Demand Response Potential Day-Ahead Forecasting Approach Based on LSSA-BPNN Considering the Electricity-Carbon Coupling Incentive Effects
In order to address the challenges of global climate change and to achieve the goals of sustainable development, the need for a low-carbon transition of the power system is becoming more urgent. However, previous demand response (DR) potential forecasting models for load aggregators (LAs) only consi...
Uložené v:
| Vydané v: | IEEE transactions on industry applications Ročník 60; číslo 3; s. 4505 - 4516 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0093-9994, 1939-9367 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In order to address the challenges of global climate change and to achieve the goals of sustainable development, the need for a low-carbon transition of the power system is becoming more urgent. However, previous demand response (DR) potential forecasting models for load aggregators (LAs) only consider the potential for customers to adjust their loads, without fully exploiting the potential to reduce their carbon emissions. To this end, a logistic sparrow search algorithm- back propagation neural network (LSSA-BPNN) based DR potential and carbon reduction potential forecasting model for LAs is proposed in this paper, which considers the dual incentive of electricity and carbon. First, a novel home energy management system (HEMS) model is developed, which considers the dual incentive of electricity and carbon. The model's objective function consists of two components: minimizing economic costs and reducing carbon emissions. Weight coefficients are introduced to characterize the power consumption preferences of different customer types. Subsequently, simulations are conducted to generate data related to DR potential and carbon reduction potential of LAs. Second, the multiple influencing features of DR potential and carbon reduction potential are sorted according to the degree of importance by the RF model respectively, which could reduce the redundancy of input features. Finally, based on the selected features, the LSSA-BPNN model is established to obtain the forecasting results of the DR potential and carbon reduction potential for LAs. The effectiveness and superiority of the proposed model have been verified using a real dataset in Austin. |
|---|---|
| AbstractList | In order to address the challenges of global climate change and to achieve the goals of sustainable development, the need for a low-carbon transition of the power system is becoming more urgent. However, previous demand response (DR) potential forecasting models for load aggregators (LAs) only consider the potential for customers to adjust their loads, without fully exploiting the potential to reduce their carbon emissions. To this end, a logistic sparrow search algorithm- back propagation neural network (LSSA-BPNN) based DR potential and carbon reduction potential forecasting model for LAs is proposed in this paper, which considers the dual incentive of electricity and carbon. First, a novel home energy management system (HEMS) model is developed, which considers the dual incentive of electricity and carbon. The model's objective function consists of two components: minimizing economic costs and reducing carbon emissions. Weight coefficients are introduced to characterize the power consumption preferences of different customer types. Subsequently, simulations are conducted to generate data related to DR potential and carbon reduction potential of LAs. Second, the multiple influencing features of DR potential and carbon reduction potential are sorted according to the degree of importance by the RF model respectively, which could reduce the redundancy of input features. Finally, based on the selected features, the LSSA-BPNN model is established to obtain the forecasting results of the DR potential and carbon reduction potential for LAs. The effectiveness and superiority of the proposed model have been verified using a real dataset in Austin. |
| Author | Wang, Fei Li, Meiyi Li, Nan Zhang, Yiran Sun, Qinfei Wang, Liyong Ge, Xinxin |
| Author_xml | – sequence: 1 givenname: Yiran surname: Zhang fullname: Zhang, Yiran email: 220211060429@ncepu.edu.cn organization: School of International Education (BAODING), North China Electric Power University, Baoding, China – sequence: 2 givenname: Xinxin orcidid: 0000-0002-4916-6680 surname: Ge fullname: Ge, Xinxin email: xinxinge@ncepu.edu.cn organization: Department of Electrical Engineering, North China Electric Power University, Baoding, China – sequence: 3 givenname: Meiyi orcidid: 0009-0000-3460-2964 surname: Li fullname: Li, Meiyi email: meiyili@ncepu.edu.cn organization: Department of Electrical Engineering, North China Electric Power University, Baoding, China – sequence: 4 givenname: Nan orcidid: 0009-0003-8596-4625 surname: Li fullname: Li, Nan email: nanli@ncepu.edu.cn organization: Department of Electrical Engineering, North China Electric Power University, Baoding, China – sequence: 5 givenname: Fei orcidid: 0000-0002-7332-9726 surname: Wang fullname: Wang, Fei email: feiwang@ncepu.edu.cn organization: Department of Electrical Engineering, North China Electric Power University, Baoding, China – sequence: 6 givenname: Liyong surname: Wang fullname: Wang, Liyong email: wangliyong@bj.sgcc.com.cn organization: State Grid Beijing Electric Power Research Institute, Beijing, China – sequence: 7 givenname: Qinfei surname: Sun fullname: Sun, Qinfei email: sunqinfei@bj.sgcc.com.cn organization: State Grid Beijing Electric Power Research Institute, Beijing, China |
| BookMark | eNp9kEtr3DAUhUVIIZO0-y66EHTtiWTJDy0d5zUwpKFJ10aWrjoKjuRKmsL8hP7ryEwWpYuuLtz7nXs45xydOu8Aoc-UrCkl4vJ5061LUvI1Y00peHmCVlQwUQhWN6doRYhghRCCn6HzGF8IobyifIX-XMOrdBp_hzh7FwE_-gQuWTnha3kouh1IjW99ACVjsu4n7uY5eKl2-EpG0Ng7vH166oqrx4cH3OcPVkNYuLQDfDOBSsEqmw5FL8OY4d7v52m5b5xafH5nypiMxY_og5FThE_v8wL9uL157u-L7be7Td9tC1WKMhWGGiMVpbpu-WgkYbIa2QjQMk00b1veVC0xrcgrRaXU9UhNRUnVNIpVmlB2gb4e_-Ycv_YQ0_Di98Fly4GRqs0mFSszRY6UCj7GAGaYg32V4TBQMiyFD7nwYSl8eC88S-p_JDm4TNa7FKSd_if8chRaAPjLh9eE0pa9AV6GkJ4 |
| CODEN | ITIACR |
| CitedBy_id | crossref_primary_10_1109_TTE_2024_3477921 crossref_primary_10_3390_act14020061 crossref_primary_10_1016_j_apenergy_2025_126369 crossref_primary_10_1016_j_energy_2025_137755 crossref_primary_10_1109_ACCESS_2024_3432805 crossref_primary_10_3390_en17153688 crossref_primary_10_3390_su17167290 crossref_primary_10_3390_en18153936 |
| Cites_doi | 10.1109/TEVC.2019.2901012 10.1016/j.energy.2020.117885 10.1109/TIA.2020.3014575 10.1109/TNNLS.2020.3042434 10.1109/ICPS57144.2023.10142112 10.1109/PESGM.2016.7742002 10.1109/TSG.2023.3308055 10.1049/gtd2.12963 10.1109/TIA.2023.3273186 10.1109/TSG.2023.3318418 10.1016/j.apenergy.2022.118947 10.1109/TSG.2017.2710358 10.1109/TSG.2021.3105747 10.1016/j.energy.2017.11.142 10.1016/j.apenergy.2019.114139 10.1049/rpg2.12600 10.1016/j.rser.2022.113125 10.1109/TPWRS.2020.2966732 10.1109/TIA.2023.3296065 10.1016/j.apenergy.2017.05.098 10.1109/TSG.2017.2693121 10.1038/s41467-022-30747-0 10.1109/TSG.2023.3286697 10.1109/TIA.2022.3202756 10.1109/TIA.2022.3148351 10.1109/JSTARS.2023.3284019 10.1109/TII.2016.2585122 10.1016/j.energy.2022.125837 10.35833/MPCE.2022.000632 10.1016/j.apenergy.2022.119579 10.1109/TIM.2019.2903615 10.35833/MPCE.2021.000058 10.1016/j.energy.2022.126505 10.1109/TPWRS.2021.3050837 10.1109/TII.2016.2578184 10.1016/j.apenergy.2020.114525 10.35833/MPCE.2021.000535 10.35833/MPCE.2022.000434 10.1109/TSG.2012.2183649 10.1109/TIA.2023.3334715 10.35833/MPCE.2020.000152 10.1109/TSG.2023.3299668 10.1016/j.segan.2021.100452 10.1016/j.apenergy.2019.03.121 10.1109/TIA.2020.3035553 10.1016/j.energy.2023.129716 10.1109/TSG.2016.2636873 10.1016/j.apenergy.2022.120628 10.3390/en11040770 10.1109/TITS.2018.2854827 10.1016/j.apenergy.2020.116418 10.1016/j.enbuild.2016.03.061 10.1016/j.energy.2020.118765 10.1109/TIA.2022.3144244 10.1109/TII.2016.2635082 10.1109/TII.2019.2916566 10.1016/j.apenergy.2018.02.058 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TIA.2024.3372942 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9367 |
| EndPage | 4516 |
| ExternalDocumentID | 10_1109_TIA_2024_3372942 10460118 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Science and Technology Project of State Grid Corporation of China grantid: 5108-202218280A-2-383-XG; SGBJDK00DJJS2250273 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-f1ffac11d684bfa03a5b3bee83d0d48847580f89beec1aad6b1f510577c35d013 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001230196400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0093-9994 |
| IngestDate | Mon Jun 30 10:12:04 EDT 2025 Sat Nov 29 02:18:45 EST 2025 Tue Nov 18 21:52:29 EST 2025 Wed Aug 27 02:05:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-f1ffac11d684bfa03a5b3bee83d0d48847580f89beec1aad6b1f510577c35d013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0000-3460-2964 0000-0002-4916-6680 0000-0002-7332-9726 0009-0003-8596-4625 |
| PQID | 3058292532 |
| PQPubID | 85463 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10460118 proquest_journals_3058292532 crossref_primary_10_1109_TIA_2024_3372942 crossref_citationtrail_10_1109_TIA_2024_3372942 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-May-June 2024-5-00 20240501 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-June |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industry applications |
| PublicationTitleAbbrev | TIA |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Du (ref45) 2019; 325 ref29 |
| References_xml | – ident: ref31 doi: 10.1109/TEVC.2019.2901012 – ident: ref3 doi: 10.1016/j.energy.2020.117885 – ident: ref14 doi: 10.1109/TIA.2020.3014575 – volume: 325 start-page: 1111 year: 2019 ident: ref45 article-title: Homogeneous online transfer learning with online distribution discrepancy minimization publication-title: Front. Artif. Intell. Appl. – ident: ref47 doi: 10.1109/TNNLS.2020.3042434 – ident: ref1 doi: 10.1109/ICPS57144.2023.10142112 – ident: ref19 doi: 10.1109/PESGM.2016.7742002 – ident: ref46 doi: 10.1109/TSG.2023.3308055 – ident: ref49 doi: 10.1049/gtd2.12963 – ident: ref56 doi: 10.1109/TIA.2023.3273186 – ident: ref10 doi: 10.1109/TSG.2023.3318418 – ident: ref27 doi: 10.1016/j.apenergy.2022.118947 – ident: ref32 doi: 10.1109/TSG.2017.2710358 – ident: ref2 doi: 10.1109/TSG.2021.3105747 – ident: ref24 doi: 10.1016/j.energy.2017.11.142 – ident: ref40 doi: 10.1016/j.apenergy.2019.114139 – ident: ref41 doi: 10.1049/rpg2.12600 – ident: ref28 doi: 10.1016/j.rser.2022.113125 – ident: ref48 doi: 10.1109/TPWRS.2020.2966732 – ident: ref8 doi: 10.1109/TIA.2023.3296065 – ident: ref17 doi: 10.1016/j.apenergy.2017.05.098 – ident: ref53 doi: 10.1109/TSG.2017.2693121 – ident: ref12 doi: 10.1038/s41467-022-30747-0 – ident: ref35 doi: 10.1109/TSG.2023.3286697 – ident: ref51 doi: 10.1109/TIA.2022.3202756 – ident: ref6 doi: 10.1109/TIA.2022.3148351 – ident: ref29 doi: 10.1109/JSTARS.2023.3284019 – ident: ref22 doi: 10.1109/TII.2016.2585122 – ident: ref30 doi: 10.1016/j.energy.2022.125837 – ident: ref57 doi: 10.35833/MPCE.2022.000632 – ident: ref42 doi: 10.1016/j.apenergy.2022.119579 – ident: ref38 doi: 10.1109/TIM.2019.2903615 – ident: ref55 doi: 10.35833/MPCE.2021.000058 – ident: ref25 doi: 10.1016/j.energy.2022.126505 – ident: ref44 doi: 10.1109/TPWRS.2021.3050837 – ident: ref33 doi: 10.1109/TII.2016.2578184 – ident: ref52 doi: 10.1016/j.apenergy.2020.114525 – ident: ref13 doi: 10.35833/MPCE.2021.000535 – ident: ref5 doi: 10.35833/MPCE.2022.000434 – ident: ref34 doi: 10.1109/TSG.2012.2183649 – ident: ref43 doi: 10.1109/TIA.2023.3334715 – ident: ref23 doi: 10.35833/MPCE.2020.000152 – ident: ref11 doi: 10.1109/TSG.2023.3299668 – ident: ref54 doi: 10.1016/j.segan.2021.100452 – ident: ref20 doi: 10.1016/j.apenergy.2019.03.121 – ident: ref15 doi: 10.1109/TIA.2020.3035553 – ident: ref50 doi: 10.1016/j.energy.2023.129716 – ident: ref26 doi: 10.1109/TSG.2016.2636873 – ident: ref58 doi: 10.1016/j.apenergy.2022.120628 – ident: ref4 doi: 10.3390/en11040770 – ident: ref39 doi: 10.1109/TITS.2018.2854827 – ident: ref16 doi: 10.1016/j.apenergy.2020.116418 – ident: ref21 doi: 10.1016/j.enbuild.2016.03.061 – ident: ref9 doi: 10.1016/j.energy.2020.118765 – ident: ref7 doi: 10.1109/TIA.2022.3144244 – ident: ref37 doi: 10.1109/TII.2016.2635082 – ident: ref36 doi: 10.1109/TII.2019.2916566 – ident: ref18 doi: 10.1016/j.apenergy.2018.02.058 |
| SSID | ssj0014514 |
| Score | 2.5003905 |
| Snippet | In order to address the challenges of global climate change and to achieve the goals of sustainable development, the need for a low-carbon transition of the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4505 |
| SubjectTerms | Artificial neural networks Back propagation networks Biological system modeling Carbon Carbon dioxide Carbon emissions Climate change Customers Data models Day-ahead forecasting Demand response demand response potential Economic impact Electric potential Electric power demand Electric power systems Electricity electricity-carbon coupling Electrode potentials Emissions Energy management Forecasting Home automation load aggregator Load modeling low-carbon Low-carbon economy Neural networks Power consumption Power system planning Redundancy Residential energy Search algorithms Sustainable development |
| Title | Demand Response Potential Day-Ahead Forecasting Approach Based on LSSA-BPNN Considering the Electricity-Carbon Coupling Incentive Effects |
| URI | https://ieeexplore.ieee.org/document/10460118 https://www.proquest.com/docview/3058292532 |
| Volume | 60 |
| WOSCitedRecordID | wos001230196400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9367 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014514 issn: 0093-9994 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5s8aAH14rVKnPw4mHaTDLZjmmrKEgpWsVbmFUETaSL4E_wX_tmkooiCt5CeJOFL_OWvOVD6EQwIU0kJdHUeIT5viZgRgxRxoSGUqEDx0N2dxWPRsn9fTqum9VdL4zW2hWf6a49dLl8VcqF_VXWs_lI2ynZQI04jqpmrc-UAasHeUOITsDrYcucpJf2JpcZRII-6wY2ScX8bzbIkar80MTOvJxv_vPBttBG7UfirAJ-G63oYgetf5kuuIveh_qZFwpfV2WwGo_Lua0NgmVD_kYyUMMKW2pOyWe2-Bln9Xxx3AfTpnBZ4Kubm4z0x6MRXhJ7WjnwGfGZo895lODEkwGfChAelAvb3vuAQefY-7yCVFUt0kK352eTwQWpmReI9FN_Tgw1hktKVZQwYbgX8FAEQuskUJ6CLc8gyvBMksIpSTlXkaDGempxLINQgVe5h5pFWeh9hMGnEkwlNBIiYqkMhRfrWIagSCLOKPfbqLfEIpf1WHLLjvGUu_DES3NAL7fo5TV6bXT6ueKlGsnxh2zLovVFrgKqjTpLvPN6085yUH0JvH4Y-Ae_LDtEa_bqVcFjBzXn04U-Qqvydf44mx677_ED7ZveIQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61tFLbA_RB1eXR-tBLD2Zjx3kdwwICdYlWsK24RX4iJEiqfSD1J_Rfd-xkEaiiErcoGsuJvnjmm8wL4KsSSrtUa2qZi6jg3FI0I44a5xLHmLJxmEP2c5xVVX5xUUz6YvVQC2OtDclnds9fhli-afXS_yob-nikr5R8Di8SIXjUlWvdBQ1E38obnXSKvEesopJRMZyelOgLcrEX-zCV4A-sUBir8o8uDgbmaOOJj_YW1nsmScoO-nfwzDbv4c29_oIf4M-BvZGNIWddIqwlk3bhs4Nw2YH8TUtUxIb44Zxazn36Myn7DuNkH42bIW1DxufnJd2fVBVZjfb0csgayWEYoHOlkcbTkZwpFB61S1_ge0lQ6_h9blGqyxfZhB9Hh9PRMe1nL1DNC76gjjknNWMmzYVyMoplomJlbR6byOChF-hnRC4v8JZmUppUMee5WpbpODHIKz_CWtM29hMQZFVKmJylSqWi0ImKMpvpBFVJKgWTfADDFRa17huT-_kY13VwUKKiRvRqj17dozeAb3crfnVNOf4ju-nRuifXATWAnRXedX9s5zUqvxxfP4n51iPLvsCr4-npuB6fVN-34bXfqUt_3IG1xWxpd-Glvl1czWefw7f5F6IZ4Wg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demand+Response+Potential+Day-Ahead+Forecasting+Approach+Based+on+LSSA-BPNN+Considering+the+Electricity-Carbon+Coupling+Incentive+Effects&rft.jtitle=IEEE+transactions+on+industry+applications&rft.au=Zhang%2C+Yiran&rft.au=Ge%2C+Xinxin&rft.au=Li%2C+Meiyi&rft.au=Li%2C+Nan&rft.date=2024-05-01&rft.issn=0093-9994&rft.eissn=1939-9367&rft.volume=60&rft.issue=3&rft.spage=4505&rft.epage=4516&rft_id=info:doi/10.1109%2FTIA.2024.3372942&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIA_2024_3372942 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-9994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-9994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-9994&client=summon |