Generalized Bilinear Factorization via Hybrid Vector Message Passing

Generalized bilinear factorization (GBF), in which two matrices are recovered from noisy and typically compressed measurements of their product, arises in various applications such as blind channel-and-signal estimation, image completion, and compressed video foreground and background separation. In...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 72; s. 5675 - 5690
Hlavní autoři: Jiang, Hao, Yuan, Xiaojun, Guo, Qinghua
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Generalized bilinear factorization (GBF), in which two matrices are recovered from noisy and typically compressed measurements of their product, arises in various applications such as blind channel-and-signal estimation, image completion, and compressed video foreground and background separation. In this paper, we formulate the GBF problem by unifying several existing bilinear inverse problems, and establish a novel hybrid vector message passing (HVMP) algorithm for GBF. The GBF-HVMP algorithm integrates expectation propagation (EP) and variational message passing (VMP) via variational free energy minimization, and exchanges matrix-variable messages in closed form. GBF-HVMP is advantageous over its counterparts in several aspects. For example, a matrix-variable message can characterize the correlations between the elements of the matrix, which is not possible in scalar-variable message passing; the hybrid of EP and VMP yields closed-form Gaussian messages associated with the bilinear constraints inherent in the GBF problem. We show that damping is unnecessary for GBF-HVMP to ensure convergence. We also show that GBF-HVMP performs close to the replica bound, and significantly outperforms state-of-the-art approaches in terms of both normalized mean squared error (NMSE) performance and computational complexity.
AbstractList Generalized bilinear factorization (GBF), in which two matrices are recovered from noisy and typically compressed measurements of their product, arises in various applications such as blind channel-and-signal estimation, image completion, and compressed video foreground and background separation. In this paper, we formulate the GBF problem by unifying several existing bilinear inverse problems, and establish a novel hybrid vector message passing (HVMP) algorithm for GBF. The GBF-HVMP algorithm integrates expectation propagation (EP) and variational message passing (VMP) via variational free energy minimization, and exchanges matrix-variable messages in closed form. GBF-HVMP is advantageous over its counterparts in several aspects. For example, a matrix-variable message can characterize the correlations between the elements of the matrix, which is not possible in scalar-variable message passing; the hybrid of EP and VMP yields closed-form Gaussian messages associated with the bilinear constraints inherent in the GBF problem. We show that damping is unnecessary for GBF-HVMP to ensure convergence. We also show that GBF-HVMP performs close to the replica bound, and significantly outperforms state-of-the-art approaches in terms of both normalized mean squared error (NMSE) performance and computational complexity.
Author Guo, Qinghua
Jiang, Hao
Yuan, Xiaojun
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0009-0009-9296-6067
  surname: Jiang
  fullname: Jiang, Hao
  email: jh@std.uestc.edu.cn
  organization: National Key Laboratory of Wireless Communications, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Xiaojun
  orcidid: 0000-0002-0433-6535
  surname: Yuan
  fullname: Yuan, Xiaojun
  email: xjyuan@uestc.edu.cn
  organization: National Key Laboratory of Wireless Communications, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Qinghua
  orcidid: 0000-0002-5180-7854
  surname: Guo
  fullname: Guo, Qinghua
  email: qguo@uow.edu.au
  organization: School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW, Australia
BookMark eNp9kM1PwkAQxTcGEwG9e_DQxHNxtvtRelQUMMFIIhpvm-12SpbUFneLCfz1LsLBePAyb5J5v5nM65FO3dRIyCWFAaWQ3Sxe5oMEEj5gAjJO2Qnp0qAx8FR2Qg-CxWKYvp-RnvcrAMp5JrvkfoI1Ol3ZHRbRna1sjdpFY23axtmdbm1TR19WR9Nt7mwRveF-ED2h93qJ0Vx7b-vlOTktdeXx4qh98jp-WIym8ex58ji6ncUmyZI2Rm6oKMCkVJaYgKB5YqQohAROKWbDhJlcoOGJAS1LzfNSA2Q5lwxKAaJgfXJ92Lt2zecGfatWzcbV4aRilKciFGDBJQ8u4xrvHZbK2Pbnk9ZpWykKap-YCompfWLqmFgA4Q-4dvZDu-1_yNUBsYj4y56m4T_BvgHFo3fZ
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TWC_2025_3536283
crossref_primary_10_1109_TWC_2025_3554976
crossref_primary_10_1109_TWC_2025_3552519
Cites_doi 10.1109/ACCESS.2018.2887261
10.1109/TCOMM.2017.2761384
10.1109/TSP.2014.2357776
10.1109/JSTSP.2016.2539123
10.1109/TIT.2005.850085
10.1109/JSTSP.2018.2876621
10.1109/TIT.2019.2916359
10.1073/pnas.0909892106
10.1109/JPROC.2010.2042415
10.1109/TSP.2018.2795540
10.1109/TSP.2014.2357773
10.1109/TPAMI.2003.1177153
10.1109/TSP.2011.2109956
10.1093/imaiai/iat002
10.1109/TIT.2012.2218573
10.1109/TWC.2019.2915955
10.1109/TSP.2019.2928977
10.1109/LSP.2014.2351822
10.1109/JSTSP.2016.2539100
10.1109/ACSSC.2016.7869633
10.1109/TSP.2006.881199
10.1088/0266-5611/31/11/115002
10.1109/TIT.2013.2294644
10.1109/ICC51166.2024.10622787
10.1109/TIT.2016.2556702
10.7551/mitpress/3206.001.0001
10.1109/LWC.2018.2810278
10.1016/j.ins.2010.02.004
10.1145/1970392.1970395
10.1109/LWC.2019.2948632
10.1109/ICIP.2012.6466946
10.1109/TSP.2019.2916100
10.1109/TSP.2020.3044847
10.1007/978-94-011-5014-9_2
10.1109/icassp48485.2024.10447745
10.1088/1742-5468/2005/11/P11015
10.1109/ACCESS.2019.2928092
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2024.3509413
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 5690
ExternalDocumentID 10_1109_TSP_2024_3509413
10772055
Genre orig-research
GrantInformation_xml – fundername: National Key Laboratory of Wireless Communications Foundation
  grantid: IFN20230204
– fundername: NSW CIN Project
– fundername: Sichuan Science and Technology Program
  grantid: 2024ZYD0036
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-e4c15d0c716fe2051b2c65d560411e9823cb5ec42c0a6fa4bfa009b4630f505d3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001381746400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:18:02 EDT 2025
Sat Nov 29 04:24:11 EST 2025
Tue Nov 18 21:44:03 EST 2025
Wed Aug 27 02:30:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-e4c15d0c716fe2051b2c65d560411e9823cb5ec42c0a6fa4bfa009b4630f505d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-9296-6067
0000-0002-5180-7854
0000-0002-0433-6535
PQID 3147531403
PQPubID 85478
PageCount 16
ParticipantIDs proquest_journals_3147531403
ieee_primary_10772055
crossref_citationtrail_10_1109_TSP_2024_3509413
crossref_primary_10_1109_TSP_2024_3509413
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
Minka (ref27) 2013
ref16
ref18
ref46
ref45
Waters (ref19) 2011
ref47
ref42
ref41
ref44
ref43
(ref48) 2016
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref37
ref31
ref30
ref32
ref2
ref1
Aravkin (ref20) 2014
ref38
ref24
University (ref49) 2008
ref23
Heskes (ref26) 2003
ref22
ref21
Guo (ref39) 2015
Akrout (ref25) 2020
Minka (ref36) 2005
ref29
Opper (ref34) 2005; 1
Opper (ref33) 2005
Winn (ref28) 2005; 6
References_xml – ident: ref24
  doi: 10.1109/ACCESS.2018.2887261
– ident: ref7
  doi: 10.1109/TCOMM.2017.2761384
– ident: ref5
  doi: 10.1109/TSP.2014.2357776
– ident: ref10
  doi: 10.1109/JSTSP.2016.2539123
– ident: ref30
  doi: 10.1109/TIT.2005.850085
– ident: ref15
  doi: 10.1109/JSTSP.2018.2876621
– ident: ref23
  doi: 10.1109/TIT.2019.2916359
– ident: ref21
  doi: 10.1073/pnas.0909892106
– ident: ref45
  doi: 10.1109/JPROC.2010.2042415
– start-page: 1001
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2005
  ident: ref33
  article-title: Expectation consistent free energies for approximate inference
– ident: ref41
  doi: 10.1109/TSP.2018.2795540
– ident: ref47
  doi: 10.1109/TSP.2014.2357773
– ident: ref18
  doi: 10.1109/TPAMI.2003.1177153
– start-page: 359
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2003
  ident: ref26
  article-title: Stable fixed points of loopy belief propagation are local minima of the Bethe free energy
– ident: ref8
  doi: 10.1109/TSP.2011.2109956
– ident: ref17
  doi: 10.1093/imaiai/iat002
– start-page: 1089
  volume-title: Proc. Neural Inf. Process. Syst.
  year: 2011
  ident: ref19
  article-title: SpaRCS: Recovering low-rank and sparse matrices from compressive measurements
– ident: ref37
  doi: 10.1109/TIT.2012.2218573
– ident: ref43
  doi: 10.1109/TWC.2019.2915955
– ident: ref2
  doi: 10.1109/TSP.2019.2928977
– ident: ref22
  doi: 10.1109/LSP.2014.2351822
– volume: 1
  start-page: 2177
  year: 2005
  ident: ref34
  article-title: Expectation consistent approximate inference.
  publication-title: J. Mach. Learn. Res.
– volume-title: CIV Test Images
  year: 2016
  ident: ref48
– ident: ref13
  doi: 10.1109/JSTSP.2016.2539100
– volume: 6
  start-page: 661
  year: 2005
  ident: ref28
  article-title: Variational message passing.
  publication-title: J. Mach. Learn. Res.
– year: 2015
  ident: ref39
  article-title: Approximate message passing with unitary transformation
– ident: ref35
  doi: 10.1109/ACSSC.2016.7869633
– ident: ref4
  doi: 10.1109/TSP.2006.881199
– ident: ref9
  doi: 10.1088/0266-5611/31/11/115002
– ident: ref14
  doi: 10.1109/TIT.2013.2294644
– ident: ref1
  doi: 10.1109/ICC51166.2024.10622787
– year: 2020
  ident: ref25
  article-title: Bilinear generalized vector approximate message passing
– ident: ref29
  doi: 10.1109/TIT.2016.2556702
– ident: ref38
  doi: 10.7551/mitpress/3206.001.0001
– ident: ref42
  doi: 10.1109/LWC.2018.2810278
– year: 2008
  ident: ref49
  article-title: Dataset: Detection of moving objects
– ident: ref3
  doi: 10.1016/j.ins.2010.02.004
– ident: ref16
  doi: 10.1145/1970392.1970395
– ident: ref44
  doi: 10.1109/LWC.2019.2948632
– ident: ref46
  doi: 10.1109/ICIP.2012.6466946
– ident: ref11
  doi: 10.1109/TSP.2019.2916100
– year: 2013
  ident: ref27
  article-title: Expectation propagation for approximate Bayesian inference
– year: 2005
  ident: ref36
  article-title: Divergence measures and message passing
– ident: ref12
  doi: 10.1109/TSP.2020.3044847
– ident: ref31
  doi: 10.1007/978-94-011-5014-9_2
– year: 2014
  ident: ref20
  article-title: A variational approach to stable principal component pursuit
– ident: ref6
  doi: 10.1109/icassp48485.2024.10447745
– ident: ref32
  doi: 10.1088/1742-5468/2005/11/P11015
– ident: ref40
  doi: 10.1109/ACCESS.2019.2928092
SSID ssj0014496
Score 2.4657125
Snippet Generalized bilinear factorization (GBF), in which two matrices are recovered from noisy and typically compressed measurements of their product, arises in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5675
SubjectTerms Algorithms
Approximation algorithms
Background noise
Closed form solutions
Convergence
Correlation
Covariance matrices
Damping
Exact solutions
expectation propagation
Factorization
Free energy
Generalized bilinear factorization
Inference algorithms
Inverse problems
Message passing
Signal processing algorithms
Sparse matrices
variational free energy minimization
variational message passing
Vectors
Video compression
Title Generalized Bilinear Factorization via Hybrid Vector Message Passing
URI https://ieeexplore.ieee.org/document/10772055
https://www.proquest.com/docview/3147531403
Volume 72
WOSCitedRecordID wos001381746400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADzyIKBXlgYUibxJc4GXlVXagqUVC3yHYcFAm1qC8Jfj1nx62KEEhsGWzLuotz3-fL3UfIFZKqFFlC4AkA8CBnhScBJDok1yoHkUiVWLEJ3u8no1E6cMXqthZGa21_PtNt82hz-flELcxVGZ5wxIJ-FNVIjfO4KtZapwwArBgX4gXmRQkfrXKSftoZPg2QCYbQZqZdXMC-xSArqvLjS2zDS3f_nxs7IHsOR9KbyvGHZEuPj8juRnfBY3LvWkqXnzqnt6XBk2JKu1Zgx1Vf0mUpaO_DVG3RF3t_Tx-NJsqrpgNE1bhMgzx3H4Z3Pc-JJngqTMO5p0EFUe4r5EGFxj0FMlRxlCOwgSDQaRIyJSOtIFS-iAsBshAIsyTEzC8QDeXshNTHk7E-JRTjFtKnUBccYlCFljJWScS5REgmfC6apLMyY6ZcR3EjbPGWWWbhpxkaPjOGz5zhm-R6PeO96qbxx9iGMfTGuMrGTdJauSpz522WsQCQd5neg2e_TDsnO2b16vakRerz6UJfkG21nJez6aV9lb4AILzFDw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CurBZ8Vq1T148ZCax-R19FUqtqVgld7C7mYjBWmlL9Bf7-wmLRVR8JbDbrLMZDPft5OZD-CCSFVMLMGxOCJamHqZJRAFOSRVMkUeCRkZsYmw3Y56vbhTFKubWhillPn5TNX0pcnlp0M51UdltMMJC9q-vwprPqJr5-Vai6QBopHjIsTgWX4U9uZZSTu-6j51iAu6WPN0wzjH-xaFjKzKj2-xCTD1nX8ubRe2CyTJrnPX78GKGuzD1lJ_wQO4K5pK9z9Vym76GlHyEasbiZ2i_pLN-pw1PnTdFnsxJ_ispVVRXhXrEK6m25ThuX7fvW1YhWyCJd3YnVgKpeOntiQmlClakyNcGfgpQRt0HBVHrieFryS60uZBxlFknICWwMCzM8JDqXcIpcFwoI6AUeQiAuWqLMQAZaaECGTkh6EgUMbtkFfgam7GRBY9xbW0xVtiuIUdJ2T4RBs-KQxfgcvFjPe8n8YfY8va0EvjchtXoDp3VVLsuHHiOUjMS3cfPP5l2jlsNLqtZtJ8aD-ewKZ-Un6WUoXSZDRVp7AuZ5P-eHRmXqsvjg3IVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Bilinear+Factorization+via+Hybrid+Vector+Message+Passing&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Jiang%2C+Hao&rft.au=Yuan%2C+Xiaojun&rft.au=Guo%2C+Qinghua&rft.date=2024&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=72&rft.spage=5675&rft.epage=5690&rft_id=info:doi/10.1109%2FTSP.2024.3509413&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2024_3509413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon