DALL-E-Bot: Introducing Web-Scale Diffusion Models to Robotics

We introduce the first work to explore web-scale diffusion models for robotics. DALL-E-Bot enables a robot to rearrange objects in a scene, by first inferring a text description of those objects, then generating an image representing a natural, human-like arrangement of those objects, and finally ph...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE robotics and automation letters Ročník 8; číslo 7; s. 3956 - 3963
Hlavní autori: Kapelyukh, Ivan, Vosylius, Vitalis, Johns, Edward
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2377-3766, 2377-3766
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We introduce the first work to explore web-scale diffusion models for robotics. DALL-E-Bot enables a robot to rearrange objects in a scene, by first inferring a text description of those objects, then generating an image representing a natural, human-like arrangement of those objects, and finally physically arranging the objects according to that goal image. We show that this is possible zero-shot using DALL-E, without needing any further example arrangements, data collection, or training. DALL-E-Bot is fully autonomous and is not restricted to a pre-defined set of objects or scenes, thanks to DALL-E's web-scale pre-training. Encouraging real-world results, with both human studies and objective metrics, show that integrating web-scale diffusion models into robotics pipelines is a promising direction for scalable, unsupervised robot learning.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2023.3272516