbXA041zeXL-33PlBMiPYud8Hv6AdglV_egymHIFWXb3bY7BiPurxW3USJOsLrHTKbg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LThsxcMSjUuFAX6CmpdSHXnoweL322j6iEgpqGkUirXJb2V4vRIIEbTYVn18_NgiEWonbHmbk1czY854B-KJrkgfFgAk1GjOuDNZaMUxrJi0tdJbiHb8HYjiUk4kadc3qsRfGOReLz9xh-Iy5_GpulyFU5m849_Io-DpscsYoSe1a90kDxuI6rgCFuRSTVVaSqKPxxcj7gpQd5kFmef5IC8W1Kk_e4qhgTl8989dew05nSaLjxPo3sOZmb2H7wXzBd3DRD9WMeOw98MuwkxONmvnd9MZjpQmj6HsTK75adJKmOqHj68t5M22vbpA3ZtFIh9ItT3nU9y9BanLchV-n_fG3M9xtUcCWKtri2hs4QtaFcFmuDbUys0w66jIqXGFqaXJec12wzFZcWuKI5kLRqtA2hKg0z_dgYzafufeAiHHGEGe8F2QZFVoW3rgkyvJK0LriogdHK6qWthsxHjZdXJfR1SCq9HwoAx_Kjg89-HqPcZvGa_wHdjfQ_QFcInkP9lecK7sLuCi9J6QKSrwD_uEfaJ_h5dn456AcnA9_fIStcFIKrezDRtss3Sd4Yf-000VzEKXsL161zbU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Proximal+Online+Gradient+Descent+Algorithm+for+Parameter+Estimation&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Zhou%2C+Yaoyao&rft.au=Chen%2C+Gang&rft.date=2024&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=72&rft.spage=2594&rft.epage=2606&rft_id=info:doi/10.1109%2FTSP.2024.3400453&rft.externalDocID=10530175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon