Wind Turbine Blade Breakage Monitoring With Mogrifier LSTM Autoencoder

Wind turbines (WTs) often work in harsh environmental conditions. The risk of blade breakage by hitting the tower has increased because of the decreased bending stiffness of the WT blades with the increasing sizes of WTs. To address the system dynamics of WTs, this article proposes a Mogrifier long...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 72; s. 1 - 10
Hlavní autoři: Wu, Ping, Wang, Yixuan, Zhang, Xujie, Gao, Jinfeng, Wang, Lin, Liu, Yichao
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Wind turbines (WTs) often work in harsh environmental conditions. The risk of blade breakage by hitting the tower has increased because of the decreased bending stiffness of the WT blades with the increasing sizes of WTs. To address the system dynamics of WTs, this article proposes a Mogrifier long short-term memory autoencoder (MLSTM-AE) method to monitor blade breakage using the supervisory control and data acquisition (SCADA) data. Firstly, the Pearson correlation coefficient (PCC) is calculated for variable selection. Secondly, the time-lagged multivariate variables are augmented and taken as input for the encoder which consists of a Mogrifier long short-term memory (MLSTM) layer to learn the deep features. Another MLSTM layer runs as the decoder to reconstruct the input. The proposed MLSTM-AE model can extract spatial-temporal information more effectively than traditional long short-term memory (LSTM) and autoencoder (AE). Next, kernel density estimation (KDE) is applied to develop boundaries for generating blade breakage alerts based on reconstruction errors, which can reflect changes in system dynamics caused by blade breakage. The advantages of the proposed MLSTM-AE-based monitoring method are illustrated by employing real blade breakage cases from several wind farms located in China by comparing with other related methods in terms of warning time, false alarm rate (FAR), and accuracy.
AbstractList Wind turbines (WTs) often work in harsh environmental conditions. The risk of blade breakage by hitting the tower has increased because of the decreased bending stiffness of the WT blades with the increasing sizes of WTs. To address the system dynamics of WTs, this article proposes a Mogrifier long short-term memory autoencoder (MLSTM-AE) method to monitor blade breakage using the supervisory control and data acquisition (SCADA) data. Firstly, the Pearson correlation coefficient (PCC) is calculated for variable selection. Secondly, the time-lagged multivariate variables are augmented and taken as input for the encoder which consists of a Mogrifier long short-term memory (MLSTM) layer to learn the deep features. Another MLSTM layer runs as the decoder to reconstruct the input. The proposed MLSTM-AE model can extract spatial-temporal information more effectively than traditional long short-term memory (LSTM) and autoencoder (AE). Next, kernel density estimation (KDE) is applied to develop boundaries for generating blade breakage alerts based on reconstruction errors, which can reflect changes in system dynamics caused by blade breakage. The advantages of the proposed MLSTM-AE-based monitoring method are illustrated by employing real blade breakage cases from several wind farms located in China by comparing with other related methods in terms of warning time, false alarm rate (FAR), and accuracy.
Author Wu, Ping
Wang, Yixuan
Wang, Lin
Gao, Jinfeng
Zhang, Xujie
Liu, Yichao
Author_xml – sequence: 1
  givenname: Ping
  orcidid: 0000-0002-2729-9669
  surname: Wu
  fullname: Wu, Ping
  email: pingwu@zstu.edu.cn
  organization: School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
– sequence: 2
  givenname: Yixuan
  orcidid: 0000-0003-2767-8244
  surname: Wang
  fullname: Wang, Yixuan
  organization: School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
– sequence: 3
  givenname: Xujie
  orcidid: 0000-0002-8293-7539
  surname: Zhang
  fullname: Zhang, Xujie
  email: xujie_zhang@zju.edu.cn
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Jinfeng
  orcidid: 0000-0002-7837-7559
  surname: Gao
  fullname: Gao, Jinfeng
  organization: School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
– sequence: 5
  givenname: Lin
  orcidid: 0000-0001-8850-9386
  surname: Wang
  fullname: Wang, Lin
  organization: Key Laboratory of Wind Power Technology of Zhejiang Province, Zhejiang Windey Company Ltd., Hangzhou, China
– sequence: 6
  givenname: Yichao
  orcidid: 0000-0002-4175-7638
  surname: Liu
  fullname: Liu, Yichao
  organization: Energy and Materials Transition, TNO, The Hague, The Netherlands
BookMark eNp9kD1PwzAQhi1UJNrCzsAQiTnlbCf-GEtFoVIrBoo6RrbjFJdiF8cZ-PekKgNiYLnTSe9zd3pGaOCDtwhdY5hgDPJuvVhNCBA6oZRQyfgZGuKy5LlkjAzQEACLXBYlu0Cjtt0BAGcFH6L5xvk6W3dRO2-z-72q-xqteldbm62CdylE57fZxqW3ft5G1zgbs-XLepVNuxSsN6G28RKdN2rf2qufPkav84f17ClfPj8uZtNlbogkKbdEKkUkNthypoUoKa3rQtScaiNqVgqQDTfagASshZZaN4YQTATVnDNR0DG6Pe09xPDZ2TZVu9BF35-siBC4BA4F7VPslDIxtG20TWVcUskFn6Jy-wpDdXRW9c6qo7Pqx1kPwh_wEN2Hil__ITcnxFlrf8X7n4UA-g3IYHe3
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2024_3450080
crossref_primary_10_1177_14759217251370360
crossref_primary_10_1016_j_ast_2025_110935
crossref_primary_10_1016_j_jmsy_2024_08_013
crossref_primary_10_1016_j_neucom_2025_129830
crossref_primary_10_1109_TIM_2025_3551122
crossref_primary_10_1109_TIM_2025_3572170
Cites_doi 10.1109/TII.2017.2662215
10.1016/j.rser.2017.05.183
10.1109/TIM.2020.3024048
10.1109/ACCESS.2022.3185259
10.1002/we.1493
10.1016/j.renene.2020.06.154
10.1109/TII.2020.3041114
10.1109/TSTE.2019.2954834
10.1109/TII.2009.2032654
10.1016/j.renene.2017.08.040
10.1016/j.enconman.2012.06.008
10.1109/TII.2020.3011441
10.1126/science.1127647
10.1109/TIM.2020.3045800
10.1109/TSG.2016.2621135
10.1016/j.rser.2022.112326
10.1109/TMECH.2017.2759301
10.1109/TMECH.2021.3058061
10.3390/en13123132
10.1007/978-3-642-24797-24
10.1016/j.renene.2016.06.048
10.1109/TMECH.2021.3127213
10.1016/j.jclepro.2015.07.059
10.1016/j.ymssp.2016.05.011
10.1162/neco.1997.9.8.1735
10.1109/TIM.2021.3075742
10.1109/TSTE.2020.2989220
10.1109/ACC.1998.703187
10.1016/j.rser.2012.11.006
10.1109/TMECH.2019.2908233
10.1016/j.renene.2021.03.078
10.1109/TMECH.2022.3185675
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3323967
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 10
ExternalDocumentID 10_1109_TIM_2023_3323967
10283880
Genre orig-research
GrantInformation_xml – fundername: Social Development Project of Zhejiang Provincial Public Technology Research
  grantid: LGF19F030004; LGG21F030015
– fundername: Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China
  grantid: ICT2023B19
  funderid: 10.13039/501100011311
– fundername: Fundamental Research Funds of Zhejiang Sci-Tech University
  grantid: 2021Q024
– fundername: National Natural Science Foundation of China
  grantid: 61703371; 62073296
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-e29aa291c1e76b88533dd48d73bc8d65809f7cbc0901b8b9bbfc221283b776843
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001090941700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 08:34:46 EDT 2025
Tue Nov 18 22:25:23 EST 2025
Sat Nov 29 04:38:40 EST 2025
Wed Aug 27 02:24:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-e29aa291c1e76b88533dd48d73bc8d65809f7cbc0901b8b9bbfc221283b776843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8850-9386
0000-0002-7837-7559
0000-0003-2767-8244
0000-0002-4175-7638
0000-0002-8293-7539
0000-0002-2729-9669
PQID 2881507043
PQPubID 85462
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TIM_2023_3323967
proquest_journals_2881507043
ieee_primary_10283880
crossref_primary_10_1109_TIM_2023_3323967
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
Melis (ref25)
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref20
Pascanu (ref30)
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref4
  doi: 10.1109/TII.2017.2662215
– ident: ref1
  doi: 10.1016/j.rser.2017.05.183
– ident: ref17
  doi: 10.1109/TIM.2020.3024048
– ident: ref16
  doi: 10.1109/ACCESS.2022.3185259
– ident: ref7
  doi: 10.1002/we.1493
– ident: ref23
  doi: 10.1016/j.renene.2020.06.154
– ident: ref22
  doi: 10.1109/TII.2020.3041114
– ident: ref14
  doi: 10.1109/TSTE.2019.2954834
– ident: ref33
  doi: 10.1109/TII.2009.2032654
– ident: ref12
  doi: 10.1016/j.renene.2017.08.040
– ident: ref6
  doi: 10.1016/j.enconman.2012.06.008
– ident: ref18
  doi: 10.1109/TII.2020.3011441
– ident: ref28
  doi: 10.1126/science.1127647
– ident: ref11
  doi: 10.1109/TIM.2020.3045800
– ident: ref15
  doi: 10.1109/TSG.2016.2621135
– ident: ref19
  doi: 10.1016/j.rser.2022.112326
– start-page: 1310
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref30
  article-title: On the difficulty of training recurrent neural networks
– ident: ref32
  doi: 10.1109/TMECH.2017.2759301
– ident: ref21
  doi: 10.1109/TMECH.2021.3058061
– ident: ref27
  doi: 10.3390/en13123132
– ident: ref31
  doi: 10.1007/978-3-642-24797-24
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref25
  article-title: Mogrifier LSTM
– ident: ref8
  doi: 10.1016/j.renene.2016.06.048
– ident: ref20
  doi: 10.1109/TMECH.2021.3127213
– ident: ref2
  doi: 10.1016/j.jclepro.2015.07.059
– ident: ref3
  doi: 10.1016/j.ymssp.2016.05.011
– ident: ref29
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref10
  doi: 10.1109/TIM.2021.3075742
– ident: ref13
  doi: 10.1109/TSTE.2020.2989220
– ident: ref26
  doi: 10.1109/ACC.1998.703187
– ident: ref5
  doi: 10.1016/j.rser.2012.11.006
– ident: ref9
  doi: 10.1109/TMECH.2019.2908233
– ident: ref34
  doi: 10.1016/j.renene.2021.03.078
– ident: ref24
  doi: 10.1109/TMECH.2022.3185675
SSID ssj0007647
Score 2.4248579
Snippet Wind turbines (WTs) often work in harsh environmental conditions. The risk of blade breakage by hitting the tower has increased because of the decreased...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Blade breakage monitoring
Blades
Correlation coefficients
Data models
False alarms
Feature extraction
long short-term memory (LSTM)
mogrifier long short-term memory autoencoder (MLSTM-AE)
Monitoring
Sensors
Supervisory control and data acquisition
supervisory control and data acquisition (SCADA) data
System dynamics
Turbine blades
Wind farms
Wind power
wind turbine (WT)
Wind turbines
Title Wind Turbine Blade Breakage Monitoring With Mogrifier LSTM Autoencoder
URI https://ieeexplore.ieee.org/document/10283880
https://www.proquest.com/docview/2881507043
Volume 72
WOSCitedRecordID wos001090941700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8Mw8NChoA9-TpxO6YMvPnTrkq5JHqc4FNwQnOhbaa4pDscmW-vv95J2UxAFX0oKuVLuct-5O4ALbjDRWYI-IkdyULjyZRQFvuyqhKURR6MSN2xCDIfy5UU9VMXqrhbGGOMun5mWXbpcfjrDwobK2k4Z0oFbh3UhorJYayV2RRSWDTI7xMFkFixzkoFqj-4GLTsmvMU548qNlP_SQW6oyg9J7NRLf_efP7YHO5Ud6fVKwu_DmpkewPa37oIHsOlud-LiEPrP5Hl7o2JObrDxriZJSk-yFt9ImHglV1sQ73mcv9K7DeSQtvTuH0cDr1fkM9vsMjXzOjz1b0bXt341QMFHpljuG6aShKkOdoyItCTNzNM0lKngGmVKtkegMoEaAzIKtNRK6wwZ6TLJtbAJOn4Etelsao7B64ahyGQkpWvYzowmqK7L8knTySQ2oL1EaYxVd3E75GISOy8jUDERIbZEiCsiNOByBfFedtb4Y2_dIv3bvhLfDWguyRZXvLeImZTWyg1CfvIL2Cls2a-XkZQm1PJ5Yc5gAz_y8WJ-7o7VJ2qNx_Y
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90KuqDnxOnU_vgiw_dumRrk8cpjg23IVjRt9JcUxyOTbbOv99L2qkgCr6UFHK03OW-csn9AC65xlilMbqIHClB4dIVvu-5oiVjlvgctYwt2EQwHIrnZ3lfXFa3d2G01vbwma6Zoa3lJ1NcmK2yunWGtOBWYc1AZxXXtT4Nb-A38xaZDdJhCgyWVUlP1sPeoGaAwmucMy4tqPyXF7KwKj9ssXUwnd1__toe7BSRpNPORb8PK3pyANvf-gsewIY934nzQ-g8Ue7thIsZJcLauR7HCT0pXnwlc-Lkem1InKdR9kLvZiuH_KXTfwgHTnuRTU27y0TPyvDYuQ1vum4BoeAikyxzNZNxzGQDGzrwlSDfzJOkKZKAKxQJRR-eTANU6FFYoISSSqXIyJsJrgJTouNHUJpMJ_oYHOJ4kApfCNuynWlFVC1b5xO6kQqsQH3J0giL_uIG5mIc2TzDkxEJITJCiAohVODqk-It763xx9yyYfq3eTm_K1Bdii0qtG8eMSFMnOs1-ckvZBew2Q0H_ajfG96dwpb5Ur6vUoVSNlvoM1jH92w0n53bJfYBBRTLPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Turbine+Blade+Breakage+Monitoring+With+Mogrifier+LSTM+Autoencoder&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wu%2C+Ping&rft.au=Wang%2C+Yixuan&rft.au=Zhang%2C+Xujie&rft.au=Gao%2C+Jinfeng&rft.date=2023&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=72&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2023.3323967&rft.externalDocID=10283880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon