A Machine Learning-Based Algorithm for Through-Wall Target Tracking by Doppler TWR

Doppler through-wall radar (TWR) enables noncontact behind-the-wall target trajectory tracking, which has a wide range of application scenarios in the field of detection. However, when facing unknown wall parameters, the detection accuracy of Doppler TWR becomes severely limited. Hence, in this work...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 9
Main Authors: Cao, Jiaxuan, Ding, Yipeng, Peng, Yiqun, Chen, Yuxin, Ouyang, Fangping
Format: Journal Article
Language:English
Published: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9456, 1557-9662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Doppler through-wall radar (TWR) enables noncontact behind-the-wall target trajectory tracking, which has a wide range of application scenarios in the field of detection. However, when facing unknown wall parameters, the detection accuracy of Doppler TWR becomes severely limited. Hence, in this work, we propose a machine learning-based target tracking algorithm for through-wall sensing applications. First, using the peak search method based on the short-time Fourier transform (STFT) to obtain a roughly predicted trajectory under the free-space assumption. Then, a classifier based on support vector machine (SVM) is used to estimate the wall thickness from the predicted target trajectory. Finally, a backpropagation neural network (BPNN) is constructed to obtain the corrected target trajectory, whose inputs are the estimated wall thickness and the predicted target trajectory. Experimental results demonstrate that the proposed algorithm significantly improves target tracking accuracy in through-wall detection applications, achieving up to an 80% improvement compared to traditional methods.
AbstractList Doppler through-wall radar (TWR) enables noncontact behind-the-wall target trajectory tracking, which has a wide range of application scenarios in the field of detection. However, when facing unknown wall parameters, the detection accuracy of Doppler TWR becomes severely limited. Hence, in this work, we propose a machine learning-based target tracking algorithm for through-wall sensing applications. First, using the peak search method based on the short-time Fourier transform (STFT) to obtain a roughly predicted trajectory under the free-space assumption. Then, a classifier based on support vector machine (SVM) is used to estimate the wall thickness from the predicted target trajectory. Finally, a backpropagation neural network (BPNN) is constructed to obtain the corrected target trajectory, whose inputs are the estimated wall thickness and the predicted target trajectory. Experimental results demonstrate that the proposed algorithm significantly improves target tracking accuracy in through-wall detection applications, achieving up to an 80% improvement compared to traditional methods.
Author Cao, Jiaxuan
Chen, Yuxin
Ding, Yipeng
Peng, Yiqun
Ouyang, Fangping
Author_xml – sequence: 1
  givenname: Jiaxuan
  orcidid: 0000-0001-6705-8600
  surname: Cao
  fullname: Cao, Jiaxuan
  email: genehere@163.com
  organization: School of Physics, Central South University, Changsha, China
– sequence: 2
  givenname: Yipeng
  orcidid: 0000-0002-9682-5562
  surname: Ding
  fullname: Ding, Yipeng
  email: dingyipeng@sina.com
  organization: School of Electronic Information, Central South University, Changsha, China
– sequence: 3
  givenname: Yiqun
  orcidid: 0000-0002-6229-912X
  surname: Peng
  fullname: Peng, Yiqun
  email: yqunpeng@163.com
  organization: School of Physics, Central South University, Changsha, China
– sequence: 4
  givenname: Yuxin
  orcidid: 0000-0002-4195-5562
  surname: Chen
  fullname: Chen, Yuxin
  email: cyx-csu@csu.edu.cn
  organization: School of Electronic Information, Central South University, Changsha, China
– sequence: 5
  givenname: Fangping
  orcidid: 0000-0001-7904-3430
  surname: Ouyang
  fullname: Ouyang, Fangping
  email: ouyangfp06@tsinghua.org.cn
  organization: School of Physics, Central South University, Changsha, China
BookMark eNp9kDtPwzAYRS0EEm1hZ2CwxJziZ2KPpbwqtUKqgjpGjvPlUdI4OOnQf0-qdkAMTHe5517pjNFl4xpA6I6SKaVEP8aL1ZQRJqach5pyfoFGVMoo0GHILtGIEKoCLWR4jcZdtyWERKGIRmg9wytjy6oBvATjm6opgifTQYZndeF81Zc7nDuP49K7fVEGG1PXODa-gB7H3tivAcDpAT-7tq1h6G3WN-gqN3UHt-ecoM_Xl3j-Hiw_3hbz2TKwTLM-gBBUaBUnwBUhMqNWp5E1WkowlhqZZtLkmhPOgEslhFBGqCxVTHJtCaR8gh5Ou61333vo-mTr9r4ZLhOmh006rIqhRU4t613XeciT1lc74w8JJcnRXDKYS47mkrO5AQn_ILbqTV-5pvemqv8D709gBQC_foRkKqL8B88ve6I
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2025_3593544
Cites_doi 10.1109/TSP.2006.879325
10.1109/LGRS.2023.3282700
10.1109/TIM.2022.3227997
10.1109/RADAR.2006.1631859
10.23919/EuCAP53622.2022.9769443
10.1109/tim.2021.3050827
10.1109/ICECENG.2011.6057178
10.1109/RADAR.2011.5960506
10.1109/LGRS.2021.3084357
10.1109/JSEN.2017.2704058
10.1049/cp.2013.0473
10.1109/LGRS.2020.3041421
10.1109/ISSPIT.2004.1433717
10.1109/LGRS.2010.2056912
10.1109/ACCESS.2019.2929316
10.1109/LAWP.2019.2956842
10.1109/TAES.2005.1413761
10.1109/tgrs.2009.2024686
10.1109/LAWP.2016.2630006
10.1007/BF01901021
10.1155/2015/456123
10.1109/tim.2019.2959424
10.1109/jstars.2013.2264719
10.1109/TAP.2011.2164206
10.1109/TGRS.2012.2206395
10.1109/TAES.2006.1603424
10.1109/JSEN.2022.3172860
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3369133
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 9
ExternalDocumentID 10_1109_TIM_2024_3369133
10452871
Genre orig-research
GrantInformation_xml – fundername: Special Foundation for Hunan Innovation Province Construction
  grantid: 2020RC3004
– fundername: Fundamental Research Funds for the Central Universities of Central South University
  grantid: 2023ZZTS0398; 2023ZZTS0617
  funderid: 10.13039/501100002822
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2022JJ30749
  funderid: 10.13039/501100004735
– fundername: National Natural Science Foundation of China
  grantid: 52073308
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-e6e86c830e38005d1c9b7ca955eac1a5bd5af93032e3584448a48db82539c0eb3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001180920500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 08:23:44 EDT 2025
Tue Nov 18 22:35:26 EST 2025
Sat Nov 29 04:38:46 EST 2025
Wed Aug 27 02:02:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-e6e86c830e38005d1c9b7ca955eac1a5bd5af93032e3584448a48db82539c0eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6705-8600
0000-0002-4195-5562
0000-0001-7904-3430
0000-0002-9682-5562
0000-0002-6229-912X
PQID 2938010054
PQPubID 85462
PageCount 9
ParticipantIDs ieee_primary_10452871
crossref_primary_10_1109_TIM_2024_3369133
crossref_citationtrail_10_1109_TIM_2024_3369133
proquest_journals_2938010054
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1109/TSP.2006.879325
– ident: ref7
  doi: 10.1109/LGRS.2023.3282700
– ident: ref6
  doi: 10.1109/TIM.2022.3227997
– ident: ref16
  doi: 10.1109/RADAR.2006.1631859
– ident: ref17
  doi: 10.23919/EuCAP53622.2022.9769443
– ident: ref2
  doi: 10.1109/tim.2021.3050827
– ident: ref26
  doi: 10.1109/ICECENG.2011.6057178
– ident: ref27
  doi: 10.1109/RADAR.2011.5960506
– ident: ref8
  doi: 10.1109/LGRS.2021.3084357
– ident: ref12
  doi: 10.1109/JSEN.2017.2704058
– ident: ref24
  doi: 10.1049/cp.2013.0473
– ident: ref19
  doi: 10.1109/LGRS.2020.3041421
– ident: ref14
  doi: 10.1109/ISSPIT.2004.1433717
– ident: ref5
  doi: 10.1109/LGRS.2010.2056912
– ident: ref22
  doi: 10.1109/ACCESS.2019.2929316
– ident: ref20
  doi: 10.1109/LAWP.2019.2956842
– ident: ref21
  doi: 10.1109/TAES.2005.1413761
– ident: ref3
  doi: 10.1109/tgrs.2009.2024686
– ident: ref11
  doi: 10.1109/LAWP.2016.2630006
– ident: ref25
  doi: 10.1007/BF01901021
– ident: ref18
  doi: 10.1155/2015/456123
– ident: ref1
  doi: 10.1109/tim.2019.2959424
– ident: ref4
  doi: 10.1109/jstars.2013.2264719
– ident: ref10
  doi: 10.1109/TAP.2011.2164206
– ident: ref9
  doi: 10.1109/TGRS.2012.2206395
– ident: ref15
  doi: 10.1109/TAES.2006.1603424
– ident: ref23
  doi: 10.1109/JSEN.2022.3172860
SSID ssj0007647
Score 2.4187648
Snippet Doppler through-wall radar (TWR) enables noncontact behind-the-wall target trajectory tracking, which has a wide range of application scenarios in the field of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Back propagation networks
Backpropagation neural network (BPNN)
Doppler effect
Doppler radar
Doppler through-wall radar (TWR)
Electromagnetic scattering
Fourier transforms
Machine learning
Neural networks
Radar tracking
Receivers
support vector machine (SVM)
Support vector machines
Target tracking
Thickness
Tracking
Trajectory
trajectory correction
wall thickness
Title A Machine Learning-Based Algorithm for Through-Wall Target Tracking by Doppler TWR
URI https://ieeexplore.ieee.org/document/10452871
https://www.proquest.com/docview/2938010054
Volume 73
WOSCitedRecordID wos001180920500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sUdCDj6pYrZKDFw9bu5tNdnOsj6Jgi5SqvS272VkVait9CP57J9ltqYiCtz1MwpJJ8n0zmQfAaRhgJrOAmBvK2PGRzJ2E88zJTOZ1mohY2ur8j3dBpxP2--q-SFa3uTCIaIPPsG4-7Vt-OtIz4yqjE-4Lw_BLUAoCmSdrLa7dQPp5gUyXTjDRgvmbZEOd927bZAl6fp1zqVzOv2GQbary4ya28NLa-uePbcNmwSNZM1f8DqzgsAIbS9UFK7Bmozv1ZBe6Tda2QZPIinqqz84FwVfKmoPn0fh1-vLGiLyyXt60xzHeddazMeKMwEwbdzpLPtnViDgrktxTdw8eWte9yxunaKbgaE95UwclhlKHvIGcOKJIXa2SQMdKCLp63VgkqYgzRYDmISdSQlZb7IdpQgYkV7pBJvc-lIejIR4AEzxRmHI3JnHiMyLMJE2nUy8hbAtitwrn8-WNdFFp3DS8GETW4mioiBQSGYVEhUKqcLYY8Z5X2fhDds8oYEkuX_sq1OYqjIpzOImIzBAEG156-MuwI1g3s-delRqUp-MZHsOq_pi-TsYndot9AXmOy8Y
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BAQEDj1JEoYAHFoa0TRwn8VheAtFWCAXoFiXOBZBKi_pA4t9zdlIEQiCxZTgnkc_29935HgBHgY-Zl_nE3NCLLRfJ3Ek4z6xMZ16niYg9U53_vu13u0GvJ2-KZHWTC4OIJvgM6_rR3OWnQzXVrjLa4a7QDH8eFnTrrCJd6_Pg9T03L5Fp0x4mYjC7lWzKRnjVIVvQceuce9Lm_BsKmbYqP85iAzAX6__8tQ1YK5gka-Wq34Q5HJRh9Ut9wTIsmfhONd6C2xbrmLBJZEVF1UfrhAAsZa3-43D0PHl6YURfWZi37bG0f52FJkqcEZwp7VBnyTs7GxJrRZJ7uK3A3cV5eHppFe0ULOVIZ2Khh4GnAt5ETixRpLaSia9iKQQdvnYsklTEmSRIc5ATLSG7LXaDNCETkkvVJKN7G0qD4QB3gAmeSEy5HZM4MRoRZB69TqVOQujmx3YVGrPpjVRRa1y3vOhHxuZoyogUEmmFRIVCqnD8OeI1r7Pxh2xFK-CLXD73VajNVBgVO3EcEZ0hENbMdPeXYYewfBl22lH7qnu9Byv6S7mPpQalyWiK-7Co3ibP49GBWW4fRSfPDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning-Based+Algorithm+for+Through-Wall+Target+Tracking+by+Doppler+TWR&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Cao%2C+Jiaxuan&rft.au=Ding%2C+Yipeng&rft.au=Peng%2C+Yiqun&rft.au=Chen%2C+Yuxin&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTIM.2024.3369133&rft.externalDocID=10452871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon