Electricity Theft Detection in Incremental Scenario: A Novel Semi-supervised Approach based on Hybrid Replay Strategy

Deep learning (DL) has achieved great success in the field of electricity theft detection (ETD). Most existing studies have used supervised mode to complete the DL-based ETD, but they do not have the capability of incremental detection, especially in small sample size scenarios. To address this prob...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on instrumentation and measurement Ročník 72; s. 1
Hlavní autori: Yao, Ruizhe, Wang, Ning, Ke, Weipeng, Liu, Zhili, Yan, Zhenhong, Sheng, Xianjun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9456, 1557-9662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deep learning (DL) has achieved great success in the field of electricity theft detection (ETD). Most existing studies have used supervised mode to complete the DL-based ETD, but they do not have the capability of incremental detection, especially in small sample size scenarios. To address this problem, this paper proposes a semi-supervised ETD approach based on hybrid replay strategy. From the data perspective, this paper designs a hybrid replay strategy that includes a variational autoencoder (VAE) and sample scrambling ranking (SSR) methods, and uses a "rehearsal" method to obtain incremental ETD capability. From the detection method perspective, this paper designs a semi-supervised ETD architecture that uses a temporal convolutional attention network (TCAN) as a feature extractor and uses contrastive learning to improve the utilization of unlabeled sensing samples, thus reducing the labeled sample size required for the fine-tuning process. Experimental results on the Irish smart energy trial (ISET) dataset show that the proposed scheme effectively solves the problem of incremental ETD in small sample size, and achieves 92.72%, 92.70%, 92.57% on accuracy, precision, and f1-score, respectively.
AbstractList Deep learning (DL) has achieved great success in the field of electricity theft detection (ETD). Most existing studies have used supervised mode to complete the DL-based ETD, but they do not have the capability of incremental detection, especially in small-sample size scenarios. To address this problem, this article proposes a semi-supervised ETD approach based on a hybrid replay strategy. From the data perspective, this article designs a hybrid replay strategy that includes a variational autoencoder (VAE) and sample scrambling ranking (SSR) methods, and uses a “rehearsal” method to obtain incremental ETD capability. From the detection method perspective, this article designs a semi-supervised ETD architecture that uses a temporal convolutional attention network (TCAN) as a feature extractor and uses contrastive learning to improve the utilization of unlabeled sensing samples, thus reducing the labeled sample size required for the fine-tuning process. Experimental results on the Irish smart energy trial (ISET) dataset show that the proposed scheme effectively solves the problem of incremental ETD in small sample size, and achieves 92.72%, 92.70%, and 92.57% on accuracy, precision, and f1-score, respectively.
Deep learning (DL) has achieved great success in the field of electricity theft detection (ETD). Most existing studies have used supervised mode to complete the DL-based ETD, but they do not have the capability of incremental detection, especially in small sample size scenarios. To address this problem, this paper proposes a semi-supervised ETD approach based on hybrid replay strategy. From the data perspective, this paper designs a hybrid replay strategy that includes a variational autoencoder (VAE) and sample scrambling ranking (SSR) methods, and uses a "rehearsal" method to obtain incremental ETD capability. From the detection method perspective, this paper designs a semi-supervised ETD architecture that uses a temporal convolutional attention network (TCAN) as a feature extractor and uses contrastive learning to improve the utilization of unlabeled sensing samples, thus reducing the labeled sample size required for the fine-tuning process. Experimental results on the Irish smart energy trial (ISET) dataset show that the proposed scheme effectively solves the problem of incremental ETD in small sample size, and achieves 92.72%, 92.70%, 92.57% on accuracy, precision, and f1-score, respectively.
Author Yao, Ruizhe
Wang, Ning
Yan, Zhenhong
Ke, Weipeng
Liu, Zhili
Sheng, Xianjun
Author_xml – sequence: 1
  givenname: Ruizhe
  orcidid: 0000-0002-0379-4948
  surname: Yao
  fullname: Yao, Ruizhe
  organization: Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
– sequence: 2
  givenname: Ning
  orcidid: 0000-0002-8476-0570
  surname: Wang
  fullname: Wang, Ning
  organization: Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
– sequence: 3
  givenname: Weipeng
  orcidid: 0000-0003-4986-0792
  surname: Ke
  fullname: Ke, Weipeng
  organization: Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
– sequence: 4
  givenname: Zhili
  orcidid: 0000-0003-1100-4261
  surname: Liu
  fullname: Liu, Zhili
  organization: Electric Power Research Institute, State Grid Liaoning Electric Power Supply Co.Ltd, Shenyang, China
– sequence: 5
  givenname: Zhenhong
  orcidid: 0000-0002-3443-6916
  surname: Yan
  fullname: Yan, Zhenhong
  organization: Electric Power Research Institute, State Grid Liaoning Electric Power Supply Co.Ltd, Shenyang, China
– sequence: 6
  givenname: Xianjun
  orcidid: 0000-0003-1694-4463
  surname: Sheng
  fullname: Sheng, Xianjun
  organization: Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
BookMark eNp9kDFPwzAQhS1UJNrCzsBgiTnFdhLbYatKoZUKSLTMkeNeqKs0CY5TKf8eR-2AGJhO93Tv3t03QoOyKgGhW0omlJLkYbN8nTDCwkkYsoiL6AINaRyLIOGcDdCQECqDJIr5FRo1zZ4QIngkhqidF6CdNdq4Dm92kDv8BM5LpiqxKfGy1BYOUDpV4LWGUllTPeIpfquO4BU4mKBpa7BH08AWT-vaVkrvcKb61q9YdJk1W_wBdaE6vHZWOfjqrtFlrooGbs51jD6f55vZIli9vyxn01WgWcJcACBAqS3LNNNSi0gQHcWUM00oFUCVzmLgIqMcZCRiSCQkWoW5VoqKXLIwHKP7015_1ncLjUv3VWtLH5kyKWlMhJSJnyKnKW2rprGQp7U1B2W7lJK0h5t6uGkPNz3D9Rb-x-IBqh6a_9AU_xnvTkYDAL9ymORMyPAH4GiKXw
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TII_2024_3371991
crossref_primary_10_1016_j_ijepes_2025_110461
crossref_primary_10_1016_j_measurement_2025_117768
crossref_primary_10_1109_TIM_2024_3370803
crossref_primary_10_1109_TIM_2025_3602529
crossref_primary_10_1016_j_aej_2025_07_040
crossref_primary_10_1109_TIM_2024_3470061
crossref_primary_10_1109_TIM_2025_3595249
crossref_primary_10_1016_j_ijepes_2024_110309
crossref_primary_10_1109_TII_2024_3485813
Cites_doi 10.1007/s10489-022-04069-z
10.1016/j.neucom.2020.03.085
10.1016/j.epsr.2020.106904
10.1109/TIM.2023.3265739
10.1109/TIM.2022.3189748
10.1007/s10489-020-02049-9
10.1109/JSEN.2022.3147016
10.1109/TSG.2021.3088879
10.1109/JSYST.2020.3030238
10.1016/j.jpdc.2021.03.002
10.1109/TIM.2022.3201569
10.1109/TIM.2020.3048784
10.1109/JSEN.2020.3041322
10.1109/TIM.2021.3067216
10.1109/JSEN.2019.2902357
10.1016/j.apenergy.2019.01.076
10.1016/j.bdr.2021.100285
10.1016/j.ijepes.2020.106448
10.1109/TPWRS.2019.2943115
10.1109/TSG.2019.2892595
10.1155/2019/4136874
10.1109/TSG.2015.2425222
10.1109/TSG.2020.3047864
10.1016/j.ijepes.2020.106162
10.1109/TII.2019.2944880
10.3390/s21020626
10.1109/TIM.2021.3080390
10.3390/en13215758
10.1109/TIM.2019.2954722
10.4236/jpee.2016.49001
10.1109/TSG.2016.2574714
10.1109/TIM.2022.3162265
10.1016/j.ijepes.2020.106544
10.1109/TII.2016.2543145
10.1109/JSAC.2013.130714
10.1109/TSG.2021.3134018
10.1109/CVPR46437.2021.00812
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3324674
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2023_3324674
10286278
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 5207052294
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
8WZ
A6W
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
VH1
VJK
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-ee7eaad2bc2c8c7470c45162c0117e1acb5e67b16e8475e98e9ca3fcaa17f8233
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001090941700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 08:27:35 EDT 2025
Tue Nov 18 22:25:23 EST 2025
Sat Nov 29 04:38:40 EST 2025
Wed Aug 27 02:24:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-ee7eaad2bc2c8c7470c45162c0117e1acb5e67b16e8475e98e9ca3fcaa17f8233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1100-4261
0000-0003-1694-4463
0000-0002-8476-0570
0000-0002-0379-4948
0000-0003-4986-0792
0000-0002-3443-6916
PQID 2881507889
PQPubID 85462
PageCount 1
ParticipantIDs ieee_primary_10286278
crossref_primary_10_1109_TIM_2023_3324674
proquest_journals_2881507889
crossref_citationtrail_10_1109_TIM_2023_3324674
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
(ref37) 2023
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
tehrani (ref22) 2022; 208
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref31
  doi: 10.1007/s10489-022-04069-z
– ident: ref20
  doi: 10.1016/j.neucom.2020.03.085
– ident: ref19
  doi: 10.1016/j.epsr.2020.106904
– ident: ref33
  doi: 10.1109/TIM.2023.3265739
– ident: ref28
  doi: 10.1109/TIM.2022.3189748
– ident: ref34
  doi: 10.1007/s10489-020-02049-9
– ident: ref2
  doi: 10.1109/JSEN.2022.3147016
– ident: ref1
  doi: 10.1109/TSG.2021.3088879
– ident: ref23
  doi: 10.1109/JSYST.2020.3030238
– ident: ref27
  doi: 10.1016/j.jpdc.2021.03.002
– ident: ref29
  doi: 10.1109/TIM.2022.3201569
– ident: ref15
  doi: 10.1109/TIM.2020.3048784
– ident: ref13
  doi: 10.1109/JSEN.2020.3041322
– ident: ref14
  doi: 10.1109/TIM.2021.3067216
– volume: 208
  year: 2022
  ident: ref22
  article-title: Online electricity theft detection framework for large-scale smart grid data
  publication-title: Electr Power Syst Res
– ident: ref4
  doi: 10.1109/JSEN.2019.2902357
– year: 2023
  ident: ref37
  publication-title: Data from the Commission for Energy Regulation
– ident: ref18
  doi: 10.1016/j.apenergy.2019.01.076
– ident: ref21
  doi: 10.1016/j.bdr.2021.100285
– ident: ref25
  doi: 10.1016/j.ijepes.2020.106448
– ident: ref8
  doi: 10.1109/TPWRS.2019.2943115
– ident: ref16
  doi: 10.1109/TSG.2019.2892595
– ident: ref26
  doi: 10.1155/2019/4136874
– ident: ref39
  doi: 10.1109/TSG.2015.2425222
– ident: ref24
  doi: 10.1109/TSG.2020.3047864
– ident: ref30
  doi: 10.1016/j.ijepes.2020.106162
– ident: ref3
  doi: 10.1109/TII.2019.2944880
– ident: ref5
  doi: 10.3390/s21020626
– ident: ref35
  doi: 10.1109/TIM.2021.3080390
– ident: ref11
  doi: 10.3390/en13215758
– ident: ref12
  doi: 10.1109/TIM.2019.2954722
– ident: ref9
  doi: 10.4236/jpee.2016.49001
– ident: ref10
  doi: 10.1109/TSG.2016.2574714
– ident: ref36
  doi: 10.1109/TIM.2022.3162265
– ident: ref17
  doi: 10.1016/j.ijepes.2020.106544
– ident: ref6
  doi: 10.1109/TII.2016.2543145
– ident: ref38
  doi: 10.1109/JSAC.2013.130714
– ident: ref7
  doi: 10.1109/TSG.2021.3134018
– ident: ref32
  doi: 10.1109/CVPR46437.2021.00812
SSID ssj0007647
Score 2.4395106
Snippet Deep learning (DL) has achieved great success in the field of electricity theft detection (ETD). Most existing studies have used supervised mode to complete...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Behavioral sciences
Biological system modeling
Boosting
Convolutional neural networks
Data models
Deep learning
Electricity
Electricity theft detection
Feature extraction
Irish smart energy trial
Support vector machines
Temporal convolutional attention networks
Theft
Variational autoencoder
Title Electricity Theft Detection in Incremental Scenario: A Novel Semi-supervised Approach based on Hybrid Replay Strategy
URI https://ieeexplore.ieee.org/document/10286278
https://www.proquest.com/docview/2881507889
Volume 72
WOSCitedRecordID wos001090941700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2a0EJ7SNs0IZukQYdecvCuLXktqbclTUgOXQpNITcjj0ewkHhD7A3sv-9I9oaUkkJvxpaE4UnzIWneA_iS1eEsx-cJTZ3nBAVt4jgJS0ip2vosc6k3UWxCz-fm5sb-GIrVYy0MEcXLZzQOj_Esv17iKmyVTYIzLKQ2W7ClddEXaz2ZXV3kPUFmxiuYw4LNmWRqJ9dX38dBJnysOHwodP6HD4qiKn9Z4uheLt7_5499gJ0hjhSzHviP8IqaXXj3jF1wF97E253YfoLVeRS7WSCH3IInhu_EN-riJaxGLBrBRqLfJuQRfyI1nD8vv4qZmC8fid_Q3SJpV_fBqrRUi9lAQy6CB6wFD3G5DnVfgoP5W7cWA-Hteg9-XZxfn10mg95CgtLKLiHS5FwtK5RokPOMFIOMr8TAG0eZw2pKha6ygtilTckasuiUR-cy7Y1Uah-2m2VDByAUfyCZ6kpJzHPvnbJkVa2qwtS5QzeCyQaBEgcy8qCJcVvGpCS1JWNWBszKAbMRnD71uO-JOP7Rdi9g9KxdD88Ijjcol8NSbUtpTAiKjbGHL3Q7grdh9H7j5Ri2u4cVfYbX-Ngt2oeTOAt_A2uz2zw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4aGwg4DBhDFDbmAxcOaRM7TWxuFdvUaVs1iSLtFjkvz1KlkU5LOqn_Pc9OOg0hkLhFiZ1E-uz3w_b7PoDPSeX3clwa0dg6TlDQRJaTsIiUqoxLEhs7HcQm8tlMX1-bq75YPdTCEFE4fEZDfxn28qslrvxS2cg7w0zm-gnsjNNUxl251oPhzbO0o8hMeA5zYLDZlYzNaH52OfRC4UPFAUSWp795oSCr8octDg7m9NV__tpr2O0jSTHpoH8DW1TvwctH_IJ78Cyc78TmLaxOgtzNAjnoFjw0XCuOqQ3HsGqxqAWbiW6hkN_4HanmDHr5VUzEbHlPfId-LqJmdevtSkOVmPRE5ML7wErwK6ZrX_klOJy_sWvRU96u9-HH6cn82zTqFRcilEa2EVFO1layRIkaOdOI0Qv5SvTMcZRYLMeU5WWSETu1MRlNBq1yaG2SOy2Vegfb9bKm9yAUPyAZ56WSmKbOWWXIqEqVma5Si3YAow0CBfZ05F4V46YIaUlsCsas8JgVPWYD-PLQ47aj4vhH232P0aN2HTwDONigXPSTtSmk1j4s1tp8-Eu3I3g-nV9eFBdns_OP8MJ_qVuGOYDt9m5Fh_AU79tFc_cpjMhf-KTegw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+Theft+Detection+in+Incremental+Scenario%3A+A+Novel+Semi-Supervised+Approach+Based+on+Hybrid+Replay+Strategy&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Yao%2C+Ruizhe&rft.au=Wang%2C+Ning&rft.au=Ke%2C+Weipeng&rft.au=Liu%2C+Zhili&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=72&rft.spage=1&rft_id=info:doi/10.1109%2FTIM.2023.3324674&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon