A Machine Learning-Based Algorithm for Through-Wall Target Tracking by Doppler TWR
Doppler through-wall radar (TWR) enables noncontact behind-the-wall target trajectory tracking, which has a wide range of application scenarios in the field of detection. However, when facing unknown wall parameters, the detection accuracy of Doppler TWR becomes severely limited. Hence, in this work...
Saved in:
| Published in: | IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 9 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Doppler through-wall radar (TWR) enables noncontact behind-the-wall target trajectory tracking, which has a wide range of application scenarios in the field of detection. However, when facing unknown wall parameters, the detection accuracy of Doppler TWR becomes severely limited. Hence, in this work, we propose a machine learning-based target tracking algorithm for through-wall sensing applications. First, using the peak search method based on the short-time Fourier transform (STFT) to obtain a roughly predicted trajectory under the free-space assumption. Then, a classifier based on support vector machine (SVM) is used to estimate the wall thickness from the predicted target trajectory. Finally, a backpropagation neural network (BPNN) is constructed to obtain the corrected target trajectory, whose inputs are the estimated wall thickness and the predicted target trajectory. Experimental results demonstrate that the proposed algorithm significantly improves target tracking accuracy in through-wall detection applications, achieving up to an 80% improvement compared to traditional methods. |
|---|---|
| AbstractList | Doppler through-wall radar (TWR) enables noncontact behind-the-wall target trajectory tracking, which has a wide range of application scenarios in the field of detection. However, when facing unknown wall parameters, the detection accuracy of Doppler TWR becomes severely limited. Hence, in this work, we propose a machine learning-based target tracking algorithm for through-wall sensing applications. First, using the peak search method based on the short-time Fourier transform (STFT) to obtain a roughly predicted trajectory under the free-space assumption. Then, a classifier based on support vector machine (SVM) is used to estimate the wall thickness from the predicted target trajectory. Finally, a backpropagation neural network (BPNN) is constructed to obtain the corrected target trajectory, whose inputs are the estimated wall thickness and the predicted target trajectory. Experimental results demonstrate that the proposed algorithm significantly improves target tracking accuracy in through-wall detection applications, achieving up to an 80% improvement compared to traditional methods. |
| Author | Cao, Jiaxuan Chen, Yuxin Ding, Yipeng Peng, Yiqun Ouyang, Fangping |
| Author_xml | – sequence: 1 givenname: Jiaxuan orcidid: 0000-0001-6705-8600 surname: Cao fullname: Cao, Jiaxuan email: genehere@163.com organization: School of Physics, Central South University, Changsha, China – sequence: 2 givenname: Yipeng orcidid: 0000-0002-9682-5562 surname: Ding fullname: Ding, Yipeng email: dingyipeng@sina.com organization: School of Electronic Information, Central South University, Changsha, China – sequence: 3 givenname: Yiqun orcidid: 0000-0002-6229-912X surname: Peng fullname: Peng, Yiqun email: yqunpeng@163.com organization: School of Physics, Central South University, Changsha, China – sequence: 4 givenname: Yuxin orcidid: 0000-0002-4195-5562 surname: Chen fullname: Chen, Yuxin email: cyx-csu@csu.edu.cn organization: School of Electronic Information, Central South University, Changsha, China – sequence: 5 givenname: Fangping orcidid: 0000-0001-7904-3430 surname: Ouyang fullname: Ouyang, Fangping email: ouyangfp06@tsinghua.org.cn organization: School of Physics, Central South University, Changsha, China |
| BookMark | eNp9kDtPwzAYRS0EEm1hZ2CwxJziZ2KPpbwqtUKqgjpGjvPlUdI4OOnQf0-qdkAMTHe5517pjNFl4xpA6I6SKaVEP8aL1ZQRJqach5pyfoFGVMoo0GHILtGIEKoCLWR4jcZdtyWERKGIRmg9wytjy6oBvATjm6opgifTQYZndeF81Zc7nDuP49K7fVEGG1PXODa-gB7H3tivAcDpAT-7tq1h6G3WN-gqN3UHt-ecoM_Xl3j-Hiw_3hbz2TKwTLM-gBBUaBUnwBUhMqNWp5E1WkowlhqZZtLkmhPOgEslhFBGqCxVTHJtCaR8gh5Ou61333vo-mTr9r4ZLhOmh006rIqhRU4t613XeciT1lc74w8JJcnRXDKYS47mkrO5AQn_ILbqTV-5pvemqv8D709gBQC_foRkKqL8B88ve6I |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_TIM_2025_3593544 |
| Cites_doi | 10.1109/TSP.2006.879325 10.1109/LGRS.2023.3282700 10.1109/TIM.2022.3227997 10.1109/RADAR.2006.1631859 10.23919/EuCAP53622.2022.9769443 10.1109/tim.2021.3050827 10.1109/ICECENG.2011.6057178 10.1109/RADAR.2011.5960506 10.1109/LGRS.2021.3084357 10.1109/JSEN.2017.2704058 10.1049/cp.2013.0473 10.1109/LGRS.2020.3041421 10.1109/ISSPIT.2004.1433717 10.1109/LGRS.2010.2056912 10.1109/ACCESS.2019.2929316 10.1109/LAWP.2019.2956842 10.1109/TAES.2005.1413761 10.1109/tgrs.2009.2024686 10.1109/LAWP.2016.2630006 10.1007/BF01901021 10.1155/2015/456123 10.1109/tim.2019.2959424 10.1109/jstars.2013.2264719 10.1109/TAP.2011.2164206 10.1109/TGRS.2012.2206395 10.1109/TAES.2006.1603424 10.1109/JSEN.2022.3172860 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2024.3369133 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 9 |
| ExternalDocumentID | 10_1109_TIM_2024_3369133 10452871 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Special Foundation for Hunan Innovation Province Construction grantid: 2020RC3004 – fundername: Fundamental Research Funds for the Central Universities of Central South University grantid: 2023ZZTS0398; 2023ZZTS0617 funderid: 10.13039/501100002822 – fundername: Natural Science Foundation of Hunan Province grantid: 2022JJ30749 funderid: 10.13039/501100004735 – fundername: National Natural Science Foundation of China grantid: 52073308 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c292t-e6e86c830e38005d1c9b7ca955eac1a5bd5af93032e3584448a48db82539c0eb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001180920500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 08:23:44 EDT 2025 Tue Nov 18 22:35:26 EST 2025 Sat Nov 29 04:38:46 EST 2025 Wed Aug 27 02:02:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-e6e86c830e38005d1c9b7ca955eac1a5bd5af93032e3584448a48db82539c0eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6705-8600 0000-0002-4195-5562 0000-0001-7904-3430 0000-0002-9682-5562 0000-0002-6229-912X |
| PQID | 2938010054 |
| PQPubID | 85462 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_10452871 crossref_primary_10_1109_TIM_2024_3369133 crossref_citationtrail_10_1109_TIM_2024_3369133 proquest_journals_2938010054 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref13 doi: 10.1109/TSP.2006.879325 – ident: ref7 doi: 10.1109/LGRS.2023.3282700 – ident: ref6 doi: 10.1109/TIM.2022.3227997 – ident: ref16 doi: 10.1109/RADAR.2006.1631859 – ident: ref17 doi: 10.23919/EuCAP53622.2022.9769443 – ident: ref2 doi: 10.1109/tim.2021.3050827 – ident: ref26 doi: 10.1109/ICECENG.2011.6057178 – ident: ref27 doi: 10.1109/RADAR.2011.5960506 – ident: ref8 doi: 10.1109/LGRS.2021.3084357 – ident: ref12 doi: 10.1109/JSEN.2017.2704058 – ident: ref24 doi: 10.1049/cp.2013.0473 – ident: ref19 doi: 10.1109/LGRS.2020.3041421 – ident: ref14 doi: 10.1109/ISSPIT.2004.1433717 – ident: ref5 doi: 10.1109/LGRS.2010.2056912 – ident: ref22 doi: 10.1109/ACCESS.2019.2929316 – ident: ref20 doi: 10.1109/LAWP.2019.2956842 – ident: ref21 doi: 10.1109/TAES.2005.1413761 – ident: ref3 doi: 10.1109/tgrs.2009.2024686 – ident: ref11 doi: 10.1109/LAWP.2016.2630006 – ident: ref25 doi: 10.1007/BF01901021 – ident: ref18 doi: 10.1155/2015/456123 – ident: ref1 doi: 10.1109/tim.2019.2959424 – ident: ref4 doi: 10.1109/jstars.2013.2264719 – ident: ref10 doi: 10.1109/TAP.2011.2164206 – ident: ref9 doi: 10.1109/TGRS.2012.2206395 – ident: ref15 doi: 10.1109/TAES.2006.1603424 – ident: ref23 doi: 10.1109/JSEN.2022.3172860 |
| SSID | ssj0007647 |
| Score | 2.4187648 |
| Snippet | Doppler through-wall radar (TWR) enables noncontact behind-the-wall target trajectory tracking, which has a wide range of application scenarios in the field of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial neural networks Back propagation networks Backpropagation neural network (BPNN) Doppler effect Doppler radar Doppler through-wall radar (TWR) Electromagnetic scattering Fourier transforms Machine learning Neural networks Radar tracking Receivers support vector machine (SVM) Support vector machines Target tracking Thickness Tracking Trajectory trajectory correction wall thickness |
| Title | A Machine Learning-Based Algorithm for Through-Wall Target Tracking by Doppler TWR |
| URI | https://ieeexplore.ieee.org/document/10452871 https://www.proquest.com/docview/2938010054 |
| Volume | 73 |
| WOSCitedRecordID | wos001180920500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sUdCDj6pYrZKDFw9bu5tNdnOsj6Jgi5SqvS272VkVait9CP57J9ltqYiCtz1MwpJJ8n0zmQfAaRhgJrOAmBvK2PGRzJ2E88zJTOZ1mohY2ur8j3dBpxP2--q-SFa3uTCIaIPPsG4-7Vt-OtIz4yqjE-4Lw_BLUAoCmSdrLa7dQPp5gUyXTjDRgvmbZEOd927bZAl6fp1zqVzOv2GQbary4ya28NLa-uePbcNmwSNZM1f8DqzgsAIbS9UFK7Bmozv1ZBe6Tda2QZPIinqqz84FwVfKmoPn0fh1-vLGiLyyXt60xzHeddazMeKMwEwbdzpLPtnViDgrktxTdw8eWte9yxunaKbgaE95UwclhlKHvIGcOKJIXa2SQMdKCLp63VgkqYgzRYDmISdSQlZb7IdpQgYkV7pBJvc-lIejIR4AEzxRmHI3JnHiMyLMJE2nUy8hbAtitwrn8-WNdFFp3DS8GETW4mioiBQSGYVEhUKqcLYY8Z5X2fhDds8oYEkuX_sq1OYqjIpzOImIzBAEG156-MuwI1g3s-delRqUp-MZHsOq_pi-TsYndot9AXmOy8Y |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BAQEDj1JEoYAHFoa0TRwn8VheAtFWCAXoFiXOBZBKi_pA4t9zdlIEQiCxZTgnkc_29935HgBHgY-Zl_nE3NCLLRfJ3Ek4z6xMZ16niYg9U53_vu13u0GvJ2-KZHWTC4OIJvgM6_rR3OWnQzXVrjLa4a7QDH8eFnTrrCJd6_Pg9T03L5Fp0x4mYjC7lWzKRnjVIVvQceuce9Lm_BsKmbYqP85iAzAX6__8tQ1YK5gka-Wq34Q5HJRh9Ut9wTIsmfhONd6C2xbrmLBJZEVF1UfrhAAsZa3-43D0PHl6YURfWZi37bG0f52FJkqcEZwp7VBnyTs7GxJrRZJ7uK3A3cV5eHppFe0ULOVIZ2Khh4GnAt5ETixRpLaSia9iKQQdvnYsklTEmSRIc5ATLSG7LXaDNCETkkvVJKN7G0qD4QB3gAmeSEy5HZM4MRoRZB69TqVOQujmx3YVGrPpjVRRa1y3vOhHxuZoyogUEmmFRIVCqnD8OeI1r7Pxh2xFK-CLXD73VajNVBgVO3EcEZ0hENbMdPeXYYewfBl22lH7qnu9Byv6S7mPpQalyWiK-7Co3ibP49GBWW4fRSfPDw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning-Based+Algorithm+for+Through-Wall+Target+Tracking+by+Doppler+TWR&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Cao%2C+Jiaxuan&rft.au=Ding%2C+Yipeng&rft.au=Peng%2C+Yiqun&rft.au=Chen%2C+Yuxin&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTIM.2024.3369133&rft.externalDocID=10452871 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |