LTM: Scalable and Black-Box Similarity-Based Test Suite Minimization Based on Language Models

Test suites tend to grow when software evolves, making it often infeasible to execute all test cases with the allocated testing budgets, especially for large software systems. Test suite minimization (TSM) is employed to improve the efficiency of software testing by removing redundant test cases, th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on software engineering Ročník 50; číslo 11; s. 3053 - 3070
Hlavní autoři: Pan, Rongqi, Ghaleb, Taher A., Briand, Lionel C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2024
IEEE Computer Society
Témata:
ISSN:0098-5589, 1939-3520
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Test suites tend to grow when software evolves, making it often infeasible to execute all test cases with the allocated testing budgets, especially for large software systems. Test suite minimization (TSM) is employed to improve the efficiency of software testing by removing redundant test cases, thus reducing testing time and resources while maintaining the fault detection capability of the test suite. Most existing TSM approaches rely on code coverage (white-box) or model-based features, which are not always available to test engineers. Recent TSM approaches that rely only on test code (black-box) have been proposed, such as ATM and FAST-R. The former yields higher fault detection rates ( FDR ) while the latter is faster. To address scalability while retaining a high FDR , we propose LTM ( L anguage model-based T est suite M inimization), a novel, scalable, and black-box similarity-based TSM approach based on large language models (LLMs), which is the first application of LLMs in the context of TSM. To support similarity measurement using test method embeddings, we investigate five different pre-trained language models: CodeBERT, GraphCodeBERT, UniXcoder, StarEncoder, and CodeLlama, on which we compute two similarity measures: Cosine Similarity and Euclidean Distance. Our goal is to find similarity measures that are not only computationally more efficient but can also better guide a Genetic Algorithm (GA), which is used to search for optimal minimized test suites, thus reducing the overall search time. Experimental results show that the best configuration of LTM (UniXcoder/Cosine) outperforms ATM in three aspects: (a) achieving a slightly greater saving rate of testing time (<inline-formula><tex-math notation="LaTeX">41.72\%</tex-math> <mml:math display="inline"><mml:mn>41.72</mml:mn><mml:mi mathvariant="normal">%</mml:mi></mml:math><inline-graphic xlink:href="pan-ieq1-3469582.gif"/> </inline-formula> versus <inline-formula><tex-math notation="LaTeX">41.02\%</tex-math> <mml:math display="inline"><mml:mn>41.02</mml:mn><mml:mi mathvariant="normal">%</mml:mi></mml:math><inline-graphic xlink:href="pan-ieq2-3469582.gif"/> </inline-formula>, on average); (b) attaining a significantly higher fault detection rate (<inline-formula><tex-math notation="LaTeX">0.84</tex-math> <mml:math display="inline"><mml:mn>0.84</mml:mn></mml:math><inline-graphic xlink:href="pan-ieq3-3469582.gif"/> </inline-formula> versus <inline-formula><tex-math notation="LaTeX">0.81</tex-math> <mml:math display="inline"><mml:mn>0.81</mml:mn></mml:math><inline-graphic xlink:href="pan-ieq4-3469582.gif"/> </inline-formula>, on average); and, most importantly, (c) minimizing test suites nearly five times faster on average, with higher gains for larger test suites and systems, thus achieving much higher scalability.
AbstractList Test suites tend to grow when software evolves, making it often infeasible to execute all test cases with the allocated testing budgets, especially for large software systems. Test suite minimization (TSM) is employed to improve the efficiency of software testing by removing redundant test cases, thus reducing testing time and resources while maintaining the fault detection capability of the test suite. Most existing TSM approaches rely on code coverage (white-box) or model-based features, which are not always available to test engineers. Recent TSM approaches that rely only on test code (black-box) have been proposed, such as ATM and FAST-R. The former yields higher fault detection rates ( FDR ) while the latter is faster. To address scalability while retaining a high FDR , we propose LTM ( L anguage model-based T est suite M inimization), a novel, scalable, and black-box similarity-based TSM approach based on large language models (LLMs), which is the first application of LLMs in the context of TSM. To support similarity measurement using test method embeddings, we investigate five different pre-trained language models: CodeBERT, GraphCodeBERT, UniXcoder, StarEncoder, and CodeLlama, on which we compute two similarity measures: Cosine Similarity and Euclidean Distance. Our goal is to find similarity measures that are not only computationally more efficient but can also better guide a Genetic Algorithm (GA), which is used to search for optimal minimized test suites, thus reducing the overall search time. Experimental results show that the best configuration of LTM (UniXcoder/Cosine) outperforms ATM in three aspects: (a) achieving a slightly greater saving rate of testing time ([Formula Omitted] versus [Formula Omitted], on average); (b) attaining a significantly higher fault detection rate ([Formula Omitted] versus [Formula Omitted], on average); and, most importantly, (c) minimizing test suites nearly five times faster on average, with higher gains for larger test suites and systems, thus achieving much higher scalability.
Test suites tend to grow when software evolves, making it often infeasible to execute all test cases with the allocated testing budgets, especially for large software systems. Test suite minimization (TSM) is employed to improve the efficiency of software testing by removing redundant test cases, thus reducing testing time and resources while maintaining the fault detection capability of the test suite. Most existing TSM approaches rely on code coverage (white-box) or model-based features, which are not always available to test engineers. Recent TSM approaches that rely only on test code (black-box) have been proposed, such as ATM and FAST-R. The former yields higher fault detection rates ( FDR ) while the latter is faster. To address scalability while retaining a high FDR , we propose LTM ( L anguage model-based T est suite M inimization), a novel, scalable, and black-box similarity-based TSM approach based on large language models (LLMs), which is the first application of LLMs in the context of TSM. To support similarity measurement using test method embeddings, we investigate five different pre-trained language models: CodeBERT, GraphCodeBERT, UniXcoder, StarEncoder, and CodeLlama, on which we compute two similarity measures: Cosine Similarity and Euclidean Distance. Our goal is to find similarity measures that are not only computationally more efficient but can also better guide a Genetic Algorithm (GA), which is used to search for optimal minimized test suites, thus reducing the overall search time. Experimental results show that the best configuration of LTM (UniXcoder/Cosine) outperforms ATM in three aspects: (a) achieving a slightly greater saving rate of testing time (<inline-formula><tex-math notation="LaTeX">41.72\%</tex-math> <mml:math display="inline"><mml:mn>41.72</mml:mn><mml:mi mathvariant="normal">%</mml:mi></mml:math><inline-graphic xlink:href="pan-ieq1-3469582.gif"/> </inline-formula> versus <inline-formula><tex-math notation="LaTeX">41.02\%</tex-math> <mml:math display="inline"><mml:mn>41.02</mml:mn><mml:mi mathvariant="normal">%</mml:mi></mml:math><inline-graphic xlink:href="pan-ieq2-3469582.gif"/> </inline-formula>, on average); (b) attaining a significantly higher fault detection rate (<inline-formula><tex-math notation="LaTeX">0.84</tex-math> <mml:math display="inline"><mml:mn>0.84</mml:mn></mml:math><inline-graphic xlink:href="pan-ieq3-3469582.gif"/> </inline-formula> versus <inline-formula><tex-math notation="LaTeX">0.81</tex-math> <mml:math display="inline"><mml:mn>0.81</mml:mn></mml:math><inline-graphic xlink:href="pan-ieq4-3469582.gif"/> </inline-formula>, on average); and, most importantly, (c) minimizing test suites nearly five times faster on average, with higher gains for larger test suites and systems, thus achieving much higher scalability.
Author Ghaleb, Taher A.
Pan, Rongqi
Briand, Lionel C.
Author_xml – sequence: 1
  givenname: Rongqi
  orcidid: 0000-0002-9096-6241
  surname: Pan
  fullname: Pan, Rongqi
  email: rpan099@uottawa.ca
  organization: School of EECS, University of Ottawa, Ottawa, ON, Canada
– sequence: 2
  givenname: Taher A.
  orcidid: 0000-0001-9336-7298
  surname: Ghaleb
  fullname: Ghaleb, Taher A.
  email: taherghaleb@trentu.ca
  organization: Computer Science Department, Trent University, Peterborough, ON, Canada
– sequence: 3
  givenname: Lionel C.
  orcidid: 0000-0002-1393-1010
  surname: Briand
  fullname: Briand, Lionel C.
  email: lbriand@uottawa.ca
  organization: Lero SFI Centre for Software Research, University of Limerick, Limerick, Ireland
BookMark eNp9UD1PwzAUtFCRKIWdgcESc4o_msRmo1X5kFIxJIzI8lcqlzQpcSJRfj0u6YAYmN6T7u7duzsHo7qpLQBXGE0xRvy2yJdTgshsSmcJjxk5AWPMKY9oTNAIjBHiLIpjxs_AufcbhFCcpvEYvGXF6g7mWlZSVRbK2sB5JfV7NG8-Ye62rpKt6_bRXHprYGF9B_PedRauXB3QL9m5poYDGpZM1utergPcGFv5C3Baysrby-OcgNeHZbF4irKXx-fFfRZpwkkXWWXKxDKtCMJSKs1MaS03yBiUkBjPOCqNUoThUmnMFJYJZYTSlDNOqSYlnYCb4e6ubT768KTYNH1bB0tBMUlTHPKmgYUGlm4b71tbil3rtrLdC4zEoUQRShSHEsWxxCBJ_ki0634yd6101X_C60HorLW_fBKecoroN9xPgI8
CODEN IESEDJ
CitedBy_id crossref_primary_10_1145_3721128
Cites_doi 10.18653/v1/2020.findings-emnlp.139
10.1145/3644388
10.1109/ICSE48619.2023.00146
10.1145/3194718.3194731
10.18653/v1/2021.emnlp-main.552
10.1109/TPWRD.2019.2962275
10.1109/TSE.2022.3170272
10.1109/ICSE.2019.00054
10.1016/j.jss.2019.03.011
10.1145/3540250.3549089
10.18653/v1/d18-2029
10.1109/ACCESS.2018.2809600
10.1007/978-3-642-00234-2_1
10.1109/TSE.2022.3201209
10.1109/ICSE.2019.00055
10.1090/conm/026/737400
10.1111/j.1558-5646.1995.tb04456.x
10.1109/iThings/CPSCom.2011.135
10.1145/2430536.2430540
10.48550/arXiv.1310.4546
10.1109/4235.996017
10.1109/ACCESS.2020.2990567
10.18653/v1/p16-1162
10.18653/v1/D19-1410
10.1007/978-3-030-35510-4_4
10.1613/jair.2934
10.1007/978-3-642-16573-3_6
10.1002/stv.430
10.1108/ws.2000.07949fab.004
10.1016/j.jss.2016.06.058
10.18653/v1/2022.acl-long.499
10.48550/ARXIV.1706.03762
10.1016/j.infsof.2019.06.009
10.1007/s10664-021-10066-6
10.1109/SANER.2018.8330200
ContentType Journal Article
Copyright Copyright IEEE Computer Society 2024
Copyright_xml – notice: Copyright IEEE Computer Society 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
JQ2
K9.
DOI 10.1109/TSE.2024.3469582
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1939-3520
EndPage 3070
ExternalDocumentID 10_1109_TSE_2024_3469582
10697930
Genre orig-research
GrantInformation_xml – fundername: Science Foundation Ireland
  grantid: 13/RC/2094-2
  funderid: 10.13039/501100001602
– fundername: Mitacs Accelerate Program
– fundername: Huawei Technologies Canada Company, Ltd.
– fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
  funderid: 10.13039/501100000038
– fundername: Digital Research Alliance of Canada
GroupedDBID --Z
-DZ
-~X
.4S
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
7WY
7X7
85S
88E
88I
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABJCF
ABPPZ
ABQJQ
ABUWG
ABVLG
ACGFO
ACGOD
ACIWK
ACNCT
ADBBV
AENEX
AETIX
AFKRA
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
ASUFR
ATWAV
AZQEC
BEFXN
BENPR
BEZIV
BFFAM
BGLVJ
BGNUA
BKEBE
BKOMP
BPEOZ
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
E.L
EBS
EDO
EJD
ESBDL
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HMCUK
HZ~
H~9
I-F
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
ITG
ITH
JAVBF
K60
K6V
K6~
K7-
L6V
LAI
M0C
M1P
M1Q
M2O
M2P
M43
M7S
MS~
O9-
OCL
OHT
P2P
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
Q2X
RIA
RIE
RNI
RNS
RXW
RZB
S10
TAE
TN5
TWZ
UHB
UKHRP
UPT
UQL
VH1
WH7
XOL
YYP
YZZ
ZCG
AAYXX
AFFHD
CITATION
JQ2
K9.
ID FETCH-LOGICAL-c292t-ebdf6e8cb201aabc8dfee9d0dd06251490fdbb281fbc18b1a638233798933c2f3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001369099900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-5589
IngestDate Fri Oct 03 04:01:47 EDT 2025
Sat Nov 29 03:10:28 EST 2025
Tue Nov 18 22:08:49 EST 2025
Wed Aug 27 03:06:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-ebdf6e8cb201aabc8dfee9d0dd06251490fdbb281fbc18b1a638233798933c2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9336-7298
0000-0002-9096-6241
0000-0002-1393-1010
OpenAccessLink https://ieeexplore.ieee.org/document/10697930
PQID 3127710007
PQPubID 21418
PageCount 18
ParticipantIDs proquest_journals_3127710007
ieee_primary_10697930
crossref_citationtrail_10_1109_TSE_2024_3469582
crossref_primary_10_1109_TSE_2024_3469582
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on software engineering
PublicationTitleAbbrev TSE
PublicationYear 2024
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref13
ref12
ref15
ref10
ref17
ref16
ref19
ref18
Kusner (ref27) 2015
Kocetkov (ref37) 2022
ref50
Lu (ref34) 2021
ref46
Roziè (ref14) 2023
ref44
Guo (ref11) 2020
ref43
ref49
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref31
ref30
ref32
ref2
Vijaymeena (ref33) 2016; 3
ref1
ref38
Joachims (ref26) 1997; 97
Clark (ref39) 2020
Devlin (ref23) 2018
ref24
ref25
ref20
ref22
ref21
Husain (ref36) 2019
Fan (ref48) 2023
ref28
Herzig (ref7) 2018
ref29
Pan (ref45) 2023
Ma (ref41) 2019
Gomaa (ref42) 2013; 68
Xia (ref47) 2015; 126
References_xml – ident: ref10
  doi: 10.18653/v1/2020.findings-emnlp.139
– ident: ref16
  doi: 10.1145/3644388
– volume: 126
  start-page: 5614
  issue: 24
  volume-title: Optik
  year: 2015
  ident: ref47
  article-title: Effectiveness of the euclidean distance in high dimensional spaces
– ident: ref8
  doi: 10.1109/ICSE48619.2023.00146
– start-page: 957
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2015
  ident: ref27
  article-title: From word embeddings to document distances
– start-page: 38
  volume-title: Proc. 11th Int. Workshop Search-Based Softw. Testing
  year: 2018
  ident: ref7
  article-title: Testing and continuous integration at scale: Limits, costs, and expectations
  doi: 10.1145/3194718.3194731
– volume: 68
  start-page: 13
  issue: 13
  year: 2013
  ident: ref42
  article-title: A survey of text similarity approaches
  publication-title: Int. J. Comput. Appl.
– ident: ref40
  doi: 10.18653/v1/2021.emnlp-main.552
– ident: ref49
  doi: 10.1109/TPWRD.2019.2962275
– ident: ref21
  doi: 10.1109/TSE.2022.3170272
– ident: ref28
  doi: 10.1109/ICSE.2019.00054
– ident: ref20
  doi: 10.1016/j.jss.2019.03.011
– year: 2020
  ident: ref11
  article-title: GraphCodeBERT: Pre-training code representations with data flow
– volume: 97
  start-page: 143
  volume-title: Proc. Int. Conf. Mach. Learning
  year: 1997
  ident: ref26
  article-title: A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization
– year: 2018
  ident: ref23
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
– ident: ref30
  doi: 10.1145/3540250.3549089
– year: 2023
  ident: ref45
  article-title: LTM: Scalable and black-box similarity-based test suite minimization based on language models (replication package)
– ident: ref25
  doi: 10.18653/v1/d18-2029
– ident: ref1
  doi: 10.1109/ACCESS.2018.2809600
– volume: 3
  start-page: 19
  issue: 2
  year: 2016
  ident: ref33
  article-title: A survey on similarity measures in text mining
  publication-title: Mach. Learn. Appl. Int. J.
– ident: ref43
  doi: 10.1007/978-3-642-00234-2_1
– ident: ref50
  doi: 10.1109/TSE.2022.3201209
– ident: ref6
  doi: 10.1109/ICSE.2019.00055
– ident: ref32
  doi: 10.1090/conm/026/737400
– ident: ref46
  doi: 10.1111/j.1558-5646.1995.tb04456.x
– ident: ref19
  doi: 10.1109/iThings/CPSCom.2011.135
– ident: ref2
  doi: 10.1145/2430536.2430540
– ident: ref22
  doi: 10.48550/arXiv.1310.4546
– ident: ref29
  doi: 10.1109/4235.996017
– ident: ref44
  doi: 10.1109/ACCESS.2020.2990567
– year: 2022
  ident: ref37
  article-title: The stack: 3 TB of permissively licensed source code
– ident: ref35
  doi: 10.18653/v1/p16-1162
– ident: ref24
  doi: 10.18653/v1/D19-1410
– ident: ref9
  doi: 10.1007/978-3-030-35510-4_4
– year: 2019
  ident: ref36
  article-title: CodeSearchNet challenge: Evaluating the state of semantic code search
– year: 2020
  ident: ref39
  article-title: ELECTRA: Pre-training text encoders as discriminators rather than generators
– ident: ref31
  doi: 10.1613/jair.2934
– year: 2019
  ident: ref41
  article-title: Universal text representation from BERT: An empirical study
– ident: ref15
  doi: 10.1007/978-3-642-16573-3_6
– ident: ref3
  doi: 10.1002/stv.430
– ident: ref13
  doi: 10.1108/ws.2000.07949fab.004
– ident: ref17
  doi: 10.1016/j.jss.2016.06.058
– ident: ref12
  doi: 10.18653/v1/2022.acl-long.499
– ident: ref38
  doi: 10.48550/ARXIV.1706.03762
– ident: ref5
  doi: 10.1016/j.infsof.2019.06.009
– ident: ref4
  doi: 10.1007/s10664-021-10066-6
– year: 2021
  ident: ref34
  article-title: CodeXGLUE: A machine learning benchmark dataset for code understanding and generation
– volume-title: Survey and open problems
  year: 2023
  ident: ref48
  article-title: Large language models for software engineering:
– ident: ref18
  doi: 10.1109/SANER.2018.8330200
– year: 2023
  ident: ref14
  article-title: Code Llama: Open foundation models for code
SSID ssj0005775
ssib053395008
Score 2.4768522
Snippet Test suites tend to grow when software evolves, making it often infeasible to execute all test cases with the allocated testing budgets, especially for large...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3053
SubjectTerms Black boxes
black-box testing
Closed box
Codes
Euclidean geometry
Fault detection
genetic algorithm
Genetic algorithms
Large language models
Minimization
Optimization
pre-trained language models
Scalability
Similarity
Similarity measures
Software testing
Source coding
Test suite minimization
test suite reduction
Testing time
Time measurement
Unified modeling language
Vectors
Title LTM: Scalable and Black-Box Similarity-Based Test Suite Minimization Based on Language Models
URI https://ieeexplore.ieee.org/document/10697930
https://www.proquest.com/docview/3127710007
Volume 50
WOSCitedRecordID wos001369099900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3520
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005775
  issn: 0098-5589
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPHixPipWq-TgxcO2-07izUrFQ1uErtCLLHlCoW6lD_HnO8nu-kAUvGU3yRL2SzLzTTIzCF0aFSe-UtwLpVEeaOCwD7Io8IwQqSEJh-0hdskmyHhMp1P2UDmrO18YrbW7fKa7tujO8tVCbqypDFZ4ymA-AUPfJiQtnbU-73MQktQBMpOEsvpM0me9bDIAJhjG3QjIYELDbzLIJVX5sRM78XLX_OfA9tFepUfimxL4A7Sli0PUrHM04GrJHqGnYTa6hkc-tz5SmBcKO5ud11-84cnseQbMFhRxrw_STOEMRoYnG1BD8WhWQG3ppInLWigMK_MmtjnU5qsWerwbZLf3XpVSwZMhC9eeFsqkmkoBcp9zIakyWjMFaPlAhIAt-UYJEdLACBlQEfDUnhNGhAGAkQxNdIwaxaLQJwgTHsuIcHgrdUxkKji14cIibqimgHEb9eqfnMsq3rhNezHPHe_wWQ6w5BaWvIKlja4-eryUsTb-aNuyMHxpVyLQRp0ayLxajas8CkJioxj55PSXbmdo1369dDLsoMZ6udHnaEe-rmer5YWbaO9aZNDj
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA6igl7cxWrVHLx4GJ09iTcVpWJbhI7gRYasUKhTsa34833JZFwQBW-ZScKE-ZK8JXnvQ-jIqDQLleJBLI0KQAOHfZAlUWCEyA3JOGwPqSObIP0-fXhgdz5Y3cXCaK3d5TN9YovuLF-N5cy6ymCF5wzmE1joC5Y6y4drfd7oICRrUmRmGWXNqWTITovBFdiCcXqSgDmY0fibFHK0Kj_2Yidgrlf_ObQ1tOI1SXxeQ7-O5nS1gVYblgbsF-0meuwWvTN45CMbJYV5pbDz2gUX4zc8GD4NwbYFVTy4AHmmcAEjw4MZKKK4N6ygtg7TxHUtFLrewYkti9posoXur6-Ky07gSRUCGbN4GmihTK6pFCD5OReSKqM1U4BXCKYQ2EuhUULENDJCRlREPLcnhQlhAGEiY5Nso_lqXOkdhAlPZUI4vJU6JTIXnNqEYQk3VFNAuYVOm59cSp9x3BJfjEpneYSsBFhKC0vpYWmh448ez3W2jT_ablkYvrSrEWihdgNk6dfjpEyimNg8RiHZ_aXbIVrqFL1u2b3p3-6hZfulOuSwjeanLzO9jxbl63Q4eTlwk-4dZrfULA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LTM%3A+Scalable+and+Black-Box+Similarity-Based+Test+Suite+Minimization+Based+on+Language+Models&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Pan%2C+Rongqi&rft.au=Ghaleb%2C+Taher+A.&rft.au=Briand%2C+Lionel+C.&rft.date=2024-11-01&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=50&rft.issue=11&rft.spage=3053&rft.epage=3070&rft_id=info:doi/10.1109%2FTSE.2024.3469582&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSE_2024_3469582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon