Robust Spatial-Temporal Autoencoder for Unsupervised Anomaly Detection of Unmanned Aerial Vehicle With Flight Data

Recently, the safety and reliability of unmanned aerial vehicles (UAVs) have gained increasing interest, and data-driven anomaly detection methods have been widely studied. However, it is still challenging to build an accurate and reliable detector due to the scarcity of labeled data and complex spa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on instrumentation and measurement Ročník 73; s. 1 - 14
Hlavní autori: Jiang, Guoqian, Nan, Pengcheng, Zhang, Jingchao, Li, Yingwei, Li, Xiaoli
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9456, 1557-9662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recently, the safety and reliability of unmanned aerial vehicles (UAVs) have gained increasing interest, and data-driven anomaly detection methods have been widely studied. However, it is still challenging to build an accurate and reliable detector due to the scarcity of labeled data and complex spatial-temporal characteristics of flight data with noises and disturbances. To this end, this article proposes an autoencoder-based unsupervised anomaly detection framework with multivariate flight data without labeled information. Specifically, we designed a new robust spatial-temporal autoencoder (RSTAE) model based on the temporal convolution network (TCN), the convolution neural network (CNN), and the attention mechanism to extract the complicated spatial-temporal correlations in multivariate flight data. Instead of using the traditional mean square error (mse) loss function, a modified loss function based on maximum correntropy criteria (MCC) is introduced to enhance the robustness of our RSTAE model during its training process. To further improve the anomaly detection performance, a dynamic threshold strategy is used. Experimental results on real flight data demonstrate the superior performance of the proposed method compared with several autoencoder-based methods in terms of six evaluation metrics.
AbstractList Recently, the safety and reliability of unmanned aerial vehicles (UAVs) have gained increasing interest, and data-driven anomaly detection methods have been widely studied. However, it is still challenging to build an accurate and reliable detector due to the scarcity of labeled data and complex spatial-temporal characteristics of flight data with noises and disturbances. To this end, this article proposes an autoencoder-based unsupervised anomaly detection framework with multivariate flight data without labeled information. Specifically, we designed a new robust spatial-temporal autoencoder (RSTAE) model based on the temporal convolution network (TCN), the convolution neural network (CNN), and the attention mechanism to extract the complicated spatial-temporal correlations in multivariate flight data. Instead of using the traditional mean square error (mse) loss function, a modified loss function based on maximum correntropy criteria (MCC) is introduced to enhance the robustness of our RSTAE model during its training process. To further improve the anomaly detection performance, a dynamic threshold strategy is used. Experimental results on real flight data demonstrate the superior performance of the proposed method compared with several autoencoder-based methods in terms of six evaluation metrics.
Author Jiang, Guoqian
Li, Yingwei
Nan, Pengcheng
Zhang, Jingchao
Li, Xiaoli
Author_xml – sequence: 1
  givenname: Guoqian
  orcidid: 0000-0002-1813-8249
  surname: Jiang
  fullname: Jiang, Guoqian
  email: jiangguoqian@ysu.edu.cn
  organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, China
– sequence: 2
  givenname: Pengcheng
  orcidid: 0009-0008-2986-3316
  surname: Nan
  fullname: Nan, Pengcheng
  organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, China
– sequence: 3
  givenname: Jingchao
  orcidid: 0000-0003-1902-1373
  surname: Zhang
  fullname: Zhang, Jingchao
  organization: School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
– sequence: 4
  givenname: Yingwei
  orcidid: 0000-0002-2683-8632
  surname: Li
  fullname: Li, Yingwei
  organization: School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
– sequence: 5
  givenname: Xiaoli
  orcidid: 0000-0003-1359-5130
  surname: Li
  fullname: Li, Xiaoli
  organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, China
BookMark eNp9kD1PwzAQhi1UJFpgZ2CwxJzij8SJx6qlgARCghbGyHEu1Ci1g-0g9d-TqgyIgemGe5_3dM8EjayzgNAFJVNKibxe3T9OGWHplKesEKk8QmOaZXkihWAjNCaEFolMM3GCJiF8EEJykeZj5J9d1YeIXzoVjWqTFWw751WLZ310YLWrwePGeby2oe_Af5kANZ5Zt1XtDi8ggo7GWeyaIbFV1u634Icq_Aobo1vAbyZu8LI175uIFyqqM3TcqDbA-c88RevlzWp-lzw83d7PZw-JZpLFpAbgmjLZMFU0RZ1p1YhGkrqSeUpyBsC4lornNKMVJVVaZ3mhIGVQVIJoyfkpujr0dt599hBi-eF6b4eTJSeDIs6EIENKHFLauxA8NKU2Ue1_il6ZtqSk3PstB7_l3m_543cAyR-w82ar_O4_5PKAGAD4Fc-kHF7m314GiS0
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_adhoc_2025_103989
crossref_primary_10_3390_drones8100534
crossref_primary_10_1016_j_rineng_2025_106801
crossref_primary_10_1109_TIM_2025_3580857
Cites_doi 10.1109/TIM.2017.2735663
10.1177/0278364920966642
10.1016/j.net.2023.11.033
10.1109/tim.2020.3001659
10.1109/IJCNN54540.2023.10191873
10.3390/s21062208
10.1109/TIM.2019.2935576
10.1109/ICRA.2019.8794286
10.1007/978-3-030-99584-3_26
10.1109/tits.2022.3178789
10.1109/TGCN.2021.3067555
10.1016/j.isatra.2016.11.005
10.1016/j.eswa.2023.122281
10.1109/TITS.2023.3243913
10.1109/JSAC.2022.3221990
10.1109/TWC.2023.3270441
10.1109/TGRS.2024.3353288
10.1016/j.measurement.2023.112565
10.1109/TITS.2023.3295401
10.1016/j.compag.2023.108441
10.1109/TIM.2023.3301898
10.1109/TIM.2024.3374321
10.1109/IROS47612.2022.9981950
10.4271/01-15-02-0017
10.1007/s11431-022-2213-8
10.1007/s10916-023-01972-x
10.1109/ACCESS.2019.2927010
10.1016/j.ress.2021.108263
10.1016/j.isatra.2022.01.014
10.1109/TR.2021.3134369
10.1109/ICSMD53520.2021.9670769
10.1109/TCSII.2020.3026393
10.1109/TIM.2022.3169165
10.1109/ICUAS57906.2023.10156213
10.1109/TNNLS.2020.3015356
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3428649
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 14
ExternalDocumentID 10_1109_TIM_2024_3428649
10599292
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62273299
  funderid: 10.13039/501100001809
– fundername: Hebei Provincial Military-Civilian Integration Science and Technology Innovation Project, China
  grantid: SJMYF202322
  funderid: 10.13039/501100017700
– fundername: National Defense Basic Scientific Research Program of China
  grantid: JCKY2019407C002
  funderid: 10.13039/501100012335
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-dee3c129f2a8f8d5caf6f90db974072ee23c9a37151b10b4d578ae42e8b60c933
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001283678000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:05:33 EDT 2025
Tue Nov 18 22:35:35 EST 2025
Sat Nov 29 04:38:51 EST 2025
Wed Aug 27 02:34:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-dee3c129f2a8f8d5caf6f90db974072ee23c9a37151b10b4d578ae42e8b60c933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-2986-3316
0000-0003-1359-5130
0000-0002-1813-8249
0000-0003-1902-1373
0000-0002-2683-8632
PQID 3086432660
PQPubID 85462
PageCount 14
ParticipantIDs ieee_primary_10599292
proquest_journals_3086432660
crossref_primary_10_1109_TIM_2024_3428649
crossref_citationtrail_10_1109_TIM_2024_3428649
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
Liu (ref36)
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Chen (ref37) 2023; 1
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1109/TIM.2017.2735663
– ident: ref35
  doi: 10.1177/0278364920966642
– ident: ref33
  doi: 10.1016/j.net.2023.11.033
– ident: ref9
  doi: 10.1109/tim.2020.3001659
– ident: ref30
  doi: 10.1109/IJCNN54540.2023.10191873
– ident: ref19
  doi: 10.3390/s21062208
– ident: ref20
  doi: 10.1109/TIM.2019.2935576
– ident: ref16
  doi: 10.1109/ICRA.2019.8794286
– ident: ref23
  doi: 10.1007/978-3-030-99584-3_26
– ident: ref4
  doi: 10.1109/tits.2022.3178789
– ident: ref6
  doi: 10.1109/TGCN.2021.3067555
– ident: ref10
  doi: 10.1016/j.isatra.2016.11.005
– ident: ref27
  doi: 10.1016/j.eswa.2023.122281
– ident: ref31
  doi: 10.1109/TITS.2023.3243913
– ident: ref3
  doi: 10.1109/JSAC.2022.3221990
– ident: ref25
  doi: 10.1109/TWC.2023.3270441
– ident: ref26
  doi: 10.1109/TGRS.2024.3353288
– ident: ref32
  doi: 10.1016/j.measurement.2023.112565
– ident: ref5
  doi: 10.1109/TITS.2023.3295401
– ident: ref1
  doi: 10.1016/j.compag.2023.108441
– ident: ref18
  doi: 10.1109/TIM.2023.3301898
– ident: ref28
  doi: 10.1109/TIM.2024.3374321
– ident: ref22
  doi: 10.1109/IROS47612.2022.9981950
– ident: ref24
  doi: 10.4271/01-15-02-0017
– ident: ref7
  doi: 10.1007/s11431-022-2213-8
– ident: ref2
  doi: 10.1007/s10916-023-01972-x
– ident: ref12
  doi: 10.1109/ACCESS.2019.2927010
– ident: ref17
  doi: 10.1016/j.ress.2021.108263
– ident: ref14
  doi: 10.1016/j.isatra.2022.01.014
– start-page: 1
  volume-title: Proc. The 12th Int. Conf. Learn. Represent.
  ident: ref36
  article-title: Itransformer: Inverted transformers are effective for time series forecasting
– volume: 1
  start-page: 1
  issue: 1
  year: 2023
  ident: ref37
  article-title: TSMixer: An all-MLP architecture for time series forecast-ing
  publication-title: Trans. Mach. Learn. Res.
– ident: ref8
  doi: 10.1109/TR.2021.3134369
– ident: ref21
  doi: 10.1109/ICSMD53520.2021.9670769
– ident: ref34
  doi: 10.1109/TCSII.2020.3026393
– ident: ref13
  doi: 10.1109/TIM.2022.3169165
– ident: ref15
  doi: 10.1109/ICUAS57906.2023.10156213
– ident: ref29
  doi: 10.1109/TNNLS.2020.3015356
SSID ssj0007647
Score 2.4593184
Snippet Recently, the safety and reliability of unmanned aerial vehicles (UAVs) have gained increasing interest, and data-driven anomaly detection methods have been...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Anomalies
Anomaly detection
Artificial neural networks
Autonomous aerial vehicles
Convolution
Correlation
Data models
Feature extraction
Flight
Flight training
Multivariate analysis
Multivariate flight data
Performance evaluation
robust spatial-temporal autoencoder (RSTAE)
Robustness
Spatiotemporal data
Training
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
unsupervised anomaly detection
Unsupervised learning
Title Robust Spatial-Temporal Autoencoder for Unsupervised Anomaly Detection of Unmanned Aerial Vehicle With Flight Data
URI https://ieeexplore.ieee.org/document/10599292
https://www.proquest.com/docview/3086432660
Volume 73
WOSCitedRecordID wos001283678000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86FPTg58TplBy8eKhLP9a0x6EOPThEpu5W0uSVDbZ29EPwv_cl7WQgCt5ySNLQX_Le7-Xj9wi5siWGPbbChaR8z_JsiSWdMizwk1CoUCnu1Mkm-GgUTCbhc_NY3byFAQBz-QxudNGc5atMVnqrrKe5ALpztLibnPP6sda32eW-Vwtk2vg5pAWrM0kW9saPTxgJOt6Ni2Tb17KZaz7IJFX5YYmNexnu_3NgB2Sv4ZF0UAN_SDYgPSK7a-qCR2Tb3O6UxTHJX7K4Kkqq8w_jfLPGtR4VNq_KTCtZKsgpslf6mhbVUluPAhQdpNlCzD_pHZTmvlZKswRrLIQ2zXRgpi59g6keAH2flVM6nOtQn96JUrTJ6_B-fPtgNckWLIkDLy0F4Ep0_okjgiRQfSkShIupGAMOxh0Ax5WhcDkyhNhmsadwqQvwHAhin8nQdU9IK81SOCU0Cd2AIe2R2JGngMUxxH0hbV86ieQJ65De6vdHslEi1wkx5pGJSFgYIWCRBixqAOuQ6-8Wy1qF44-6bQ3QWr0amw7priCOmnVaRC5GdB4yWJ-d_dLsnOzo3utdly5plXkFF2RLfpSzIr80U_ALfwrZqw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6aYBPjwLYCWhkDH3bhEOokbn4cq5WKalBNUwu9RY79IpBKgpoEif-eZyetKiGQdvPBjq189nvf84_vAfxyFYU9rqaFpAPhCFdRyaQMi4IsljrWOvSaZBPhZBLN5_Hf9rG6fQuDiPbyGZ6boj3L14WqzVZZz3ABcudkcbf7Qnhu81xrbXjDQDQSmS51SMRgdSrJ4950fE2xoCfOfaLbgRHO3PBCNq3KK1tsHczoy38O7SvstUySDRrov8EHzDuwu6Ev2IFP9n6nKvdh-a9I67JiJgMxzThn2ihSUfO6KoyWpcYlI_7KZnlZPxr7UaJmg7x4kItnNsTK3tjKWZFRjQdpjDMb2MnLbvDODIDd3ld3bLQwwT4bykoewGx0Mf196bTpFhxFA68cjegrcv-ZJ6Ms0n0lMwKM65RCDh56iJ6vYumHxBFSl6dC02KXKDyM0oCr2PcPYSsvcvwOLIv9iBPxUfQhoZGnKaZ9qdxAeZkKM96F3ur3J6rVIjcpMRaJjUl4nBBgiQEsaQHrwtm6xWOjw_FO3QMD0Ea9BpsuHK8gTtqVWiY-xXSCOGzAj95odgo7l9Prq-RqPPnzAz6bnpo9mGPYqpY1_oSP6qm6L5cndjq-APcc3PI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Spatial-Temporal+Autoencoder+for+Unsupervised+Anomaly+Detection+of+Unmanned+Aerial+Vehicle+With+Flight+Data&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Jiang%2C+Guoqian&rft.au=Nan%2C+Pengcheng&rft.au=Zhang%2C+Jingchao&rft.au=Li%2C+Yingwei&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2024.3428649&rft.externalDocID=10599292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon