Wind Turbine Blade Breakage Monitoring With Mogrifier LSTM Autoencoder
Wind turbines (WTs) often work in harsh environmental conditions. The risk of blade breakage by hitting the tower has increased because of the decreased bending stiffness of the WT blades with the increasing sizes of WTs. To address the system dynamics of WTs, this article proposes a Mogrifier long...
Uloženo v:
| Vydáno v: | IEEE transactions on instrumentation and measurement Ročník 72; s. 1 - 10 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9456, 1557-9662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Wind turbines (WTs) often work in harsh environmental conditions. The risk of blade breakage by hitting the tower has increased because of the decreased bending stiffness of the WT blades with the increasing sizes of WTs. To address the system dynamics of WTs, this article proposes a Mogrifier long short-term memory autoencoder (MLSTM-AE) method to monitor blade breakage using the supervisory control and data acquisition (SCADA) data. Firstly, the Pearson correlation coefficient (PCC) is calculated for variable selection. Secondly, the time-lagged multivariate variables are augmented and taken as input for the encoder which consists of a Mogrifier long short-term memory (MLSTM) layer to learn the deep features. Another MLSTM layer runs as the decoder to reconstruct the input. The proposed MLSTM-AE model can extract spatial-temporal information more effectively than traditional long short-term memory (LSTM) and autoencoder (AE). Next, kernel density estimation (KDE) is applied to develop boundaries for generating blade breakage alerts based on reconstruction errors, which can reflect changes in system dynamics caused by blade breakage. The advantages of the proposed MLSTM-AE-based monitoring method are illustrated by employing real blade breakage cases from several wind farms located in China by comparing with other related methods in terms of warning time, false alarm rate (FAR), and accuracy. |
|---|---|
| AbstractList | Wind turbines (WTs) often work in harsh environmental conditions. The risk of blade breakage by hitting the tower has increased because of the decreased bending stiffness of the WT blades with the increasing sizes of WTs. To address the system dynamics of WTs, this article proposes a Mogrifier long short-term memory autoencoder (MLSTM-AE) method to monitor blade breakage using the supervisory control and data acquisition (SCADA) data. Firstly, the Pearson correlation coefficient (PCC) is calculated for variable selection. Secondly, the time-lagged multivariate variables are augmented and taken as input for the encoder which consists of a Mogrifier long short-term memory (MLSTM) layer to learn the deep features. Another MLSTM layer runs as the decoder to reconstruct the input. The proposed MLSTM-AE model can extract spatial-temporal information more effectively than traditional long short-term memory (LSTM) and autoencoder (AE). Next, kernel density estimation (KDE) is applied to develop boundaries for generating blade breakage alerts based on reconstruction errors, which can reflect changes in system dynamics caused by blade breakage. The advantages of the proposed MLSTM-AE-based monitoring method are illustrated by employing real blade breakage cases from several wind farms located in China by comparing with other related methods in terms of warning time, false alarm rate (FAR), and accuracy. |
| Author | Wu, Ping Wang, Yixuan Wang, Lin Gao, Jinfeng Zhang, Xujie Liu, Yichao |
| Author_xml | – sequence: 1 givenname: Ping orcidid: 0000-0002-2729-9669 surname: Wu fullname: Wu, Ping email: pingwu@zstu.edu.cn organization: School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China – sequence: 2 givenname: Yixuan orcidid: 0000-0003-2767-8244 surname: Wang fullname: Wang, Yixuan organization: School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China – sequence: 3 givenname: Xujie orcidid: 0000-0002-8293-7539 surname: Zhang fullname: Zhang, Xujie email: xujie_zhang@zju.edu.cn organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 4 givenname: Jinfeng orcidid: 0000-0002-7837-7559 surname: Gao fullname: Gao, Jinfeng organization: School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China – sequence: 5 givenname: Lin orcidid: 0000-0001-8850-9386 surname: Wang fullname: Wang, Lin organization: Key Laboratory of Wind Power Technology of Zhejiang Province, Zhejiang Windey Company Ltd., Hangzhou, China – sequence: 6 givenname: Yichao orcidid: 0000-0002-4175-7638 surname: Liu fullname: Liu, Yichao organization: Energy and Materials Transition, TNO, The Hague, The Netherlands |
| BookMark | eNp9kD1PwzAQhi1UJNrCzsAQiTnlbCf-GEtFoVIrBoo6RrbjFJdiF8cZ-PekKgNiYLnTSe9zd3pGaOCDtwhdY5hgDPJuvVhNCBA6oZRQyfgZGuKy5LlkjAzQEACLXBYlu0Cjtt0BAGcFH6L5xvk6W3dRO2-z-72q-xqteldbm62CdylE57fZxqW3ft5G1zgbs-XLepVNuxSsN6G28RKdN2rf2qufPkav84f17ClfPj8uZtNlbogkKbdEKkUkNthypoUoKa3rQtScaiNqVgqQDTfagASshZZaN4YQTATVnDNR0DG6Pe09xPDZ2TZVu9BF35-siBC4BA4F7VPslDIxtG20TWVcUskFn6Jy-wpDdXRW9c6qo7Pqx1kPwh_wEN2Hil__ITcnxFlrf8X7n4UA-g3IYHe3 |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_TIM_2024_3450080 crossref_primary_10_1177_14759217251370360 crossref_primary_10_1016_j_ast_2025_110935 crossref_primary_10_1016_j_jmsy_2024_08_013 crossref_primary_10_1016_j_neucom_2025_129830 crossref_primary_10_1109_TIM_2025_3551122 crossref_primary_10_1109_TIM_2025_3572170 |
| Cites_doi | 10.1109/TII.2017.2662215 10.1016/j.rser.2017.05.183 10.1109/TIM.2020.3024048 10.1109/ACCESS.2022.3185259 10.1002/we.1493 10.1016/j.renene.2020.06.154 10.1109/TII.2020.3041114 10.1109/TSTE.2019.2954834 10.1109/TII.2009.2032654 10.1016/j.renene.2017.08.040 10.1016/j.enconman.2012.06.008 10.1109/TII.2020.3011441 10.1126/science.1127647 10.1109/TIM.2020.3045800 10.1109/TSG.2016.2621135 10.1016/j.rser.2022.112326 10.1109/TMECH.2017.2759301 10.1109/TMECH.2021.3058061 10.3390/en13123132 10.1007/978-3-642-24797-24 10.1016/j.renene.2016.06.048 10.1109/TMECH.2021.3127213 10.1016/j.jclepro.2015.07.059 10.1016/j.ymssp.2016.05.011 10.1162/neco.1997.9.8.1735 10.1109/TIM.2021.3075742 10.1109/TSTE.2020.2989220 10.1109/ACC.1998.703187 10.1016/j.rser.2012.11.006 10.1109/TMECH.2019.2908233 10.1016/j.renene.2021.03.078 10.1109/TMECH.2022.3185675 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2023.3323967 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 10 |
| ExternalDocumentID | 10_1109_TIM_2023_3323967 10283880 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Social Development Project of Zhejiang Provincial Public Technology Research grantid: LGF19F030004; LGG21F030015 – fundername: Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China grantid: ICT2023B19 funderid: 10.13039/501100011311 – fundername: Fundamental Research Funds of Zhejiang Sci-Tech University grantid: 2021Q024 – fundername: National Natural Science Foundation of China grantid: 61703371; 62073296 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c292t-e29aa291c1e76b88533dd48d73bc8d65809f7cbc0901b8b9bbfc221283b776843 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001090941700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 08:34:46 EDT 2025 Tue Nov 18 22:25:23 EST 2025 Sat Nov 29 04:38:40 EST 2025 Wed Aug 27 02:24:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-e29aa291c1e76b88533dd48d73bc8d65809f7cbc0901b8b9bbfc221283b776843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8850-9386 0000-0002-7837-7559 0000-0003-2767-8244 0000-0002-4175-7638 0000-0002-8293-7539 0000-0002-2729-9669 |
| PQID | 2881507043 |
| PQPubID | 85462 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIM_2023_3323967 proquest_journals_2881507043 ieee_primary_10283880 crossref_primary_10_1109_TIM_2023_3323967 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref14 Melis (ref25) ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref20 Pascanu (ref30) ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref4 doi: 10.1109/TII.2017.2662215 – ident: ref1 doi: 10.1016/j.rser.2017.05.183 – ident: ref17 doi: 10.1109/TIM.2020.3024048 – ident: ref16 doi: 10.1109/ACCESS.2022.3185259 – ident: ref7 doi: 10.1002/we.1493 – ident: ref23 doi: 10.1016/j.renene.2020.06.154 – ident: ref22 doi: 10.1109/TII.2020.3041114 – ident: ref14 doi: 10.1109/TSTE.2019.2954834 – ident: ref33 doi: 10.1109/TII.2009.2032654 – ident: ref12 doi: 10.1016/j.renene.2017.08.040 – ident: ref6 doi: 10.1016/j.enconman.2012.06.008 – ident: ref18 doi: 10.1109/TII.2020.3011441 – ident: ref28 doi: 10.1126/science.1127647 – ident: ref11 doi: 10.1109/TIM.2020.3045800 – ident: ref15 doi: 10.1109/TSG.2016.2621135 – ident: ref19 doi: 10.1016/j.rser.2022.112326 – start-page: 1310 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref30 article-title: On the difficulty of training recurrent neural networks – ident: ref32 doi: 10.1109/TMECH.2017.2759301 – ident: ref21 doi: 10.1109/TMECH.2021.3058061 – ident: ref27 doi: 10.3390/en13123132 – ident: ref31 doi: 10.1007/978-3-642-24797-24 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref25 article-title: Mogrifier LSTM – ident: ref8 doi: 10.1016/j.renene.2016.06.048 – ident: ref20 doi: 10.1109/TMECH.2021.3127213 – ident: ref2 doi: 10.1016/j.jclepro.2015.07.059 – ident: ref3 doi: 10.1016/j.ymssp.2016.05.011 – ident: ref29 doi: 10.1162/neco.1997.9.8.1735 – ident: ref10 doi: 10.1109/TIM.2021.3075742 – ident: ref13 doi: 10.1109/TSTE.2020.2989220 – ident: ref26 doi: 10.1109/ACC.1998.703187 – ident: ref5 doi: 10.1016/j.rser.2012.11.006 – ident: ref9 doi: 10.1109/TMECH.2019.2908233 – ident: ref34 doi: 10.1016/j.renene.2021.03.078 – ident: ref24 doi: 10.1109/TMECH.2022.3185675 |
| SSID | ssj0007647 |
| Score | 2.4248579 |
| Snippet | Wind turbines (WTs) often work in harsh environmental conditions. The risk of blade breakage by hitting the tower has increased because of the decreased... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Blade breakage monitoring Blades Correlation coefficients Data models False alarms Feature extraction long short-term memory (LSTM) mogrifier long short-term memory autoencoder (MLSTM-AE) Monitoring Sensors Supervisory control and data acquisition supervisory control and data acquisition (SCADA) data System dynamics Turbine blades Wind farms Wind power wind turbine (WT) Wind turbines |
| Title | Wind Turbine Blade Breakage Monitoring With Mogrifier LSTM Autoencoder |
| URI | https://ieeexplore.ieee.org/document/10283880 https://www.proquest.com/docview/2881507043 |
| Volume | 72 |
| WOSCitedRecordID | wos001090941700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8Mw8NChoA9-TpxO6YMvPnTrkq5JHqc4FNwQnOhbaa4pDscmW-vv95J2UxAFX0oKuVLuct-5O4ALbjDRWYI-IkdyULjyZRQFvuyqhKURR6MSN2xCDIfy5UU9VMXqrhbGGOMun5mWXbpcfjrDwobK2k4Z0oFbh3UhorJYayV2RRSWDTI7xMFkFixzkoFqj-4GLTsmvMU548qNlP_SQW6oyg9J7NRLf_efP7YHO5Ud6fVKwu_DmpkewPa37oIHsOlud-LiEPrP5Hl7o2JObrDxriZJSk-yFt9ImHglV1sQ73mcv9K7DeSQtvTuH0cDr1fkM9vsMjXzOjz1b0bXt341QMFHpljuG6aShKkOdoyItCTNzNM0lKngGmVKtkegMoEaAzIKtNRK6wwZ6TLJtbAJOn4Etelsao7B64ahyGQkpWvYzowmqK7L8knTySQ2oL1EaYxVd3E75GISOy8jUDERIbZEiCsiNOByBfFedtb4Y2_dIv3bvhLfDWguyRZXvLeImZTWyg1CfvIL2Cls2a-XkZQm1PJ5Yc5gAz_y8WJ-7o7VJ2qNx_Y |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90KuqDnxOnU_vgiw_dumRrk8cpjg23IVjRt9JcUxyOTbbOv99L2qkgCr6UFHK03OW-csn9AC65xlilMbqIHClB4dIVvu-5oiVjlvgctYwt2EQwHIrnZ3lfXFa3d2G01vbwma6Zoa3lJ1NcmK2yunWGtOBWYc1AZxXXtT4Nb-A38xaZDdJhCgyWVUlP1sPeoGaAwmucMy4tqPyXF7KwKj9ssXUwnd1__toe7BSRpNPORb8PK3pyANvf-gsewIY934nzQ-g8Ue7thIsZJcLauR7HCT0pXnwlc-Lkem1InKdR9kLvZiuH_KXTfwgHTnuRTU27y0TPyvDYuQ1vum4BoeAikyxzNZNxzGQDGzrwlSDfzJOkKZKAKxQJRR-eTANU6FFYoISSSqXIyJsJrgJTouNHUJpMJ_oYHOJ4kApfCNuynWlFVC1b5xO6kQqsQH3J0giL_uIG5mIc2TzDkxEJITJCiAohVODqk-It763xx9yyYfq3eTm_K1Bdii0qtG8eMSFMnOs1-ckvZBew2Q0H_ajfG96dwpb5Ur6vUoVSNlvoM1jH92w0n53bJfYBBRTLPw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Turbine+Blade+Breakage+Monitoring+With+Mogrifier+LSTM+Autoencoder&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wu%2C+Ping&rft.au=Wang%2C+Yixuan&rft.au=Zhang%2C+Xujie&rft.au=Gao%2C+Jinfeng&rft.date=2023&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=72&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2023.3323967&rft.externalDocID=10283880 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |