Two-Level Battery Health Diagnosis Using Encoder-Decoder Framework and Gaussian Mixture Ensemble Learning Based on Relaxation Voltage

Accurate diagnosis of the state-of-health (SOH) of the lithium-ion battery is crucial for its safe and reliable operation. In this article, a two-level battery health diagnosis model is proposed using relaxation voltage. First, the health features of the relaxation voltage sequence are extracted usi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on transportation electrification Vol. 10; no. 2; pp. 3966 - 3975
Main Authors: Xiang, Haoxiang, Wang, Yujie, Zhang, Xingchen, Chen, Zonghai
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2332-7782, 2577-4212, 2332-7782
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate diagnosis of the state-of-health (SOH) of the lithium-ion battery is crucial for its safe and reliable operation. In this article, a two-level battery health diagnosis model is proposed using relaxation voltage. First, the health features of the relaxation voltage sequence are extracted using the autoencoder based on the encoder-decoder framework, and the Gaussian mixture model (GMM) is used to cluster distinct aging levels of the battery, thereby enabling a preliminary diagnosis of battery SOH. Then, a novel Gaussian mixture ensemble learning (GMEL) method is presented that leverages prior knowledge for accurate diagnosis of battery SOH. Furthermore, the performance of the ensemble model is enhanced by the sequential model-based algorithm configuration (SMAC) algorithm to optimize the hyperparameters, resulting in mean-absolute-error (MAE) and root-mean-square-error (RMSE) of 0.736% and 1.013%, respectively. In addition, a data reconstruction model is developed using the encoder-decoder framework to address the challenge of obtaining complete relaxation voltage sequences in the real world. Utilizing only 4 min of incomplete relaxation voltage data, the presented model achieves the MAE of 1.265% and RMSE of 1.681% in diagnosing the battery SOH. Finally, the superiority of the proposed method is verified by several sets of experiments.
AbstractList Accurate diagnosis of the state-of-health (SOH) of the lithium-ion battery is crucial for its safe and reliable operation. In this article, a two-level battery health diagnosis model is proposed using relaxation voltage. First, the health features of the relaxation voltage sequence are extracted using the autoencoder based on the encoder-decoder framework, and the Gaussian mixture model (GMM) is used to cluster distinct aging levels of the battery, thereby enabling a preliminary diagnosis of battery SOH. Then, a novel Gaussian mixture ensemble learning (GMEL) method is presented that leverages prior knowledge for accurate diagnosis of battery SOH. Furthermore, the performance of the ensemble model is enhanced by the sequential model-based algorithm configuration (SMAC) algorithm to optimize the hyperparameters, resulting in mean-absolute-error (MAE) and root-mean-square-error (RMSE) of 0.736% and 1.013%, respectively. In addition, a data reconstruction model is developed using the encoder-decoder framework to address the challenge of obtaining complete relaxation voltage sequences in the real world. Utilizing only 4 min of incomplete relaxation voltage data, the presented model achieves the MAE of 1.265% and RMSE of 1.681% in diagnosing the battery SOH. Finally, the superiority of the proposed method is verified by several sets of experiments.
Author Chen, Zonghai
Wang, Yujie
Zhang, Xingchen
Xiang, Haoxiang
Author_xml – sequence: 1
  givenname: Haoxiang
  orcidid: 0000-0003-3914-0759
  surname: Xiang
  fullname: Xiang, Haoxiang
  email: xianghx@mail.ustc.edu.cn
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Yujie
  orcidid: 0000-0001-5722-2673
  surname: Wang
  fullname: Wang, Yujie
  email: wangyujie@ustc.edu.cn
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Xingchen
  orcidid: 0000-0002-7784-6042
  surname: Zhang
  fullname: Zhang, Xingchen
  email: zhangxingchen@mail.ustc.edu.cn
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Zonghai
  orcidid: 0000-0001-9312-9089
  surname: Chen
  fullname: Chen, Zonghai
  email: chenzh@ustc.edu.cn
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
BookMark eNp9kT1PwzAQhi0EEuVjZ2CwxJzi2IlTj9APQCpCQoU1uiSX4pLaYLt8_AD-Ny5lqBiY7obnuTu9d0B2jTVIyEnK-mnK1PlsNu5zxkVfiLTIMrVDelwInhTFgO9u9fvk2PsFYyzNRa5S2SNfs3ebTPENO3oJIaD7pNcIXXiiIw1zY7329MFrM6djU9sGXTLCn0onDpb4bt0zBdPQK1h5r8HQW_0RVg4j7nFZdUinCM6sB1yCx4ZaQ--xgw8IOraPtgswxyOy10Ln8fi3HpKHyXg2vE6md1c3w4tpUnPFQ9KKNm-zSrI8k0UmRVZXKuONZABSMFnkuVJSQioGUlQZVIVEXqm6qkTeNDEncUjONnNfnH1doQ_lwq6ciSvL6CvJI8MjJTdU7az3Dtuy1uHn3uBAd2XKynXqZUy9XKde_qYeRfZHfHF6Ce7zP-V0o2hE3MJ5LuPXxDfi3I87
CODEN ITTEBP
CitedBy_id crossref_primary_10_1109_TVT_2025_3535537
crossref_primary_10_1109_TVT_2025_3545118
crossref_primary_10_1007_s11581_025_06679_2
crossref_primary_10_1007_s41060_025_00840_w
crossref_primary_10_1016_j_est_2025_115453
crossref_primary_10_1002_ente_202400488
Cites_doi 10.1109/TPEL.2021.3117788
10.1007/s43236-021-00362-1
10.1016/j.jpowsour.2022.232466
10.1016/j.energy.2022.125802
10.1016/j.est.2021.103528
10.1016/j.jpowsour.2020.229233
10.1016/j.rser.2021.111903
10.1109/TII.2021.3131725
10.1109/TITS.2022.3211002
10.1109/TIE.2021.3062266
10.1201/b12207
10.1016/j.est.2023.107733
10.1016/j.jpowsour.2020.229154
10.1007/978-3-642-25566-3_40
10.1016/j.rser.2020.110048
10.1016/j.energy.2023.126855
10.1016/j.apenergy.2019.114296
10.1109/TTE.2021.3107727
10.1016/j.est.2022.105669
10.1016/j.jpowsour.2019.227558
10.1016/j.geits.2023.100082
10.1109/TTE.2020.3028784
10.1109/TVT.2020.3037088
10.1109/TVT.2022.3203013
10.1109/TPEL.2022.3144504
10.1109/TIE.2022.3224201
10.1109/TPEL.2020.3044725
10.1109/TPEL.2021.3075517
10.1038/s41467-022-29837-w
10.1038/s42256-021-00312-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TTE.2023.3317449
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2332-7782
EndPage 3975
ExternalDocumentID 10_1109_TTE_2023_3317449
10256233
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62373340; 61803359
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Anhui Province
  grantid: 2208085UD12
  funderid: 10.13039/501100003995
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c292t-f3f5f4b6054674634cb942d60aa63067559966a13863b4ab76e2b9cbb35dd1093
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001280206300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2332-7782
2577-4212
IngestDate Mon Jun 30 15:06:53 EDT 2025
Sat Nov 29 03:33:33 EST 2025
Tue Nov 18 22:32:10 EST 2025
Wed Aug 27 02:06:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-f3f5f4b6054674634cb942d60aa63067559966a13863b4ab76e2b9cbb35dd1093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3914-0759
0000-0002-7784-6042
0000-0001-5722-2673
0000-0001-9312-9089
PQID 3069620932
PQPubID 4437205
PageCount 10
ParticipantIDs ieee_primary_10256233
crossref_citationtrail_10_1109_TTE_2023_3317449
proquest_journals_3069620932
crossref_primary_10_1109_TTE_2023_3317449
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on transportation electrification
PublicationTitleAbbrev TTE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1109/TPEL.2021.3117788
– ident: ref8
  doi: 10.1007/s43236-021-00362-1
– ident: ref25
  doi: 10.1016/j.jpowsour.2022.232466
– ident: ref14
  doi: 10.1016/j.energy.2022.125802
– ident: ref3
  doi: 10.1016/j.est.2021.103528
– ident: ref26
  doi: 10.1016/j.jpowsour.2020.229233
– ident: ref1
  doi: 10.1016/j.rser.2021.111903
– ident: ref9
  doi: 10.1109/TII.2021.3131725
– ident: ref27
  doi: 10.1109/TITS.2022.3211002
– ident: ref10
  doi: 10.1109/TIE.2021.3062266
– ident: ref20
  doi: 10.1201/b12207
– ident: ref6
  doi: 10.1016/j.est.2023.107733
– ident: ref30
  doi: 10.1016/j.jpowsour.2020.229154
– ident: ref28
  doi: 10.1007/978-3-642-25566-3_40
– ident: ref2
  doi: 10.1016/j.rser.2020.110048
– ident: ref7
  doi: 10.1016/j.energy.2023.126855
– ident: ref22
  doi: 10.1016/j.apenergy.2019.114296
– ident: ref15
  doi: 10.1109/TTE.2021.3107727
– ident: ref29
  doi: 10.1016/j.est.2022.105669
– ident: ref24
  doi: 10.1016/j.jpowsour.2019.227558
– ident: ref4
  doi: 10.1016/j.geits.2023.100082
– ident: ref16
  doi: 10.1109/TTE.2020.3028784
– ident: ref21
  doi: 10.1109/TVT.2020.3037088
– ident: ref12
  doi: 10.1109/TVT.2022.3203013
– ident: ref17
  doi: 10.1109/TPEL.2022.3144504
– ident: ref19
  doi: 10.1109/TIE.2022.3224201
– ident: ref5
  doi: 10.1109/TPEL.2020.3044725
– ident: ref11
  doi: 10.1109/TPEL.2021.3075517
– ident: ref13
  doi: 10.1038/s41467-022-29837-w
– ident: ref23
  doi: 10.1038/s42256-021-00312-3
SSID ssj0001535916
Score 2.3274097
Snippet Accurate diagnosis of the state-of-health (SOH) of the lithium-ion battery is crucial for its safe and reliable operation. In this article, a two-level battery...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3966
SubjectTerms Aging
Algorithms
Batteries
Battery health diagnosis
Coders
data reconstruction model
Diagnosis
Electric potential
encoder–decoder framework
Ensemble learning
Feature extraction
Gaussian mixture ensemble learning (GMEL)
Integrated circuit modeling
Lithium-ion batteries
Machine learning
Probabilistic models
Rechargeable batteries
relaxation voltage
Root-mean-square errors
Voltage
Title Two-Level Battery Health Diagnosis Using Encoder-Decoder Framework and Gaussian Mixture Ensemble Learning Based on Relaxation Voltage
URI https://ieeexplore.ieee.org/document/10256233
https://www.proquest.com/docview/3069620932
Volume 10
WOSCitedRecordID wos001280206300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2332-7782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001535916
  issn: 2332-7782
  databaseCode: RIE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCbOeNCDP2ecTsPBiwfmBpS2R-M2PczFwzTeGqAPs2S2Zt388Qf4fwu00yVGE0_lAITmAx7wvvc9hE5jQTs6TCOiKADhQgFRHR2RQBqmlBIdI726_iAcDqOHh_i2Clb3sTAA4Mln0HJF78tPcz13T2V2hVNnrlkN1cIwLIO1vh9UAhbYs87CFdmOz0ejXstlB28xayS5U8tcMj0-l8qPDdhblf7WP8ezjTar4yO-KPHeQSuQ7aKNJVHBPfQxes3JwHGBcCme-Y7LWCPcLWl14wJ7ogDuZS6gfUq64L-4vyBqYZml-ErOCxdhiW_Gb87NYKsX8KQmgCtN1kfbfwEpzjPsKHVvHmN8n09mdo-qo7t-b3R5TapkC0TTmM6IYSYwXNnbjcs_IhjXKuY0FW0phb9WOB0XITssEkxxqUIBVMVaKRakqdOk2kerWZ7BAcJgWGibazsJDOdMSGirQAYBUCYiI00DnS9wSHSlRO4SYkwSfyNpx4lFLnHIJRVyDXT21eK5VOH4o27dIbVUrwSpgZoLrJNqnRaJ_TM7W-3o6eEvzY7Quu2dl-ywJlqdTedwjNb0y2xcTE_8FPwEZGPb8w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH8aA4lx4HPTOgb4sAsHd42_mhwn1rKJrtohoN0i23lGlUoyNS2MP2D_92wnZZXQkDglB7_E1s_288fv_R7AUaZYYodlSg1DpEIZpCaxKZXacWOMSpyO6vqT4XSaXl1ll12weoyFQcRIPsN-eI13-WVtV-GozI9wFtw1fwSPpRAsacO17o9UJJd-tbO-jBxkx3k-6of84H3u3aQIepkbzidmU_lrCo5-ZfziP2v0Ep53C0hy0iL-Craweg3PNmQF38Bt_qumk8AGIq185m_SRhuR05ZYN2tIpAqQURVC2hf0FOOTjNdULaKrknzWqybEWJKL2U24aPDFG_xh5kg6Vdbv_vsNlqSuSCDV3USUybd6vvSz1C58HY_yT2e0S7dALcvYkjrupBPG729CBhLFhTWZYKUaaK3ixiIouSid8FRxI7QZKmQms8ZwWZZBlWoPtqu6wn0g6PjQm1vfDZwQXGkcGKmlRMZV6rTrwfEah8J2WuQhJca8iHuSQVZ45IqAXNEh14OPfyyuWx2Of5TdDUhtlGtB6sHhGuuiG6lN4Vvm-6uvPTt4wOwDPD3LLybF5Hz65S3s-D-Jlit2CNvLxQrfwRP7czlrFu9jd7wD-fnfOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Level+Battery+Health+Diagnosis+Using+Encoder-Decoder+Framework+and+Gaussian+Mixture+Ensemble+Learning+Based+on+Relaxation+Voltage&rft.jtitle=IEEE+transactions+on+transportation+electrification&rft.au=Xiang%2C+Haoxiang&rft.au=Wang%2C+Yujie&rft.au=Zhang%2C+Xingchen&rft.au=Chen%2C+Zonghai&rft.date=2024-06-01&rft.pub=IEEE&rft.eissn=2332-7782&rft.volume=10&rft.issue=2&rft.spage=3966&rft.epage=3975&rft_id=info:doi/10.1109%2FTTE.2023.3317449&rft.externalDocID=10256233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7782&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7782&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7782&client=summon