Demand Response Potential Day-Ahead Forecasting Approach Based on LSSA-BPNN Considering the Electricity-Carbon Coupling Incentive Effects

In order to address the challenges of global climate change and to achieve the goals of sustainable development, the need for a low-carbon transition of the power system is becoming more urgent. However, previous demand response (DR) potential forecasting models for load aggregators (LAs) only consi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on industry applications Ročník 60; číslo 3; s. 4505 - 4516
Hlavní autori: Zhang, Yiran, Ge, Xinxin, Li, Meiyi, Li, Nan, Wang, Fei, Wang, Liyong, Sun, Qinfei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0093-9994, 1939-9367
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In order to address the challenges of global climate change and to achieve the goals of sustainable development, the need for a low-carbon transition of the power system is becoming more urgent. However, previous demand response (DR) potential forecasting models for load aggregators (LAs) only consider the potential for customers to adjust their loads, without fully exploiting the potential to reduce their carbon emissions. To this end, a logistic sparrow search algorithm- back propagation neural network (LSSA-BPNN) based DR potential and carbon reduction potential forecasting model for LAs is proposed in this paper, which considers the dual incentive of electricity and carbon. First, a novel home energy management system (HEMS) model is developed, which considers the dual incentive of electricity and carbon. The model's objective function consists of two components: minimizing economic costs and reducing carbon emissions. Weight coefficients are introduced to characterize the power consumption preferences of different customer types. Subsequently, simulations are conducted to generate data related to DR potential and carbon reduction potential of LAs. Second, the multiple influencing features of DR potential and carbon reduction potential are sorted according to the degree of importance by the RF model respectively, which could reduce the redundancy of input features. Finally, based on the selected features, the LSSA-BPNN model is established to obtain the forecasting results of the DR potential and carbon reduction potential for LAs. The effectiveness and superiority of the proposed model have been verified using a real dataset in Austin.
AbstractList In order to address the challenges of global climate change and to achieve the goals of sustainable development, the need for a low-carbon transition of the power system is becoming more urgent. However, previous demand response (DR) potential forecasting models for load aggregators (LAs) only consider the potential for customers to adjust their loads, without fully exploiting the potential to reduce their carbon emissions. To this end, a logistic sparrow search algorithm- back propagation neural network (LSSA-BPNN) based DR potential and carbon reduction potential forecasting model for LAs is proposed in this paper, which considers the dual incentive of electricity and carbon. First, a novel home energy management system (HEMS) model is developed, which considers the dual incentive of electricity and carbon. The model's objective function consists of two components: minimizing economic costs and reducing carbon emissions. Weight coefficients are introduced to characterize the power consumption preferences of different customer types. Subsequently, simulations are conducted to generate data related to DR potential and carbon reduction potential of LAs. Second, the multiple influencing features of DR potential and carbon reduction potential are sorted according to the degree of importance by the RF model respectively, which could reduce the redundancy of input features. Finally, based on the selected features, the LSSA-BPNN model is established to obtain the forecasting results of the DR potential and carbon reduction potential for LAs. The effectiveness and superiority of the proposed model have been verified using a real dataset in Austin.
Author Wang, Fei
Li, Meiyi
Li, Nan
Zhang, Yiran
Sun, Qinfei
Wang, Liyong
Ge, Xinxin
Author_xml – sequence: 1
  givenname: Yiran
  surname: Zhang
  fullname: Zhang, Yiran
  email: 220211060429@ncepu.edu.cn
  organization: School of International Education (BAODING), North China Electric Power University, Baoding, China
– sequence: 2
  givenname: Xinxin
  orcidid: 0000-0002-4916-6680
  surname: Ge
  fullname: Ge, Xinxin
  email: xinxinge@ncepu.edu.cn
  organization: Department of Electrical Engineering, North China Electric Power University, Baoding, China
– sequence: 3
  givenname: Meiyi
  orcidid: 0009-0000-3460-2964
  surname: Li
  fullname: Li, Meiyi
  email: meiyili@ncepu.edu.cn
  organization: Department of Electrical Engineering, North China Electric Power University, Baoding, China
– sequence: 4
  givenname: Nan
  orcidid: 0009-0003-8596-4625
  surname: Li
  fullname: Li, Nan
  email: nanli@ncepu.edu.cn
  organization: Department of Electrical Engineering, North China Electric Power University, Baoding, China
– sequence: 5
  givenname: Fei
  orcidid: 0000-0002-7332-9726
  surname: Wang
  fullname: Wang, Fei
  email: feiwang@ncepu.edu.cn
  organization: Department of Electrical Engineering, North China Electric Power University, Baoding, China
– sequence: 6
  givenname: Liyong
  surname: Wang
  fullname: Wang, Liyong
  email: wangliyong@bj.sgcc.com.cn
  organization: State Grid Beijing Electric Power Research Institute, Beijing, China
– sequence: 7
  givenname: Qinfei
  surname: Sun
  fullname: Sun, Qinfei
  email: sunqinfei@bj.sgcc.com.cn
  organization: State Grid Beijing Electric Power Research Institute, Beijing, China
BookMark eNp9kEtr3DAUhUVIIZO0-y66EHTtiWTJDy0d5zUwpKFJ10aWrjoKjuRKmsL8hP7ryEwWpYuuLtz7nXs45xydOu8Aoc-UrCkl4vJ5061LUvI1Y00peHmCVlQwUQhWN6doRYhghRCCn6HzGF8IobyifIX-XMOrdBp_hzh7FwE_-gQuWTnha3kouh1IjW99ACVjsu4n7uY5eKl2-EpG0Ng7vH166oqrx4cH3OcPVkNYuLQDfDOBSsEqmw5FL8OY4d7v52m5b5xafH5nypiMxY_og5FThE_v8wL9uL157u-L7be7Td9tC1WKMhWGGiMVpbpu-WgkYbIa2QjQMk00b1veVC0xrcgrRaXU9UhNRUnVNIpVmlB2gb4e_-Ycv_YQ0_Di98Fly4GRqs0mFSszRY6UCj7GAGaYg32V4TBQMiyFD7nwYSl8eC88S-p_JDm4TNa7FKSd_if8chRaAPjLh9eE0pa9AV6GkJ4
CODEN ITIACR
CitedBy_id crossref_primary_10_1109_TTE_2024_3477921
crossref_primary_10_3390_act14020061
crossref_primary_10_1016_j_apenergy_2025_126369
crossref_primary_10_1016_j_energy_2025_137755
crossref_primary_10_1109_ACCESS_2024_3432805
crossref_primary_10_3390_en17153688
crossref_primary_10_3390_su17167290
crossref_primary_10_3390_en18153936
Cites_doi 10.1109/TEVC.2019.2901012
10.1016/j.energy.2020.117885
10.1109/TIA.2020.3014575
10.1109/TNNLS.2020.3042434
10.1109/ICPS57144.2023.10142112
10.1109/PESGM.2016.7742002
10.1109/TSG.2023.3308055
10.1049/gtd2.12963
10.1109/TIA.2023.3273186
10.1109/TSG.2023.3318418
10.1016/j.apenergy.2022.118947
10.1109/TSG.2017.2710358
10.1109/TSG.2021.3105747
10.1016/j.energy.2017.11.142
10.1016/j.apenergy.2019.114139
10.1049/rpg2.12600
10.1016/j.rser.2022.113125
10.1109/TPWRS.2020.2966732
10.1109/TIA.2023.3296065
10.1016/j.apenergy.2017.05.098
10.1109/TSG.2017.2693121
10.1038/s41467-022-30747-0
10.1109/TSG.2023.3286697
10.1109/TIA.2022.3202756
10.1109/TIA.2022.3148351
10.1109/JSTARS.2023.3284019
10.1109/TII.2016.2585122
10.1016/j.energy.2022.125837
10.35833/MPCE.2022.000632
10.1016/j.apenergy.2022.119579
10.1109/TIM.2019.2903615
10.35833/MPCE.2021.000058
10.1016/j.energy.2022.126505
10.1109/TPWRS.2021.3050837
10.1109/TII.2016.2578184
10.1016/j.apenergy.2020.114525
10.35833/MPCE.2021.000535
10.35833/MPCE.2022.000434
10.1109/TSG.2012.2183649
10.1109/TIA.2023.3334715
10.35833/MPCE.2020.000152
10.1109/TSG.2023.3299668
10.1016/j.segan.2021.100452
10.1016/j.apenergy.2019.03.121
10.1109/TIA.2020.3035553
10.1016/j.energy.2023.129716
10.1109/TSG.2016.2636873
10.1016/j.apenergy.2022.120628
10.3390/en11040770
10.1109/TITS.2018.2854827
10.1016/j.apenergy.2020.116418
10.1016/j.enbuild.2016.03.061
10.1016/j.energy.2020.118765
10.1109/TIA.2022.3144244
10.1109/TII.2016.2635082
10.1109/TII.2019.2916566
10.1016/j.apenergy.2018.02.058
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIA.2024.3372942
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9367
EndPage 4516
ExternalDocumentID 10_1109_TIA_2024_3372942
10460118
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Project of State Grid Corporation of China
  grantid: 5108-202218280A-2-383-XG; SGBJDK00DJJS2250273
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-f1ffac11d684bfa03a5b3bee83d0d48847580f89beec1aad6b1f510577c35d013
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001230196400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0093-9994
IngestDate Mon Jun 30 10:12:04 EDT 2025
Sat Nov 29 02:18:45 EST 2025
Tue Nov 18 21:52:29 EST 2025
Wed Aug 27 02:05:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-f1ffac11d684bfa03a5b3bee83d0d48847580f89beec1aad6b1f510577c35d013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-3460-2964
0000-0002-4916-6680
0000-0002-7332-9726
0009-0003-8596-4625
PQID 3058292532
PQPubID 85463
PageCount 12
ParticipantIDs ieee_primary_10460118
proquest_journals_3058292532
crossref_primary_10_1109_TIA_2024_3372942
crossref_citationtrail_10_1109_TIA_2024_3372942
PublicationCentury 2000
PublicationDate 2024-May-June
2024-5-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industry applications
PublicationTitleAbbrev TIA
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Du (ref45) 2019; 325
ref29
References_xml – ident: ref31
  doi: 10.1109/TEVC.2019.2901012
– ident: ref3
  doi: 10.1016/j.energy.2020.117885
– ident: ref14
  doi: 10.1109/TIA.2020.3014575
– volume: 325
  start-page: 1111
  year: 2019
  ident: ref45
  article-title: Homogeneous online transfer learning with online distribution discrepancy minimization
  publication-title: Front. Artif. Intell. Appl.
– ident: ref47
  doi: 10.1109/TNNLS.2020.3042434
– ident: ref1
  doi: 10.1109/ICPS57144.2023.10142112
– ident: ref19
  doi: 10.1109/PESGM.2016.7742002
– ident: ref46
  doi: 10.1109/TSG.2023.3308055
– ident: ref49
  doi: 10.1049/gtd2.12963
– ident: ref56
  doi: 10.1109/TIA.2023.3273186
– ident: ref10
  doi: 10.1109/TSG.2023.3318418
– ident: ref27
  doi: 10.1016/j.apenergy.2022.118947
– ident: ref32
  doi: 10.1109/TSG.2017.2710358
– ident: ref2
  doi: 10.1109/TSG.2021.3105747
– ident: ref24
  doi: 10.1016/j.energy.2017.11.142
– ident: ref40
  doi: 10.1016/j.apenergy.2019.114139
– ident: ref41
  doi: 10.1049/rpg2.12600
– ident: ref28
  doi: 10.1016/j.rser.2022.113125
– ident: ref48
  doi: 10.1109/TPWRS.2020.2966732
– ident: ref8
  doi: 10.1109/TIA.2023.3296065
– ident: ref17
  doi: 10.1016/j.apenergy.2017.05.098
– ident: ref53
  doi: 10.1109/TSG.2017.2693121
– ident: ref12
  doi: 10.1038/s41467-022-30747-0
– ident: ref35
  doi: 10.1109/TSG.2023.3286697
– ident: ref51
  doi: 10.1109/TIA.2022.3202756
– ident: ref6
  doi: 10.1109/TIA.2022.3148351
– ident: ref29
  doi: 10.1109/JSTARS.2023.3284019
– ident: ref22
  doi: 10.1109/TII.2016.2585122
– ident: ref30
  doi: 10.1016/j.energy.2022.125837
– ident: ref57
  doi: 10.35833/MPCE.2022.000632
– ident: ref42
  doi: 10.1016/j.apenergy.2022.119579
– ident: ref38
  doi: 10.1109/TIM.2019.2903615
– ident: ref55
  doi: 10.35833/MPCE.2021.000058
– ident: ref25
  doi: 10.1016/j.energy.2022.126505
– ident: ref44
  doi: 10.1109/TPWRS.2021.3050837
– ident: ref33
  doi: 10.1109/TII.2016.2578184
– ident: ref52
  doi: 10.1016/j.apenergy.2020.114525
– ident: ref13
  doi: 10.35833/MPCE.2021.000535
– ident: ref5
  doi: 10.35833/MPCE.2022.000434
– ident: ref34
  doi: 10.1109/TSG.2012.2183649
– ident: ref43
  doi: 10.1109/TIA.2023.3334715
– ident: ref23
  doi: 10.35833/MPCE.2020.000152
– ident: ref11
  doi: 10.1109/TSG.2023.3299668
– ident: ref54
  doi: 10.1016/j.segan.2021.100452
– ident: ref20
  doi: 10.1016/j.apenergy.2019.03.121
– ident: ref15
  doi: 10.1109/TIA.2020.3035553
– ident: ref50
  doi: 10.1016/j.energy.2023.129716
– ident: ref26
  doi: 10.1109/TSG.2016.2636873
– ident: ref58
  doi: 10.1016/j.apenergy.2022.120628
– ident: ref4
  doi: 10.3390/en11040770
– ident: ref39
  doi: 10.1109/TITS.2018.2854827
– ident: ref16
  doi: 10.1016/j.apenergy.2020.116418
– ident: ref21
  doi: 10.1016/j.enbuild.2016.03.061
– ident: ref9
  doi: 10.1016/j.energy.2020.118765
– ident: ref7
  doi: 10.1109/TIA.2022.3144244
– ident: ref37
  doi: 10.1109/TII.2016.2635082
– ident: ref36
  doi: 10.1109/TII.2019.2916566
– ident: ref18
  doi: 10.1016/j.apenergy.2018.02.058
SSID ssj0014514
Score 2.5003905
Snippet In order to address the challenges of global climate change and to achieve the goals of sustainable development, the need for a low-carbon transition of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4505
SubjectTerms Artificial neural networks
Back propagation networks
Biological system modeling
Carbon
Carbon dioxide
Carbon emissions
Climate change
Customers
Data models
Day-ahead forecasting
Demand response
demand response potential
Economic impact
Electric potential
Electric power demand
Electric power systems
Electricity
electricity-carbon coupling
Electrode potentials
Emissions
Energy management
Forecasting
Home automation
load aggregator
Load modeling
low-carbon
Low-carbon economy
Neural networks
Power consumption
Power system planning
Redundancy
Residential energy
Search algorithms
Sustainable development
Title Demand Response Potential Day-Ahead Forecasting Approach Based on LSSA-BPNN Considering the Electricity-Carbon Coupling Incentive Effects
URI https://ieeexplore.ieee.org/document/10460118
https://www.proquest.com/docview/3058292532
Volume 60
WOSCitedRecordID wos001230196400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9367
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014514
  issn: 0093-9994
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5s8aAH14rVKnPw4mHaTDLZjmmrKEgpWsVbmFUETaSL4E_wX_tmkooiCt5CeJOFL_OWvOVD6EQwIU0kJdHUeIT5viZgRgxRxoSGUqEDx0N2dxWPRsn9fTqum9VdL4zW2hWf6a49dLl8VcqF_VXWs_lI2ynZQI04jqpmrc-UAasHeUOITsDrYcucpJf2JpcZRII-6wY2ScX8bzbIkar80MTOvJxv_vPBttBG7UfirAJ-G63oYgetf5kuuIveh_qZFwpfV2WwGo_Lua0NgmVD_kYyUMMKW2pOyWe2-Bln9Xxx3AfTpnBZ4Kubm4z0x6MRXhJ7WjnwGfGZo895lODEkwGfChAelAvb3vuAQefY-7yCVFUt0kK352eTwQWpmReI9FN_Tgw1hktKVZQwYbgX8FAEQuskUJ6CLc8gyvBMksIpSTlXkaDGempxLINQgVe5h5pFWeh9hMGnEkwlNBIiYqkMhRfrWIagSCLOKPfbqLfEIpf1WHLLjvGUu_DES3NAL7fo5TV6bXT6ueKlGsnxh2zLovVFrgKqjTpLvPN6085yUH0JvH4Y-Ae_LDtEa_bqVcFjBzXn04U-Qqvydf44mx677_ED7ZveIQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61tFLbA_RB1eXR-tBLD2Zjx3kdwwICdYlWsK24RX4iJEiqfSD1J_Rfd-xkEaiiErcoGsuJvnjmm8wL4KsSSrtUa2qZi6jg3FI0I44a5xLHmLJxmEP2c5xVVX5xUUz6YvVQC2OtDclnds9fhli-afXS_yob-nikr5R8Di8SIXjUlWvdBQ1E38obnXSKvEesopJRMZyelOgLcrEX-zCV4A-sUBir8o8uDgbmaOOJj_YW1nsmScoO-nfwzDbv4c29_oIf4M-BvZGNIWddIqwlk3bhs4Nw2YH8TUtUxIb44Zxazn36Myn7DuNkH42bIW1DxufnJd2fVBVZjfb0csgayWEYoHOlkcbTkZwpFB61S1_ge0lQ6_h9blGqyxfZhB9Hh9PRMe1nL1DNC76gjjknNWMmzYVyMoplomJlbR6byOChF-hnRC4v8JZmUppUMee5WpbpODHIKz_CWtM29hMQZFVKmJylSqWi0ImKMpvpBFVJKgWTfADDFRa17huT-_kY13VwUKKiRvRqj17dozeAb3crfnVNOf4ju-nRuifXATWAnRXedX9s5zUqvxxfP4n51iPLvsCr4-npuB6fVN-34bXfqUt_3IG1xWxpd-Glvl1czWefw7f5F6IZ4Wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demand+Response+Potential+Day-Ahead+Forecasting+Approach+Based+on+LSSA-BPNN+Considering+the+Electricity-Carbon+Coupling+Incentive+Effects&rft.jtitle=IEEE+transactions+on+industry+applications&rft.au=Zhang%2C+Yiran&rft.au=Ge%2C+Xinxin&rft.au=Li%2C+Meiyi&rft.au=Li%2C+Nan&rft.date=2024-05-01&rft.issn=0093-9994&rft.eissn=1939-9367&rft.volume=60&rft.issue=3&rft.spage=4505&rft.epage=4516&rft_id=info:doi/10.1109%2FTIA.2024.3372942&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIA_2024_3372942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-9994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-9994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-9994&client=summon