Generalized Bilinear Factorization via Hybrid Vector Message Passing
Generalized bilinear factorization (GBF), in which two matrices are recovered from noisy and typically compressed measurements of their product, arises in various applications such as blind channel-and-signal estimation, image completion, and compressed video foreground and background separation. In...
Uložené v:
| Vydané v: | IEEE transactions on signal processing Ročník 72; s. 5675 - 5690 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Generalized bilinear factorization (GBF), in which two matrices are recovered from noisy and typically compressed measurements of their product, arises in various applications such as blind channel-and-signal estimation, image completion, and compressed video foreground and background separation. In this paper, we formulate the GBF problem by unifying several existing bilinear inverse problems, and establish a novel hybrid vector message passing (HVMP) algorithm for GBF. The GBF-HVMP algorithm integrates expectation propagation (EP) and variational message passing (VMP) via variational free energy minimization, and exchanges matrix-variable messages in closed form. GBF-HVMP is advantageous over its counterparts in several aspects. For example, a matrix-variable message can characterize the correlations between the elements of the matrix, which is not possible in scalar-variable message passing; the hybrid of EP and VMP yields closed-form Gaussian messages associated with the bilinear constraints inherent in the GBF problem. We show that damping is unnecessary for GBF-HVMP to ensure convergence. We also show that GBF-HVMP performs close to the replica bound, and significantly outperforms state-of-the-art approaches in terms of both normalized mean squared error (NMSE) performance and computational complexity. |
|---|---|
| AbstractList | Generalized bilinear factorization (GBF), in which two matrices are recovered from noisy and typically compressed measurements of their product, arises in various applications such as blind channel-and-signal estimation, image completion, and compressed video foreground and background separation. In this paper, we formulate the GBF problem by unifying several existing bilinear inverse problems, and establish a novel hybrid vector message passing (HVMP) algorithm for GBF. The GBF-HVMP algorithm integrates expectation propagation (EP) and variational message passing (VMP) via variational free energy minimization, and exchanges matrix-variable messages in closed form. GBF-HVMP is advantageous over its counterparts in several aspects. For example, a matrix-variable message can characterize the correlations between the elements of the matrix, which is not possible in scalar-variable message passing; the hybrid of EP and VMP yields closed-form Gaussian messages associated with the bilinear constraints inherent in the GBF problem. We show that damping is unnecessary for GBF-HVMP to ensure convergence. We also show that GBF-HVMP performs close to the replica bound, and significantly outperforms state-of-the-art approaches in terms of both normalized mean squared error (NMSE) performance and computational complexity. |
| Author | Guo, Qinghua Jiang, Hao Yuan, Xiaojun |
| Author_xml | – sequence: 1 givenname: Hao orcidid: 0009-0009-9296-6067 surname: Jiang fullname: Jiang, Hao email: jh@std.uestc.edu.cn organization: National Key Laboratory of Wireless Communications, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Xiaojun orcidid: 0000-0002-0433-6535 surname: Yuan fullname: Yuan, Xiaojun email: xjyuan@uestc.edu.cn organization: National Key Laboratory of Wireless Communications, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Qinghua orcidid: 0000-0002-5180-7854 surname: Guo fullname: Guo, Qinghua email: qguo@uow.edu.au organization: School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW, Australia |
| BookMark | eNp9kM1PwkAQxTcGEwG9e_DQxHNxtvtRelQUMMFIIhpvm-12SpbUFneLCfz1LsLBePAyb5J5v5nM65FO3dRIyCWFAaWQ3Sxe5oMEEj5gAjJO2Qnp0qAx8FR2Qg-CxWKYvp-RnvcrAMp5JrvkfoI1Ol3ZHRbRna1sjdpFY23axtmdbm1TR19WR9Nt7mwRveF-ED2h93qJ0Vx7b-vlOTktdeXx4qh98jp-WIym8ex58ji6ncUmyZI2Rm6oKMCkVJaYgKB5YqQohAROKWbDhJlcoOGJAS1LzfNSA2Q5lwxKAaJgfXJ92Lt2zecGfatWzcbV4aRilKciFGDBJQ8u4xrvHZbK2Pbnk9ZpWykKap-YCompfWLqmFgA4Q-4dvZDu-1_yNUBsYj4y56m4T_BvgHFo3fZ |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_TWC_2025_3536283 crossref_primary_10_1109_TWC_2025_3554976 crossref_primary_10_1109_TWC_2025_3552519 |
| Cites_doi | 10.1109/ACCESS.2018.2887261 10.1109/TCOMM.2017.2761384 10.1109/TSP.2014.2357776 10.1109/JSTSP.2016.2539123 10.1109/TIT.2005.850085 10.1109/JSTSP.2018.2876621 10.1109/TIT.2019.2916359 10.1073/pnas.0909892106 10.1109/JPROC.2010.2042415 10.1109/TSP.2018.2795540 10.1109/TSP.2014.2357773 10.1109/TPAMI.2003.1177153 10.1109/TSP.2011.2109956 10.1093/imaiai/iat002 10.1109/TIT.2012.2218573 10.1109/TWC.2019.2915955 10.1109/TSP.2019.2928977 10.1109/LSP.2014.2351822 10.1109/JSTSP.2016.2539100 10.1109/ACSSC.2016.7869633 10.1109/TSP.2006.881199 10.1088/0266-5611/31/11/115002 10.1109/TIT.2013.2294644 10.1109/ICC51166.2024.10622787 10.1109/TIT.2016.2556702 10.7551/mitpress/3206.001.0001 10.1109/LWC.2018.2810278 10.1016/j.ins.2010.02.004 10.1145/1970392.1970395 10.1109/LWC.2019.2948632 10.1109/ICIP.2012.6466946 10.1109/TSP.2019.2916100 10.1109/TSP.2020.3044847 10.1007/978-94-011-5014-9_2 10.1109/icassp48485.2024.10447745 10.1088/1742-5468/2005/11/P11015 10.1109/ACCESS.2019.2928092 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2024.3509413 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 5690 |
| ExternalDocumentID | 10_1109_TSP_2024_3509413 10772055 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Laboratory of Wireless Communications Foundation grantid: IFN20230204 – fundername: NSW CIN Project – fundername: Sichuan Science and Technology Program grantid: 2024ZYD0036 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-e4c15d0c716fe2051b2c65d560411e9823cb5ec42c0a6fa4bfa009b4630f505d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001381746400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Mon Jun 30 10:18:02 EDT 2025 Sat Nov 29 04:24:11 EST 2025 Tue Nov 18 21:44:03 EST 2025 Wed Aug 27 02:30:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-e4c15d0c716fe2051b2c65d560411e9823cb5ec42c0a6fa4bfa009b4630f505d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0009-9296-6067 0000-0002-5180-7854 0000-0002-0433-6535 |
| PQID | 3147531403 |
| PQPubID | 85478 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3147531403 ieee_primary_10772055 crossref_citationtrail_10_1109_TSP_2024_3509413 crossref_primary_10_1109_TSP_2024_3509413 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 Minka (ref27) 2013 ref16 ref18 ref46 ref45 Waters (ref19) 2011 ref47 ref42 ref41 ref44 ref43 (ref48) 2016 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref37 ref31 ref30 ref32 ref2 ref1 Aravkin (ref20) 2014 ref38 ref24 University (ref49) 2008 ref23 Heskes (ref26) 2003 ref22 ref21 Guo (ref39) 2015 Akrout (ref25) 2020 Minka (ref36) 2005 ref29 Opper (ref34) 2005; 1 Opper (ref33) 2005 Winn (ref28) 2005; 6 |
| References_xml | – ident: ref24 doi: 10.1109/ACCESS.2018.2887261 – ident: ref7 doi: 10.1109/TCOMM.2017.2761384 – ident: ref5 doi: 10.1109/TSP.2014.2357776 – ident: ref10 doi: 10.1109/JSTSP.2016.2539123 – ident: ref30 doi: 10.1109/TIT.2005.850085 – ident: ref15 doi: 10.1109/JSTSP.2018.2876621 – ident: ref23 doi: 10.1109/TIT.2019.2916359 – ident: ref21 doi: 10.1073/pnas.0909892106 – ident: ref45 doi: 10.1109/JPROC.2010.2042415 – start-page: 1001 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2005 ident: ref33 article-title: Expectation consistent free energies for approximate inference – ident: ref41 doi: 10.1109/TSP.2018.2795540 – ident: ref47 doi: 10.1109/TSP.2014.2357773 – ident: ref18 doi: 10.1109/TPAMI.2003.1177153 – start-page: 359 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2003 ident: ref26 article-title: Stable fixed points of loopy belief propagation are local minima of the Bethe free energy – ident: ref8 doi: 10.1109/TSP.2011.2109956 – ident: ref17 doi: 10.1093/imaiai/iat002 – start-page: 1089 volume-title: Proc. Neural Inf. Process. Syst. year: 2011 ident: ref19 article-title: SpaRCS: Recovering low-rank and sparse matrices from compressive measurements – ident: ref37 doi: 10.1109/TIT.2012.2218573 – ident: ref43 doi: 10.1109/TWC.2019.2915955 – ident: ref2 doi: 10.1109/TSP.2019.2928977 – ident: ref22 doi: 10.1109/LSP.2014.2351822 – volume: 1 start-page: 2177 year: 2005 ident: ref34 article-title: Expectation consistent approximate inference. publication-title: J. Mach. Learn. Res. – volume-title: CIV Test Images year: 2016 ident: ref48 – ident: ref13 doi: 10.1109/JSTSP.2016.2539100 – volume: 6 start-page: 661 year: 2005 ident: ref28 article-title: Variational message passing. publication-title: J. Mach. Learn. Res. – year: 2015 ident: ref39 article-title: Approximate message passing with unitary transformation – ident: ref35 doi: 10.1109/ACSSC.2016.7869633 – ident: ref4 doi: 10.1109/TSP.2006.881199 – ident: ref9 doi: 10.1088/0266-5611/31/11/115002 – ident: ref14 doi: 10.1109/TIT.2013.2294644 – ident: ref1 doi: 10.1109/ICC51166.2024.10622787 – year: 2020 ident: ref25 article-title: Bilinear generalized vector approximate message passing – ident: ref29 doi: 10.1109/TIT.2016.2556702 – ident: ref38 doi: 10.7551/mitpress/3206.001.0001 – ident: ref42 doi: 10.1109/LWC.2018.2810278 – year: 2008 ident: ref49 article-title: Dataset: Detection of moving objects – ident: ref3 doi: 10.1016/j.ins.2010.02.004 – ident: ref16 doi: 10.1145/1970392.1970395 – ident: ref44 doi: 10.1109/LWC.2019.2948632 – ident: ref46 doi: 10.1109/ICIP.2012.6466946 – ident: ref11 doi: 10.1109/TSP.2019.2916100 – year: 2013 ident: ref27 article-title: Expectation propagation for approximate Bayesian inference – year: 2005 ident: ref36 article-title: Divergence measures and message passing – ident: ref12 doi: 10.1109/TSP.2020.3044847 – ident: ref31 doi: 10.1007/978-94-011-5014-9_2 – year: 2014 ident: ref20 article-title: A variational approach to stable principal component pursuit – ident: ref6 doi: 10.1109/icassp48485.2024.10447745 – ident: ref32 doi: 10.1088/1742-5468/2005/11/P11015 – ident: ref40 doi: 10.1109/ACCESS.2019.2928092 |
| SSID | ssj0014496 |
| Score | 2.4657125 |
| Snippet | Generalized bilinear factorization (GBF), in which two matrices are recovered from noisy and typically compressed measurements of their product, arises in... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5675 |
| SubjectTerms | Algorithms Approximation algorithms Background noise Closed form solutions Convergence Correlation Covariance matrices Damping Exact solutions expectation propagation Factorization Free energy Generalized bilinear factorization Inference algorithms Inverse problems Message passing Signal processing algorithms Sparse matrices variational free energy minimization variational message passing Vectors Video compression |
| Title | Generalized Bilinear Factorization via Hybrid Vector Message Passing |
| URI | https://ieeexplore.ieee.org/document/10772055 https://www.proquest.com/docview/3147531403 |
| Volume | 72 |
| WOSCitedRecordID | wos001381746400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62eNCDz4rVKjl48bDt5rGPHH2VXiwFq_S25LWyIK30BfrrnWS3pSIK7mkPyRAmO8k3MzvzIXSV05w7aB6QPJQBnJIqkDGzgRFKUJNKTRT3ZBNJv5-ORmJQFav7Whhrrf_5zLbdq8_lm4leuFAZWDhgwTCKaqiWJHFZrLVOGXDuybgAL7AgSpPRKicZis7waQCeIOVt5trFEfbtDvKkKj9OYn-9dPf_ubADtFfhSHxTbvwh2rLjI7S70V3wGN1XLaWLT2vwbeHwpJzirifYqaov8bKQuPfhqrbwi4_f40fHifJq8QBQNYhpoOfuw_CuF1SkCYGmgs4DyzWJTKjBD8otrIkoquPIALDhhFiRUqZVZDWnOpRxLrnKJcAsxWMW5oCGDDtB9fFkbE8RprmgYSwZizg8lEilUmNBiDVGgx03UWelxkxXHcUdscVb5j2LUGSg-MwpPqsU30TX6xnvZTeNP8Y2nKI3xpU6bqLWaquyyt5mGSMc_C7Xe_Dsl2nnaMdJL6MnLVSfTxf2Am3r5byYTS_9p_QFg9bFSg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwWbE-c_DiYTWvXXePvkpFLQWr9LbktVKQKrUt6K93kt2KIgre9pBkw5ed5JvMznwABwUvpKfmESuoinCX1JFKhItspjNuU2WYlkFs4qTVSrvdrF0lq4dcGOdc-PnMHfnHEMu3z2bkr8rQwpEL0jiehtlYSk7LdK3PoIGUQY4LGYOI4vSkO4lK0uy4c9dGX5DLI-ELxjHx7RQKsio_9uJwwDSW_zm1FViqmCQ5LZd-FaZcfw0Wv9QXXIeLqqh0791ZctbzjFINSCNI7FT5l2TcU6T55vO2yEO4wSe3XhXl0ZE28mocpgb3jcvOeTOqZBMiwzM-jJw0LLbUoCdUOJwT09wksUVqIxlzWcqF0bEzkhuqkkJJXSgkWlomghbIh6zYgJn-c99tAuFFxmmihEC4EXCmtE6tw0GctQYtuQ7HExhzU9UU99IWT3nwLWiWI_C5Bz6vgK_D4WePl7Kexh9tax7oL-1KjOuwM1mqvLK411wwiZ6Xrz649Uu3fZhvdm5v8pur1vU2LPg3lXcpOzAzHIzcLsyZ8bD3OtgLn9UH9B3IkQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Bilinear+Factorization+via+Hybrid+Vector+Message+Passing&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Jiang%2C+Hao&rft.au=Yuan%2C+Xiaojun&rft.au=Guo%2C+Qinghua&rft.date=2024&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=72&rft.spage=5675&rft.epage=5690&rft_id=info:doi/10.1109%2FTSP.2024.3509413&rft.externalDocID=10772055 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |