Two-Level Battery Health Diagnosis Using Encoder-Decoder Framework and Gaussian Mixture Ensemble Learning Based on Relaxation Voltage
Accurate diagnosis of the state-of-health (SOH) of the lithium-ion battery is crucial for its safe and reliable operation. In this article, a two-level battery health diagnosis model is proposed using relaxation voltage. First, the health features of the relaxation voltage sequence are extracted usi...
Saved in:
| Published in: | IEEE transactions on transportation electrification Vol. 10; no. 2; pp. 3966 - 3975 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2332-7782, 2577-4212, 2332-7782 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate diagnosis of the state-of-health (SOH) of the lithium-ion battery is crucial for its safe and reliable operation. In this article, a two-level battery health diagnosis model is proposed using relaxation voltage. First, the health features of the relaxation voltage sequence are extracted using the autoencoder based on the encoder-decoder framework, and the Gaussian mixture model (GMM) is used to cluster distinct aging levels of the battery, thereby enabling a preliminary diagnosis of battery SOH. Then, a novel Gaussian mixture ensemble learning (GMEL) method is presented that leverages prior knowledge for accurate diagnosis of battery SOH. Furthermore, the performance of the ensemble model is enhanced by the sequential model-based algorithm configuration (SMAC) algorithm to optimize the hyperparameters, resulting in mean-absolute-error (MAE) and root-mean-square-error (RMSE) of 0.736% and 1.013%, respectively. In addition, a data reconstruction model is developed using the encoder-decoder framework to address the challenge of obtaining complete relaxation voltage sequences in the real world. Utilizing only 4 min of incomplete relaxation voltage data, the presented model achieves the MAE of 1.265% and RMSE of 1.681% in diagnosing the battery SOH. Finally, the superiority of the proposed method is verified by several sets of experiments. |
|---|---|
| AbstractList | Accurate diagnosis of the state-of-health (SOH) of the lithium-ion battery is crucial for its safe and reliable operation. In this article, a two-level battery health diagnosis model is proposed using relaxation voltage. First, the health features of the relaxation voltage sequence are extracted using the autoencoder based on the encoder-decoder framework, and the Gaussian mixture model (GMM) is used to cluster distinct aging levels of the battery, thereby enabling a preliminary diagnosis of battery SOH. Then, a novel Gaussian mixture ensemble learning (GMEL) method is presented that leverages prior knowledge for accurate diagnosis of battery SOH. Furthermore, the performance of the ensemble model is enhanced by the sequential model-based algorithm configuration (SMAC) algorithm to optimize the hyperparameters, resulting in mean-absolute-error (MAE) and root-mean-square-error (RMSE) of 0.736% and 1.013%, respectively. In addition, a data reconstruction model is developed using the encoder-decoder framework to address the challenge of obtaining complete relaxation voltage sequences in the real world. Utilizing only 4 min of incomplete relaxation voltage data, the presented model achieves the MAE of 1.265% and RMSE of 1.681% in diagnosing the battery SOH. Finally, the superiority of the proposed method is verified by several sets of experiments. |
| Author | Chen, Zonghai Wang, Yujie Zhang, Xingchen Xiang, Haoxiang |
| Author_xml | – sequence: 1 givenname: Haoxiang orcidid: 0000-0003-3914-0759 surname: Xiang fullname: Xiang, Haoxiang email: xianghx@mail.ustc.edu.cn organization: Department of Automation, University of Science and Technology of China, Hefei, China – sequence: 2 givenname: Yujie orcidid: 0000-0001-5722-2673 surname: Wang fullname: Wang, Yujie email: wangyujie@ustc.edu.cn organization: Department of Automation, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Xingchen orcidid: 0000-0002-7784-6042 surname: Zhang fullname: Zhang, Xingchen email: zhangxingchen@mail.ustc.edu.cn organization: Department of Automation, University of Science and Technology of China, Hefei, China – sequence: 4 givenname: Zonghai orcidid: 0000-0001-9312-9089 surname: Chen fullname: Chen, Zonghai email: chenzh@ustc.edu.cn organization: Department of Automation, University of Science and Technology of China, Hefei, China |
| BookMark | eNp9kT1PwzAQhi0EEuVjZ2CwxJzi2IlTj9APQCpCQoU1uiSX4pLaYLt8_AD-Ny5lqBiY7obnuTu9d0B2jTVIyEnK-mnK1PlsNu5zxkVfiLTIMrVDelwInhTFgO9u9fvk2PsFYyzNRa5S2SNfs3ebTPENO3oJIaD7pNcIXXiiIw1zY7329MFrM6djU9sGXTLCn0onDpb4bt0zBdPQK1h5r8HQW_0RVg4j7nFZdUinCM6sB1yCx4ZaQ--xgw8IOraPtgswxyOy10Ln8fi3HpKHyXg2vE6md1c3w4tpUnPFQ9KKNm-zSrI8k0UmRVZXKuONZABSMFnkuVJSQioGUlQZVIVEXqm6qkTeNDEncUjONnNfnH1doQ_lwq6ciSvL6CvJI8MjJTdU7az3Dtuy1uHn3uBAd2XKynXqZUy9XKde_qYeRfZHfHF6Ce7zP-V0o2hE3MJ5LuPXxDfi3I87 |
| CODEN | ITTEBP |
| CitedBy_id | crossref_primary_10_1109_TVT_2025_3535537 crossref_primary_10_1109_TVT_2025_3545118 crossref_primary_10_1007_s11581_025_06679_2 crossref_primary_10_1007_s41060_025_00840_w crossref_primary_10_1016_j_est_2025_115453 crossref_primary_10_1002_ente_202400488 |
| Cites_doi | 10.1109/TPEL.2021.3117788 10.1007/s43236-021-00362-1 10.1016/j.jpowsour.2022.232466 10.1016/j.energy.2022.125802 10.1016/j.est.2021.103528 10.1016/j.jpowsour.2020.229233 10.1016/j.rser.2021.111903 10.1109/TII.2021.3131725 10.1109/TITS.2022.3211002 10.1109/TIE.2021.3062266 10.1201/b12207 10.1016/j.est.2023.107733 10.1016/j.jpowsour.2020.229154 10.1007/978-3-642-25566-3_40 10.1016/j.rser.2020.110048 10.1016/j.energy.2023.126855 10.1016/j.apenergy.2019.114296 10.1109/TTE.2021.3107727 10.1016/j.est.2022.105669 10.1016/j.jpowsour.2019.227558 10.1016/j.geits.2023.100082 10.1109/TTE.2020.3028784 10.1109/TVT.2020.3037088 10.1109/TVT.2022.3203013 10.1109/TPEL.2022.3144504 10.1109/TIE.2022.3224201 10.1109/TPEL.2020.3044725 10.1109/TPEL.2021.3075517 10.1038/s41467-022-29837-w 10.1038/s42256-021-00312-3 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TTE.2023.3317449 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2332-7782 |
| EndPage | 3975 |
| ExternalDocumentID | 10_1109_TTE_2023_3317449 10256233 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62373340; 61803359 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Anhui Province grantid: 2208085UD12 funderid: 10.13039/501100003995 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c292t-f3f5f4b6054674634cb942d60aa63067559966a13863b4ab76e2b9cbb35dd1093 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001280206300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2332-7782 2577-4212 |
| IngestDate | Mon Jun 30 15:06:53 EDT 2025 Sat Nov 29 03:33:33 EST 2025 Tue Nov 18 22:32:10 EST 2025 Wed Aug 27 02:06:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-f3f5f4b6054674634cb942d60aa63067559966a13863b4ab76e2b9cbb35dd1093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3914-0759 0000-0002-7784-6042 0000-0001-5722-2673 0000-0001-9312-9089 |
| PQID | 3069620932 |
| PQPubID | 4437205 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_10256233 crossref_citationtrail_10_1109_TTE_2023_3317449 proquest_journals_3069620932 crossref_primary_10_1109_TTE_2023_3317449 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on transportation electrification |
| PublicationTitleAbbrev | TTE |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref18 doi: 10.1109/TPEL.2021.3117788 – ident: ref8 doi: 10.1007/s43236-021-00362-1 – ident: ref25 doi: 10.1016/j.jpowsour.2022.232466 – ident: ref14 doi: 10.1016/j.energy.2022.125802 – ident: ref3 doi: 10.1016/j.est.2021.103528 – ident: ref26 doi: 10.1016/j.jpowsour.2020.229233 – ident: ref1 doi: 10.1016/j.rser.2021.111903 – ident: ref9 doi: 10.1109/TII.2021.3131725 – ident: ref27 doi: 10.1109/TITS.2022.3211002 – ident: ref10 doi: 10.1109/TIE.2021.3062266 – ident: ref20 doi: 10.1201/b12207 – ident: ref6 doi: 10.1016/j.est.2023.107733 – ident: ref30 doi: 10.1016/j.jpowsour.2020.229154 – ident: ref28 doi: 10.1007/978-3-642-25566-3_40 – ident: ref2 doi: 10.1016/j.rser.2020.110048 – ident: ref7 doi: 10.1016/j.energy.2023.126855 – ident: ref22 doi: 10.1016/j.apenergy.2019.114296 – ident: ref15 doi: 10.1109/TTE.2021.3107727 – ident: ref29 doi: 10.1016/j.est.2022.105669 – ident: ref24 doi: 10.1016/j.jpowsour.2019.227558 – ident: ref4 doi: 10.1016/j.geits.2023.100082 – ident: ref16 doi: 10.1109/TTE.2020.3028784 – ident: ref21 doi: 10.1109/TVT.2020.3037088 – ident: ref12 doi: 10.1109/TVT.2022.3203013 – ident: ref17 doi: 10.1109/TPEL.2022.3144504 – ident: ref19 doi: 10.1109/TIE.2022.3224201 – ident: ref5 doi: 10.1109/TPEL.2020.3044725 – ident: ref11 doi: 10.1109/TPEL.2021.3075517 – ident: ref13 doi: 10.1038/s41467-022-29837-w – ident: ref23 doi: 10.1038/s42256-021-00312-3 |
| SSID | ssj0001535916 |
| Score | 2.3274097 |
| Snippet | Accurate diagnosis of the state-of-health (SOH) of the lithium-ion battery is crucial for its safe and reliable operation. In this article, a two-level battery... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3966 |
| SubjectTerms | Aging Algorithms Batteries Battery health diagnosis Coders data reconstruction model Diagnosis Electric potential encoder–decoder framework Ensemble learning Feature extraction Gaussian mixture ensemble learning (GMEL) Integrated circuit modeling Lithium-ion batteries Machine learning Probabilistic models Rechargeable batteries relaxation voltage Root-mean-square errors Voltage |
| Title | Two-Level Battery Health Diagnosis Using Encoder-Decoder Framework and Gaussian Mixture Ensemble Learning Based on Relaxation Voltage |
| URI | https://ieeexplore.ieee.org/document/10256233 https://www.proquest.com/docview/3069620932 |
| Volume | 10 |
| WOSCitedRecordID | wos001280206300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2332-7782 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001535916 issn: 2332-7782 databaseCode: RIE dateStart: 20150101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCbOeNCDP2ecTsPBiwfmBpS2R-M2PczFwzTeGqAPs2S2Zt388Qf4fwu00yVGE0_lAITmAx7wvvc9hE5jQTs6TCOiKADhQgFRHR2RQBqmlBIdI726_iAcDqOHh_i2Clb3sTAA4Mln0HJF78tPcz13T2V2hVNnrlkN1cIwLIO1vh9UAhbYs87CFdmOz0ejXstlB28xayS5U8tcMj0-l8qPDdhblf7WP8ezjTar4yO-KPHeQSuQ7aKNJVHBPfQxes3JwHGBcCme-Y7LWCPcLWl14wJ7ogDuZS6gfUq64L-4vyBqYZml-ErOCxdhiW_Gb87NYKsX8KQmgCtN1kfbfwEpzjPsKHVvHmN8n09mdo-qo7t-b3R5TapkC0TTmM6IYSYwXNnbjcs_IhjXKuY0FW0phb9WOB0XITssEkxxqUIBVMVaKRakqdOk2kerWZ7BAcJgWGibazsJDOdMSGirQAYBUCYiI00DnS9wSHSlRO4SYkwSfyNpx4lFLnHIJRVyDXT21eK5VOH4o27dIbVUrwSpgZoLrJNqnRaJ_TM7W-3o6eEvzY7Quu2dl-ywJlqdTedwjNb0y2xcTE_8FPwEZGPb8w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH8aA4lx4HPTOgb4sAsHd42_mhwn1rKJrtohoN0i23lGlUoyNS2MP2D_92wnZZXQkDglB7_E1s_288fv_R7AUaZYYodlSg1DpEIZpCaxKZXacWOMSpyO6vqT4XSaXl1ll12weoyFQcRIPsN-eI13-WVtV-GozI9wFtw1fwSPpRAsacO17o9UJJd-tbO-jBxkx3k-6of84H3u3aQIepkbzidmU_lrCo5-ZfziP2v0Ep53C0hy0iL-Craweg3PNmQF38Bt_qumk8AGIq185m_SRhuR05ZYN2tIpAqQURVC2hf0FOOTjNdULaKrknzWqybEWJKL2U24aPDFG_xh5kg6Vdbv_vsNlqSuSCDV3USUybd6vvSz1C58HY_yT2e0S7dALcvYkjrupBPG729CBhLFhTWZYKUaaK3ixiIouSid8FRxI7QZKmQms8ZwWZZBlWoPtqu6wn0g6PjQm1vfDZwQXGkcGKmlRMZV6rTrwfEah8J2WuQhJca8iHuSQVZ45IqAXNEh14OPfyyuWx2Of5TdDUhtlGtB6sHhGuuiG6lN4Vvm-6uvPTt4wOwDPD3LLybF5Hz65S3s-D-Jlit2CNvLxQrfwRP7czlrFu9jd7wD-fnfOg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Level+Battery+Health+Diagnosis+Using+Encoder-Decoder+Framework+and+Gaussian+Mixture+Ensemble+Learning+Based+on+Relaxation+Voltage&rft.jtitle=IEEE+transactions+on+transportation+electrification&rft.au=Xiang%2C+Haoxiang&rft.au=Wang%2C+Yujie&rft.au=Zhang%2C+Xingchen&rft.au=Chen%2C+Zonghai&rft.date=2024-06-01&rft.pub=IEEE&rft.eissn=2332-7782&rft.volume=10&rft.issue=2&rft.spage=3966&rft.epage=3975&rft_id=info:doi/10.1109%2FTTE.2023.3317449&rft.externalDocID=10256233 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7782&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7782&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7782&client=summon |