Distributed Computational Framework for Large-Scale Stochastic Convex Optimization

This paper presents a distributed computational framework for stochastic convex optimization problems using the so-called scenario approach. Such a problem arises, for example, in a large-scale network of interconnected linear systems with local and common uncertainties. Due to the large number of r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energies (Basel) Ročník 14; číslo 1; s. 23
Hlavní autoři: Rostampour, Vahab, Keviczky, Tamás
Médium: Journal Article
Jazyk:angličtina
Vydáno: MDPI AG 01.01.2021
Témata:
ISSN:1996-1073, 1996-1073
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a distributed computational framework for stochastic convex optimization problems using the so-called scenario approach. Such a problem arises, for example, in a large-scale network of interconnected linear systems with local and common uncertainties. Due to the large number of required scenarios to approximate the stochasticity of these problems, the stochastic optimization involves formulating a large-scale scenario program, which is in general computationally demanding. We present two novel ideas in this paper to address this issue. We first develop a technique to decompose the large-scale scenario program into distributed scenario programs that exchange a certain number of scenarios with each other to compute local decisions using the alternating direction method of multipliers (ADMM). We show the exactness of the decomposition with a-priori probabilistic guarantees for the desired level of constraint fulfillment for both local and common uncertainty sources. As our second contribution, we develop a so-called soft communication scheme based on a set parametrization technique together with the notion of probabilistically reliable sets to reduce the required communication between the subproblems. We show how to incorporate the probabilistic reliability notion into existing results and provide new guarantees for the desired level of constraint violations. Two different simulation studies of two types of interconnected network, namely dynamically coupled and coupling constraints, are presented to illustrate advantages of the proposed distributed framework.
AbstractList This paper presents a distributed computational framework for stochastic convex optimization problems using the so-called scenario approach. Such a problem arises, for example, in a large-scale network of interconnected linear systems with local and common uncertainties. Due to the large number of required scenarios to approximate the stochasticity of these problems, the stochastic optimization involves formulating a large-scale scenario program, which is in general computationally demanding. We present two novel ideas in this paper to address this issue. We first develop a technique to decompose the large-scale scenario program into distributed scenario programs that exchange a certain number of scenarios with each other to compute local decisions using the alternating direction method of multipliers (ADMM). We show the exactness of the decomposition with a-priori probabilistic guarantees for the desired level of constraint fulfillment for both local and common uncertainty sources. As our second contribution, we develop a so-called soft communication scheme based on a set parametrization technique together with the notion of probabilistically reliable sets to reduce the required communication between the subproblems. We show how to incorporate the probabilistic reliability notion into existing results and provide new guarantees for the desired level of constraint violations. Two different simulation studies of two types of interconnected network, namely dynamically coupled and coupling constraints, are presented to illustrate advantages of the proposed distributed framework.
Author Keviczky, Tamás
Rostampour, Vahab
Author_xml – sequence: 1
  givenname: Vahab
  orcidid: 0000-0002-3756-3849
  surname: Rostampour
  fullname: Rostampour, Vahab
– sequence: 2
  givenname: Tamás
  surname: Keviczky
  fullname: Keviczky, Tamás
BookMark eNpNkE9PwzAMxSM0JMbYhU_QM1Ihqdt1OaLBYNKkSQzOlZM4I6NrpjTj36enbAjwxZbl99PzO2W9xjfE2LnglwCSX1Ejci44z-CI9YWUo1TwEnr_5hM2bNs17wpAAECfPdy4NgandpFMMvGb7S5idL7BOpkG3NCbDy-J9SGZY1hRutRYU7KMXj9jG53uJM0rvSeLbXQb97mXnrFji3VLw58-YE_T28fJfTpf3M0m1_NUZzKLKVlpLM-MsWJMUAKNCqP1eJxZZaVGC5RzKg3ooiBlc1NidwZadv9xC7aAAZsduMbjutoGt8HwUXl01X7hw6rC0HmsqUIgKRR2YqIcTI6oFZSKlBrpUpPtWBcHlg6-bQPZX57g1Xe41V-48AWScHEj
Cites_doi 10.1109/TSG.2018.2834150
10.1109/TAC.2013.2254641
10.1109/TSP.2014.2304432
10.1109/TAC.2016.2612822
10.1109/ACC.2015.7170771
10.1109/CDC.2007.4434064
10.1016/j.automatica.2014.10.035
10.1109/CDC.2012.6426462
10.1109/TAC.2014.2303232
10.1016/j.automatica.2013.02.060
10.1016/j.arcontrol.2004.01.003
10.1080/00207170701491070
10.1561/2200000016
10.1109/TEC.2007.914174
10.1016/j.automatica.2011.09.048
10.1109/CoASE.2014.6899461
10.23919/ACC.2017.7963798
10.1109/TAC.2006.875041
10.1137/07069821X
10.23919/ECC.2013.6669266
10.1007/s00211-014-0673-6
10.1109/TAC.2010.2086553
10.1109/CDC.2017.8264043
10.1016/j.automatica.2007.04.027
10.1007/BFb0109870
10.1109/CDC.2015.7402994
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/en14010023
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_a3e91bac90ee43d4aacb37bebb6c7cef
10_3390_en14010023
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ID FETCH-LOGICAL-c292t-ef9df02ddf18e373e65dcc882fbf9caf3e40e7d3c55ebf4d7a8e33c90020f3f53
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605771000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:50:32 EDT 2025
Sat Nov 29 07:15:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-ef9df02ddf18e373e65dcc882fbf9caf3e40e7d3c55ebf4d7a8e33c90020f3f53
ORCID 0000-0002-3756-3849
OpenAccessLink https://doaj.org/article/a3e91bac90ee43d4aacb37bebb6c7cef
ParticipantIDs doaj_primary_oai_doaj_org_article_a3e91bac90ee43d4aacb37bebb6c7cef
crossref_primary_10_3390_en14010023
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_13
ref_12
ref_10
ref_32
ref_31
Calafiore (ref_33) 2006; 51
Calafiore (ref_11) 2013; 49
ref_19
ref_18
Lavaei (ref_4) 2008; 44
ref_16
Cannon (ref_6) 2011; 56
ref_15
Hokayem (ref_9) 2012; 48
Margellos (ref_14) 2014; 59
Kouvaritakis (ref_1) 2004; 28
Boyd (ref_29) 2011; 3
Shi (ref_27) 2014; 62
He (ref_30) 2015; 130
ref_25
ref_24
ref_23
Richards (ref_5) 2007; 80
ref_20
Schildbach (ref_22) 2014; 50
ref_3
ref_2
Riverso (ref_7) 2013; 58
ref_28
ref_26
Campi (ref_17) 2008; 19
Dai (ref_8) 2016; 62
Papaefthymiou (ref_21) 2008; 23
References_xml – ident: ref_26
  doi: 10.1109/TSG.2018.2834150
– ident: ref_24
– volume: 58
  start-page: 2608
  year: 2013
  ident: ref_7
  article-title: Plug-and-play decentralized model predictive control for linear systems
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2013.2254641
– volume: 62
  start-page: 1750
  year: 2014
  ident: ref_27
  article-title: On the Linear Convergence of the ADMM in Decentralized Consensus Optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2304432
– ident: ref_16
– volume: 62
  start-page: 3474
  year: 2016
  ident: ref_8
  article-title: Distributed Stochastic MPC of Linear Systems with Additive Uncertainty and Coupled Probabilistic Constraints
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2016.2612822
– ident: ref_12
  doi: 10.1109/ACC.2015.7170771
– ident: ref_2
  doi: 10.1109/CDC.2007.4434064
– volume: 50
  start-page: 3009
  year: 2014
  ident: ref_22
  article-title: The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.035
– ident: ref_10
  doi: 10.1109/CDC.2012.6426462
– volume: 59
  start-page: 2258
  year: 2014
  ident: ref_14
  article-title: On the road between robust optimization and the scenario approach for chance constrained optimization problems
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2303232
– ident: ref_23
– volume: 49
  start-page: 1861
  year: 2013
  ident: ref_11
  article-title: Stochastic model predictive control of LPV systems via scenario optimization
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.02.060
– volume: 28
  start-page: 23
  year: 2004
  ident: ref_1
  article-title: Recent developments in stochastic MPC and sustainable development
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2004.01.003
– volume: 80
  start-page: 1517
  year: 2007
  ident: ref_5
  article-title: Robust distributed model predictive control
  publication-title: Int. J. Control
  doi: 10.1080/00207170701491070
– volume: 3
  start-page: 1
  year: 2011
  ident: ref_29
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 23
  start-page: 234
  year: 2008
  ident: ref_21
  article-title: MCMC for wind power simulation
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2007.914174
– volume: 48
  start-page: 77
  year: 2012
  ident: ref_9
  article-title: Stochastic receding horizon control with output feedback and bounded controls
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.09.048
– ident: ref_18
  doi: 10.1109/CoASE.2014.6899461
– ident: ref_32
  doi: 10.23919/ACC.2017.7963798
– volume: 51
  start-page: 742
  year: 2006
  ident: ref_33
  article-title: The scenario approach to robust control design
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2006.875041
– volume: 19
  start-page: 1211
  year: 2008
  ident: ref_17
  article-title: The exact feasibility of randomized solutions of uncertain convex programs
  publication-title: SIAM J. Optim.
  doi: 10.1137/07069821X
– ident: ref_25
– ident: ref_31
– ident: ref_20
  doi: 10.23919/ECC.2013.6669266
– volume: 130
  start-page: 567
  year: 2015
  ident: ref_30
  article-title: On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers
  publication-title: Numerische Mathematik
  doi: 10.1007/s00211-014-0673-6
– volume: 56
  start-page: 194
  year: 2011
  ident: ref_6
  article-title: Stochastic tubes in model predictive control with probabilistic constraints
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2086553
– ident: ref_28
  doi: 10.1109/CDC.2017.8264043
– ident: ref_15
– ident: ref_19
– volume: 44
  start-page: 141
  year: 2008
  ident: ref_4
  article-title: Control of continuous-time LTI systems by means of structurally constrained controllers
  publication-title: Automatica
  doi: 10.1016/j.automatica.2007.04.027
– ident: ref_3
  doi: 10.1007/BFb0109870
– ident: ref_13
  doi: 10.1109/CDC.2015.7402994
SSID ssj0000331333
Score 2.2390196
SecondaryResourceType review_article
Snippet This paper presents a distributed computational framework for stochastic convex optimization problems using the so-called scenario approach. Such a problem...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 23
SubjectTerms decentralized scenario program
distributed computation
distributed scenario program
distributed stochastic systems
scenario convex program
stochastic optimization
Title Distributed Computational Framework for Large-Scale Stochastic Convex Optimization
URI https://doaj.org/article/a3e91bac90ee43d4aacb37bebb6c7cef
Volume 14
WOSCitedRecordID wos000605771000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKS5ZgjZrEcRyPPFoxlIIoSN0i-3IWDKSohIqJ3845SaFMLCwZLNuKvrPuvrPO3zF2lmUgiSiHQZSYNEggiQIrichpUJiGAKkxtWT-UI1G2WSi75ZaffmasEYeuAGuZwTqyBrQIWIiisQYsEJZtDYFBei89w2VXkqmah8sBCVfotEjFZTX97D0qYQPUb8i0JJQfx1RBptso6WC_Lz5hS22guU2W18SCNxh91de19a3pMKCNw0Y2ss7PlhUVXGinXzoC7qDMQGOfFxN4cl4_WVaUs7xg9-SX3hpH1zussdB_-HyOmi7IAQQ67gK0OnChXFRuChDoQSmsgAgYuys02CcwCREVQiQEn3VnTI0TRBeRASdcFLssU45LXGfcSsijGNUVjq_yD8OwUwZyGJCWMa2y04XyOSvjdhFTkmCxy__wa_LLjxo3zO8QHU9QGbLW7Plf5nt4D82OWRrsS8xqW9Ejlinmr3jMVuFefX8NjupTwR9bz77X9m2wuQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Computational+Framework+for+Large-Scale+Stochastic+Convex+Optimization&rft.jtitle=Energies+%28Basel%29&rft.au=Vahab+Rostampour&rft.au=Tam%C3%A1s+Keviczky&rft.date=2021-01-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=1&rft.spage=23&rft_id=info:doi/10.3390%2Fen14010023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a3e91bac90ee43d4aacb37bebb6c7cef
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon